ÜÇGENDE AÇI-KENAR BAĞINTILARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÜÇGENDE AÇI-KENAR BAĞINTILARI"

Transkript

1 ÜÇGN ÇI-NR ĞINTILRI ir üçgende üük çı krşısınd üük kenr, küçük çı krşısınd küçük kenr ulunur. 3 Şekildeki verilere göre, en uzun kenr şğıdkilerden hngisidir? 3 3 üçgeninde, kenrlr rsınd > > ğıntısı vrs, m ( ) > m ( ) > m ( ) ğıntısı vrdır. ) [] ) [] ) [] ) [] ) [] ve irer dik üçgen [] [] [] [] = m = m Yukrıdki verilere göre, nun kç tmsı değeri vrdır? ) 1 ) ) 3 ) ) 3 3 Üçgenlerdeki tüm çılr erleştirilirse, üçgeninde, < < dur. üçgeninde, < < dur dik üçgeninin en üük çısı dik çı olduğundn, en üük kenr [] dır. urdn, > m dir. dik üçgeninin en üük çısı dik çı olduğundn, en üük kenr [] dır. < m dir. urdn, < < ulunur. nun lileeği tmsı değerleri, 8,, 1 dur. Üç frklı değer lilir. oğru Seçenek: üçgeninde, < < dur. urdn, en uzun kenr, [] dır. 1 o Yukrıdki verilere göre, küçük tmsı değerleri toplmı kçtır? oğru Seçenek: ir üçgen [] ve [] çıortlr. m() = = m = 1m m() nın en üük ve en ) 8 ) 8 ) 88 ) 8 )

2 ve irer üçgen çevre() = 3 m() = = 1m o o o 1 [] iç çıort ve [] dış çıort olduğundn, m() = ve m() = tir. üçgeninde, < olduğundn, < tir. urdn, 33 < tir. en z 3 dir. m()+ = dir. urdn, < 1 Yukrıdki verilere göre, değeri kçtır? o m() nın en küçük tmsı ) ) ) ) ) ulunur. urdn, en çok dir. urdn, + 3 = dir. oğru Seçenek: Üçgende ir kenr uzunluğu; diğer iki kenrın uzunluklrı toplmındn küçük, frklrının mutlk değerinden üüktür. < < < < + < < + ir üçgen = 1m = 3 + = 1 Unkpnı Yınılık 1 üçgeninde, < + dir. şitsizliğin her iki trfın ekleelim; + < + + < Çevre() Çevre() 3 < = = 1 ulunur. urdn, < olduğundn, m ( ) > dir. m() = ulunur. o oğru Seçenek: -1 Yukrıdki verilere göre, nun en üük tmsı değeri kç m dir? ) 1 ) ) 3 ) ) üçgeninde, 3 + ( 1) < 1 < dir. urdn, + < 1 ve1 < + 3 dir. urdn, < ve < ulunur. = 3 + olduğundn, 3 < 1ve = 3 + < ulunur. urdn, = ulunur. ir üçgende ir kenr uzunluğu dim çevrenin rısındn küçüktür. Çevre( ) Çevre( ) <, < ve Çevre( ) < dir. 3

3 ve irer üçgen = m = m = 1m = 13m = ir dörtgen [] [] [] [] = m = m = + = olduğun göre, in tmsı değerleri Yukrıdki verilere göre, = in değer rlığı şğıdkilerden hngisidir? ) 3 < < 1 ) < < 1 toplmı kçtır? ) ) 1 ) 3 ) ) 8 ) < < 1 ) < < 1 ) < < 1 üçgeninde, 1 < < 1 + dır. üçgeninde, 13 < < 13 + tür. urdn, < < 1 ve < < 1 ulunur. şitsizlikler ortk çözülürse, < < 1 ulunur. oğru Seçenek: ir üçgen [ ] [ ] = = m = in değer rlığı (,k) olduğun göre, nun en üük değeri için k kçtır? ) 1 ) ) 3 ) ) Unkpnı Yınılık = ve = olk şekilde noktsı llım. urdn, = = m ve = = m dir. üçgeninde, < < + urdn, < < 1 ulunur. in değerleri toplmı; = 3 ulunur. F 1 oğru Seçenek: ir üçgen F ir dik üçgen [ F] [ ] = 1 m = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) 1 ) 1 ) 1 ) 1 ) 3 [] çizilirse, = = ulunur. üçgeninde, 1 < < + dır.urdn, = ve + = k ulunur. = ise, F = 3 m ve = 1 m ulunur. = 1 m için, k = 1 + = ulunur. oğru Seçenek:

4 F = F = olsun. üçgeninde, 1 < < + 1 urdn, 3 < < 1 ulunur. F dik üçgeninde, < olduğundn, < 1 dir. = 1 m ulunur. üçgeninde; oğru Seçenek: ir üçgen = = m = m = Yukrıdki verilere göre, in en küçük tmsı değeri kçtır? ) ) 8 ) ) 1 ) m()> ise > + m()< ise < + m() = ise = + dir. ir üçgende uzunluklrın dışınd frklı ir veri (ikizkenrlık, çıort, vs.) vrs u veri çı hkkınd fikir edineilmek için kullnılmlıdır. ir üçgen [] ve [] çıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) ) 8 Unkpnı Yınılık α üçgeninde, m() = m() = α < dir. urdn, β > ulunur. üçgeninde, ve ulunur > + >. en z 8 m ulunur. α β oğru Seçenek: ir üçgen, diklik merkezi = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) 3 ) m ( ) üçgeninde,m() = + > dir. üçgeninde, m() > olduğundn, > + urdn, < ulunur. < < + olduğundn, < < ulunur. < ve < tır. in değerleri, 3,, ve dır. dört tmsı değeri lır. oğru Seçenek: üçgeninin diklik merkezi üçgenin içinde olduğundn, üçgen dr çılı ir üçgendir. m()< olduğundn, < + dir. < ulunur. m()< olduğundn, < + dir. < 1 ulunur. 1 dır. < < ; 8, ve 1 değerlerini lilir. Üç frklı değeri vrdır. oğru Seçenek:

5 F ir üçgen [ ] çıort m ( ) = m ( ) = m = m F = P üçgeninde P ir iç nokt ise, < P < { ve nun üük olnı} dır. Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) ir üçgen + + F m() = m() =,m() = m() = olsun. m(f) = m() = + ulunur.urdn, F = = m ulunur. F ikizkenr üçgeninde, + < olduğundn, > dir. F üçgeninde > + urdn, < ve - < < +, < < 18 ulunur. indeğerleri;,,,8 dir. oğru Seçenek: ir üçgende kenrlr ile rdımı doğrulr rsınd ters ir ğıntı (kenr üüdükçe rdımı doğrulr küçülür, kenr küçüldükçe rdımı doğrulr üür.) vrdır. üçgeninde, >>ise h <h <h n <n <n v <v <v dir. Üçgende ir kenr it ükseklik çıort ve kenrort rsınd; Unkpnı Yınılık Çevre() = m dir. P un göre, P nun en üük tmsı değeri kçtır? ) ) 1 ) ) 1 ) 1 üçgeninde, < P < { ve nun üükolnı} olduğundn, en uzun kenr olsun. üçgeninde < olduğundn P < < ulunur. urdn P = 1m ulunur. oğru Seçenek: ir üçgen ir iç nokt üçgeninin çevresi tmsı olrk en çok 3 m olduğun göre, + toplmı tmsı olrk en z kçtır? ) ) 1 ) ) 1 ) 1 h n v h n v h n v ğıntısı vrdır. üçgeninde, < + < + olduğundn, < + ve + < + dir. urdn, + + = 3 < ( + ) P z üçgeninde P ir iç nokt ise, Çevre() < + + z < Çevre() dir. =,= ve = olsun. ulunur. 18 < + dir. + = 1 m ulunur. oğru Seçenek:

6 ir üçgen [ ] 1 m 1. (u test için tvsie edilen süre 3 dkikdır) Yukrıdki verilere göre, üçgeninin çevresi şğıdkilerden hngisi olmz? ) 3 ) 31 ) 3 ) 33 ) 3 üçgeninde [ ] olduğundn, { } ve nun üük olnı ğıntısı vrdır. - 1 ir üçgen = = + 3 = 1 m +3 Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 1 ) ) 3 ) ) urdn, > kul edersek, 1 m ulunur. üçgeninde, + > olduğundn, + > 1 ulunur. üçgeninin çevresi 3 m den üüktür. oğru Seçenek: ir üçgen [] ükseklik, [] kenrort ve [] çıortdır. = = Unkpnı Yınılık. ir üçgen Çevre() = 1 m dir. un göre, nin kç tmsı değeri vrdır? ) ) 8 ) ) 1 ) Yukrıdki verilere göre, üçgeninin kenrlrı rsındki sırlm şğıdkilerden hngisidir? ) < < ) < < ) < < ) < < ) < < h = v = n verilior. üçgeninde, h < n < v, h < n < v ve h < n < v olduğundn, h = v < v urdn, > ve v = n < v urdn, > ve h = n < n urdn, > ulunur. urdn, > > elde edilir. oğru Seçenek: 3. + ir üçgen m()<m() = m = = + - Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) 8 ). hmet, kn ve Levent ir noktdn herhngi ikisi nı doğru üzerinde olmmk şrtıl sırsıl m, 1m ve m hreket ediorlr. un göre, Levent in hmet ve kn uzklıklrı toplmı tmsı olrk en çok kç m olilir? ) 3 ) ) 1 ) ) 3

7 . 8. ir üçgen ir ikizkenr üçgen Çevre() = m 8 geniş çı m() = m() = 8 m üçgeninin kenr uzunluklrı tmsı olduğun göre, kç frklı üçgeni çizileilir? Yukrıdki verilere göre, üçgeninin çevresinin en küçük tmsı değeri kç m dir? ) 1 ) 3 ) ) ) 8 ) 3 ) ) ) ). - 1 ir üçgen = = = 1 m Ζ 3+3 Yukrıdki verilere göre, üçgeninin çevresi en çok kç m dir? ) ) 13 ) 1 ) 1 ) Unkpnı Yınılık. ir üçgen, üçgeninin diklik merkezi = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) ) ) ) ) ir üçgen = = = 1 m 3+3 Yukrıdki verilere göre, üçgeninin çevresinin en üük tmsı değeri kç m dir? ) 1 ) ) ) ) 8 1. ir üçgen [] ve [] çıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) 8

8 . 1. ir üçgen [] ve [] dışçıortlr = m = m = Yukrıdki verilere göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ) ir diküçgen = 1 = + 1 = 1 m +1 Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) ) ) 8 ) ) 1 Unkpnı Yınılık 1. ir üçgen ir dik üçgen [ ] [ ] Çevre( ) = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) 8 ) ) 1 ) ) 1 1. α β ir üçgen [ ] çıort m() = α m() = β = 18 m α > β = Yukrıdki verilere göre, üçgeninin çevresi en küçük tmsı değerini ldığınd in en üük tmsı değeri kçtır? ) ) 1 ) ) 1 ) ir üçgen ve P irer iç nokt = 8 m P = 13 m 13. ir üçgen [] ükseklik, [] çıort α = m() = m() = α Yukrıdki verilere göre, α nın en üük tmsı değeri kçtır? ) 8 ) ) 1 ) ) un göre, ve P noktlrı rsındki uzklık tmsı olrk en çok kç m dir? ) ) 1 ) 1 ) 18 ) ir üçgen ir iç nokt = 1 m = 1 m Yukrıdki verilere göre, ve üçgenlerinin çevreleri toplmının en üük tmsı değeri kçtır? ) 1 ) 1 ) 13 ) 1 )

9 18. 1 α ir üçgen [ ] [ ] = = 1 m = m = α > olduğun göre, in kç tmsı değeri vrdır? ) 3 ) ) ) ).,, irer üçgen = m = m = m = m Yukrıdki verilere göre, eşgeninin çevresinin en üük tmsı değeri kçtır? ) 33 ) 3 ) 3 ) 3 ) ve irer üçgen = 1 m = 8 m = m = Yukrıdki verilere göre, in en üük tmsı değeri kçtır? ) ) 3 ) ) ) ve irer üçgen = 1 m = 1 m = m = 8 m = Yukrıdki verilere göre, in değer rlığı şğıdkilerden hngisidir? ) 3 < < ) < < 1 ) < < ) 3 < < 1 ) < < z ir üçgen ir iç nokt = 8 m = m = 1 m Yukrıdki verilere göre, + + z toplmının en üük tmsı değeri kçtır? ) ) ) ) 3 ) 3 Unkpnı Yınılık [ ] [ ] = 8 m = 1 m = m = Yukrıdki verilere göre, in en üük değeri kç m dir? ) ) 3 ) ) ). F Yukrıdki verilere göre, küçük tmsı değeri kç m dir? ir geniş çılı üçgen [ ] [ ] [ F] [ ] = + F = m = m F + toplmının en ) ) ) 8 ) )

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik)

ÜÇGENDE ALAN. Alan(ABC)= 1 2. (taban x yükseklik) ÜÇGN LN Üçgende ln Şekilde verilen üçgeninde,, üçgenin köşeleri, [], [], [] üçgenin kenrlrıdır. c b üçgeninin kenrlrı dlndırılırken, her kenr krşısınd bulunn köşenin hrfi ile isimlendirilir. üçgeninin

Detaylı

G E O M E T R İ ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br

G E O M E T R İ  ÖRNEK. AB = 8 br. BC = x br ÇÖZÜM. Cevap C dir. ÖRNEK. [AF] [BF] [AF açıortay BE = EC EF = 1 br AB = 7 br G O M T R İ www.kemivizyon.om.tr 3. ÖLÜM Üçgene çı Kenr ğıntılrı 1. < < + < < + < < + ir üçgene ir kenr uzunluğu, iğer iki kenr uzunluklrının toplmınn küçük; mutlk frkınn üyüktür. ÖRNK m() m() m() = r

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC

(, ) ( ) [ ] [ ] ve [ ] [ ] ( ) ( ) ÜÇGENLERDE TRİGONOMETRİK ÖZELLİKLER. A. Kosinüs Teoremi: Herhangi bir ABC ÜÇGNLR TRİGONOMTRİK ÖZLLİKLR. Kosinüs Teoremi: Herhngi ir üçgeninin, kenr uzunluklrı,, ise; = +... os = +... os = +... os İspt: Şekilde görüldüğü üçgeni, köşesi ile orijin, kenrı ile ekseni ile çkışk şekilde

Detaylı

GeoUmetri Notları Mustafa YAĞCI, Deltoit

GeoUmetri Notları Mustafa YAĞCI, Deltoit www.mustfgci.cm.tr, 01 GeUmetri Ntlrı Mustf YĞI, gcimustf@h.cm eltit n z ir köşegenine göre simetrik ln dörtgene deltit denir. = ve = lmsı deltidin iki ikizkenr üçgen rındırdığını nltır. Şöle de izh edeiliriz

Detaylı

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI:

DOĞRUDA AÇILAR GEOMETRİ KAF01 TEMEL KAVRAMLAR NOKTA: AÇI ÖLÇÜ BİRMLERİ: DERECE: = 360 2π DOĞRU: RADYAN: KOMŞU AÇI: KAPALI DOĞRU PARÇASI: TÜMLER AÇI: ĞRU ÇILR GMTRİ 01 TML VRMLR NT: ĞRU: ÇI ÖLÇÜ İRMLRİ: R: RYN: R = 360 2π PLI ĞRU PRÇSI: MŞU ÇI: YRI ÇI ĞRU PRÇSI: TÜMLR ÇI: ÇI ĞRU PRÇSI: ÜTÜNLR ÇI: PLI YRI ĞRU (IŞIN): R ÇI: ÇI YRI ĞRU: İ ÇI: ÇI: GNİŞ

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Nisn 99 Mtemtik Sorulrı ve Çözümleri (0,0 0,8) işleminin sonucu kçtır? 0,00 A) 00 B) 0 C) D), E) 0, Çözüm (0,0 0,00 0,8) 0, 0,00 0, 0,00 0 işleminin sonucu kçtır? A) B) C)

Detaylı

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız.

Trigonometri - I. Isınma Hareketleri. 1 Aşağıda verilenleri inceleyiniz. 2 Uygun eşleştirmeleri yapınız. 3 Uygun eşleştirmeleri yapınız. Isınm Hreketleri şğıd verilenleri inceleyiniz. Yönlü çı: Trigonometrik irim Çember: Merkezi orjin, yrıçpı br oln çemberdir. O + yön éo Pozitif yönlü (Stin tersi) O yön éo Negtif yönlü (St yönü) O y x Denklemi:

Detaylı

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =?

( ) ( ) ( ) Üslü Sayılar (32) 2. ( ) ( 2 (2) 3. ( ) ( ) 3 4. ( 4 9 ) eşitliğini sağlayan a değeri kaçtır? (0) 0,6 0,4 : 4,9 =? Üslü Sılr. +.4 8 (8) 4. ( ) (. ). ( ) 4 6 ( ) :( ) () + + 5..4. ( ) ( ) () 4. 5 5 ( 4 9 ) 5. 9 + + 9 = + eşitliğini sğln değeri kçtır (0) 6. ( ) ( ) ( ) 0,6 0,4 : 4,9 (-6) 4 8.. c 7. 4.. c ( c ) 8. 6 8

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

ÜÇGEN VE PİSAGOR BAĞINTISI

ÜÇGEN VE PİSAGOR BAĞINTISI ÜÇGEN VE PİSGOR ĞINTISI KZNIMLR Üçgen kvrmı Üçgen çizimi Üçgenin kenrlrı rsındki ğıntılr Üçgen eşitsizliği Üçgenlerde yükseklik Üçgenlerde kenrorty Üçgenlerde çıorty Kenr ort dikme kvrmı Pisgor ğıntısı

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı

ÜÇGENDE BENZERLİK. Benzerlik. Benzerlik Oranı. Uyarı ÜÇN NZRLİK enzerlik eometride benzerlik kvrmı görsel olrk birbiri ile ynı oln şekiller için kullnılır. enzer iki şeklin krşılıklı kenrlrı rsınd sbit bir orn vrdır. iz bu bölümde sdece üçgenler rsındki

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin ONU NLTIMLI Mtemtik Olimpiytlrı İçin enzerlik LİS MTMTİ OLİMPİYTLRI İÇİN Mustf Yğı, Osmn kiz enzerlik Mustf Yğı Osmn kiz İki çokgenin köşeleri rsınd ire-ir eşleme ypılırs eşleştirilen köşelere krşılıklı

Detaylı

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10

T 35 ZAMBAK MERAKLISINA TESTLERİ(GEO): ÇÖZÜM: ŞekildeIBCI=8, IACI=4,m(B)= a,m(c)= q ve = 180 olduğuna göre IABI kaç br dir? A)4 B)5 C)6 D)8 E)10 1) Z RII Rİ(GO): 0 0 ŞekildeII=, II=,m()=,m()= ve + = 10 olduğun göre II kç br dir? ) )5 ) ) )10 ÇÖZÜ-1: 0 5 5 5 0 105 ile yi birleştirelim. @ (.. eşliği) olur. ikizkenr olur.unlr göre çılrı simgelendirirsek

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS Rsonel Sılr YILLAR 00 00 00 00 00 00 00 00 00 0 ÖSS-YGS RASYONEL SAYILAR KESĐR: Z ve 0 olmk üzere şeklindeki ifdelere kesir denir p pd kesirçizgisi KESĐR ÇEŞĐTLERĐ: kesri için i) < ise kesir sit kesirdir

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

Diğer kitaplar ve testler için aşağıdaki linki tıklayınız. www.izmirkpsskursu.net. EĞİTİM BİLİMLERİ MERKEZİ www.izmirkpsskursu.net 0 232 445 21 25

Diğer kitaplar ve testler için aşağıdaki linki tıklayınız. www.izmirkpsskursu.net. EĞİTİM BİLİMLERİ MERKEZİ www.izmirkpsskursu.net 0 232 445 21 25 EĞİTİM BİLİMLERİ MERKEZİ 0 5 5 DÜZLEMDE ÇILR Prlel Ġki Doğrunun Bir Kesenle Yptığı çılr: Tnım: Bşlngıç noktsı ortk iki ışının irleşim kümesine çı denir. d 6 5 d 7 8 O OB OB = BO ÇI ÇEġĠTLERĠ. Dr çı: Ölçüsü

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

Mobil Test Sonuç Sistemi. Nasıl Kullanılır?

Mobil Test Sonuç Sistemi. Nasıl Kullanılır? Mobil Test Sonuç Sistemi Nsıl ullnılır? Tkdim Sevgili Öğrenciler ve eğerli Öğretmenler, ğitimin temeli okullrd tılır. İyi bir okul eğitiminden geçmemiş birinin hytt bşrılı olmsı beklenemez. Hedefe ulşmks

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VEKTÖRLER. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. YÖNLÜ

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı., b olduğun göre, b. b ifdesinin değeri şğıdkilerden hngisidir?,,,9 8... b b ifdesinin eşiti şğıdkilerden hngisidir?.. Bun göre, verilior. ifdesinin değeri kçtır? 8. b b c 8 c d

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı 8. sısının pozitif tek tmsı bölenlerinin sısı kçtır? 8. olmk üzere; kesrinin değeri şğıdkilerden hngisi olmz?. (8!) sısının sondn kç bsmğı sıfırdır? 8. ifdesinin sonucu kçtır? (

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

Geometri Notları. Kenar-Açı Bağıntıları Mustafa YAĞCI,

Geometri Notları. Kenar-Açı Bağıntıları Mustafa YAĞCI, www.mustfygi.om, 00 Geometri Notlrı Mustf YĞI, ygimustf@yhoo.om Kenr-çı ğıntılrı Üçgenin tnımını htırlyrk derse şlylım:,, doğrusl olmyn üç nokt olduğund, [], [] ve [] nin irleşimine üçgeni denirdi. ir

Detaylı

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır?

1992 ÖYS. 1. Bir öğrenci, harçlığının 7. liralık otobüs biletinden 20 adet almıştır. Buna göre öğrencinin harçlığı kaç liradır? 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000 6. Bir lstik çekilip uztıldığınd

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır.

MUTLAK DEĞER. Sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve x ile. gösterilir. x x. = a olarak tanımlanır. gösterilir. MUTLAK DEĞER Syı doğrusu üzerinde syısının sıfır oln uzklığın in mutlk değeri denir ve ile B O A 0 OA = OB =, 0 =, < 0 olrk tnımlnır. < 0 < y için y = y işleminin eşitini bulunuz. < 0 için

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

Geometri Notları. Dik ve Özel Üçgenler Mustafa YAĞCI,

Geometri Notları. Dik ve Özel Üçgenler Mustafa YAĞCI, www.mustfgci.com, 005 Geometri Notlrı Mustf YĞI, gcimustf@oo.com ik ve Özel Üçgenler ik üçgen. Herngi iki kenrı dik kesişen d şk ir ifdele (iç ve dış) ir çısı dik çı oln üçgenlere dik üçgen denir. ik çının

Detaylı

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR ORTÖĞRETĐM ÖĞRENĐLERĐ RSI RŞTIRM ROJELERĐ YRIŞMSI (2008 2009) ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTLR rojeyi Hzırlyn Öğrencilerin dı Soydı : Sinem ÇKIR Sınıf ve Şuesi : 11- dı Soydı : Fund ERDĐ Sınıf ve Şuesi

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

Mtemtik Öğretmeni: Mhmut BAĞMANCI www.zevklimtemtik.com LOGARİTMA ÇALIŞMA SORULARI.) Aşğıdkı ifdelerde x i veren ifdeyi yzınız x ) x b) 7 x c) 0 7 d) +x.) 7 7 7 ise x... ise x... ise x... ise x....) Aşğıdki

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

MATEMATİK.

MATEMATİK. MTEMTİK www.e-ershne.iz. s( \ ) = 6, s( \ ) = 8 tür. kümesinin lt küme syısı ise, kümesinin elemn syısı kçtır?... D. 7 Ynıt:. s( ) =? s( ) = = s( ) = 6 8 s( ) = 6 + + 8 =. Rkmlrı frklı üç smklı üç oğl

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından

Milli Eğitim Bakanlığı, Talim ve Terbiye Kurulu Bakanlığı'nın 30.12.2010 tarih ve 330 sayılı kararı ile kabul edilen ve 2011 2012 Öğretim Yılından Milli ğitim knlığı, Tlim ve Terbie urulu knlığı'nın 0.1.010 trih ve 0 sılı krrı ile kbul edilen ve 011 01 Öğretim Yılındn itibren ugulnck progrm göz önüne lınrk hzırlnmıştır. u kitb n her hkk skl d r ve

Detaylı

ÜÇGENLERDE EŞLİK VE BENZERLİK Bölüm 4.1. Eşlik

ÜÇGENLERDE EŞLİK VE BENZERLİK Bölüm 4.1. Eşlik Ünite 4 ÜÇGNLR ŞLİK V NZRLİK ölüm 4.1. şlik u ölümde Neler Öğreneceğiz? Üçgenin iç ve dış çılrının ölçüleri toplmını İki üçgenin eşliğini Üçgenin kenrlrı ile çılrı rsındki ilişkiyi Üçgenin kenrlrı rsındki

Detaylı

ÇOKGENLER HAKKINDA GENEL HATIRLATMALAR

ÇOKGENLER HAKKINDA GENEL HATIRLATMALAR ÇONLR IN NL TIRLTMLR nr sısı (n) 3 d d zl oln kplı gomtrik şkillr çokgn dnir n NRLI İR ONV ÇON; 1) İç çılr toplmı (n )180 ) ış çılr toplmı 360 3) öşgn sısı n ( n 3) onvks çokgn (ışük) onkv çokgn (İçük)

Detaylı

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin

(bbb) üç basamaklı sayılardır. x ile y arasında kaç tane asal sayı vardır? A)0 B)1 C) 2 D) 3 E) x, y, z reel sayılar olmak üzere, ifadesinin 4 () ve (bb) iki bsmklı syılr, () ve 1 x=15! +1 y=15!+16 olmk üzere, (bbb) üç bsmklı syılrdır x ile y rsınd kç tne sl syı vrdır? A)0 B)1 C) D) 3 E) 4 b + bb + bbb = 6 olduğun göre, b çrpımı en çok kçtır?

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır.

YILLAR ÖSS-YGS /LYS /1 0/1 ÇÖZÜM: 1) xοy A ise ο işlemi A da kapalıdır. YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS /LYS - - - 0/ 0/ ĐŞLEM ( ) ( ) (+ ) ( ) 7 6 76+ bulunur ve e bğlı bütün tnımlı fonksionlr bir işlem belirtir i göstermek için +,,*, gibi işretler kullnılır

Detaylı

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır?

1987 ÖSS A) 0 B) 2. A) a -2 B) (-a) 3 C) a -3 D) a -1 E) (-a) 2 A) 1 B) 10 C) 10 D) 5 10 E) a+b+c=6 olduğuna göre a 2 +b 2 +c 2 toplamı kaçtır? 987 ÖSS. Yukrıdki çıkrm işlemine göre, K+L+M toplmı şğıdkilerden hngisine dim eşittir? A) M B) L C) K M K 5. 4 işleminin sonucu kçtır? A) 0 B) C) 5 4 5. Aşğıdki toplm işleminde her hrf sıfırın dışınd fklı

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

İkinci Dereceden Denklemler

İkinci Dereceden Denklemler İkini Dereeden Denkleler İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER TANIMLAR :,, R ve olk üzere + + denkleine, ikini dereeden ir ilineyenli denkle denir Bu denkledeki,, gerçel syılrın ktsyılr, e ilineyen

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

Temel Kavramlar. Alıştırma Şekil ile, ifade edilişini eşleştiriniz.

Temel Kavramlar. Alıştırma Şekil ile, ifade edilişini eşleştiriniz. Temel Kvrmlr Giriş Sıfırdn Mtemtik kitımızd kznımlr; gerçekten sıfırdn şlrk ve o n dek nltıln ilgiler eterli olck şekilde, enzer ol örnek ve hiçir kitpt olmdığı kdr lt şlıklrl verilmiş ve kitı itirenlerin

Detaylı

steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k

steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k u kit n her hkk skl d r ve kstrem Y nc l k ittir. Kit it metin ve sorulr, knk gösterilerek de ols kulln lmz. Kit n hz rln fl öntemi tklit edilemez. ISN: 978 0 9 8 9 steme dresi kstrem Yıncılık Tlf: (0)

Detaylı

Soru 1- Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunlukları toplamı 12 ise bu dörtgenin alanı en çok kaç olabilir?

Soru 1- Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunlukları toplamı 12 ise bu dörtgenin alanı en çok kaç olabilir? Soru - Köşegenleri dik kesişen bir dikdörtgende köşegenlerin uzunluklrı toplmı ise bu dörtgenin lnı en çok kç olbilir? A) 8 B) C) 6 D) E)6 Köşegenlerin uzunluklrı ve y olsun. Köşegenleri dik kesiştiği

Detaylı

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06

İÇİNDEKİLER ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 PROBLEMLER İÇİNDEKİLER Syf No Test No ORAN VE ORANTI... 267-278... 01-06 KESİR PROBLEMLERİ... 279-288... 01-05 HAVUZ VE İŞ PROBLEMLERİ... 289-298... 01-06 SAYI PROBLEMLERİ... 299-314... 01-08 YAŞ PROBLEMLERİ...

Detaylı

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm

LOGARİTMA. çözüm. için. Tanım kümesindeki 1 elemanını değer kümesindeki herhangi. çözüm. çözüm LOGARİTMA Üstel Fonksion >0 ve olmk üzere f:r R +, f() = şeklindeki fonksionlr üstel fonksion denir. Üstel fonksionlr birebir ve örtendir. f:r R +, f()=( ) bğıntısının üstel fonksion olup olmdığını inceleiniz.

Detaylı

4. x ve y pozitif tam sayıları için,

4. x ve y pozitif tam sayıları için, YGS MTEMTİK ENEMESİ., b ve c pozitif tm syılrı için, b c b b c c biçiminde tnımlnıyor. un göre, işleminin sonucu kçtır? ) 6 ) 4 ) 0 ) 6 E) 8. Rkmlrı frklı dört bsmklı doğl syısının ilk iki bsmğı ile son

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

ÜNİTE DÖRTGENLER VE ÇOKGENLER. 5.1 : Dörtgenler ve Özellikleri 5.2 : Özel Dörtgenler 5.3 : Çokgenler

ÜNİTE DÖRTGENLER VE ÇOKGENLER. 5.1 : Dörtgenler ve Özellikleri 5.2 : Özel Dörtgenler 5.3 : Çokgenler 5 ÜNİT ÖRTGNLR V ÇOGNLR 51 : örtgenler ve Özellikleri 5 : Özel örtgenler 53 : Çokgenler 50 50 0 ünymız yklşık olrk küre biçimindedir Onun üzerinde bir üçgen çizmeye klktığımızd o üçgenin iç çılrının toplmı

Detaylı

* Bir üçgende büyük açý karþýsýndaki kenar. 4. A m(ëb) = 76

* Bir üçgende büyük açý karþýsýndaki kenar. 4. A m(ëb) = 76 . ÖLÜM ÇI - KENR ÐINTILRI LIÞTIRM: 1 * ir üçgenin iki çýsý eþit ise; krþýlýklý kenrlrýd eþittir. * ir üçgende büyük çý krþýsýndki kenr büyüktür. b m(ë) = m(ë) ise m(ë) < m(ë) < m(ë) ise; b = dir. < b

Detaylı

9. SINIF GEOMETRİ KONU ANLATIMLI SORU BANKASI

9. SINIF GEOMETRİ KONU ANLATIMLI SORU BANKASI 9. SINI GMTRİ NU NLTIMLI SRU NSI u kitb n her hkk skl d r ve kstrem Y nc l k ittir. itb it metin ve sorulr, knk gösterilerek de ols kulln lmz. itb n hz rln fl öntemi tklit edilemez. ISN : 978 0 7 0 steme

Detaylı

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri

ORAN ve ORANTI-1 ORAN-ORANTI KAVRAMI. 1. = olduğuna göre, aşağıdaki ifadelerin. + c c sisteminin çözümüne. 3. olduğuna göre, nin değeri ORAN ve ORANTI- ORAN-ORANTI KAVRAMI A) B) 9 C) 7 D) 5 E). olduğun göre, şğıdki ifdelerin hngisi d doğrudur? + d A) d + 4 + d C) 4 d E) 5 + 5 5 5 + d d + d B) n + m n + md D) d x y z. 4 5 sisteminin çözümüne

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 17 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Hzirn 007 Mtemtik I Sorulrı ve Çözümleri.. 7 işleminin sonucu kçtır? A) B) 9 C) D) E) Çözüm. 7..9.. + işleminin sonucu kçtır? 4 8 A) 8 B) 8 C) 8 D) 4 E) 4 Çözüm + 4 8 8 4+

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

Harita Dik Koordinat Sistemi

Harita Dik Koordinat Sistemi Hrit Dik Koordint Sistemi Noktlrın ir düzlem içinde irirlerine göre konumlrını elirlemek için, iririni dik çı ltınd kesen iki doğru kullnılır. Bun dik koordint sistemi denir. + X (sis) Açı üyütme Yönü

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır?

Örnek...1 : a, b ve c birbirlerinden farklı birer rakamdır. a.b+9.b c en çok kaçtır? RAKAM Syılrı ifde etmek için kullndığımız 0,,2,3,4,5,6,7,8,9 sembollerine rkm denir. Örnek... :, b ve c birbirlerinden frklı birer rkmdır..b+9.b c en çok kçtır? DOĞAL SAYILAR N={0,,2,3...,n,...} kümesine

Detaylı

YGS GEOMETRİ KONU ANLATIMLI SORU BANKASI

YGS GEOMETRİ KONU ANLATIMLI SORU BANKASI YGS GMTRİ NU NLTIMLI SRU NSI u kitb n her hkk skl d r ve kstrem Y nc l k ittir. itb it metin ve sorulr, knk gösterilerek de ols kulln lmz. itb n hz rln fl öntemi tklit edilemez. ISN : 978 0 0 7 0 steme

Detaylı

[BC] // [AD] [AC] ve [BD] AD =6 br BC =10 br. olduğuna göre, EF MN k a ç birimdir? Ayr ı c a. [AC] ve [BD] EF =6 br BC =8 br.

[BC] // [AD] [AC] ve [BD] AD =6 br BC =10 br. olduğuna göre, EF MN k a ç birimdir? Ayr ı c a. [AC] ve [BD] EF =6 br BC =8 br. YU ( YU TII ORT T YU LI İİZR YU İ YU ) YU TII ORT T Y l n ı z ik i k e n r ı b i r b i r i n e p r l e l l n d ö r t g e n e Y U d e n i r. [ ] / / [ ] i s e y m u k t u r. y m u ğ u n d, ve L kenr rt

Detaylı

YAYINA HAZIRLAYANLAR

YAYINA HAZIRLAYANLAR rif ŞYKKUYN Her hkkı sklıdır ve MVSİM SIM YY. Ğ. PZ. SN ve Tİ. LT. ŞTİ ne ittir. Metinler, örnekler, lıştırmlr nen d değiştirilerek lınmz, fotokopi ve bşk bir oll çoğltılrk kullnılmz. YYIN HZIRLYNLR ditör

Detaylı

ÜNİTE - 9 GEOMETRİK CİSİMLER

ÜNİTE - 9 GEOMETRİK CİSİMLER ÜNİ - 9 GMRİK İSİMLR KI İSİMLRİN YÜZY LNLRI V İMLRİ RİZMLR Q ve Q birbirine prlel iki düzlem olsun. iri, diğeri Q düzlemindeki birbirine eş iki çokgenin köşeleri krşılıklı olrk birleştirilirse elde edilen

Detaylı

Dik Üçgende Dar Açıların. Trigonometrik Oranları

Dik Üçgende Dar Açıların. Trigonometrik Oranları ölüm 5. ik Üçgen ve Trigonometri Neler Öğreneceğiz? ik üçgende bir çının sinüs, kosinüs, tnjnt ve kontnjnt değerlerini ik üçgende 0, 5 ve 60 lik çı ölçülerinin trigonometrik ornlrını Eşkenr üçgenin ükseklik

Detaylı

DENEY 2 Wheatstone Köprüsü

DENEY 2 Wheatstone Köprüsü 0-05 Güz ULUDĞ ÜNİESİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ÖLÜMÜ EEM0 Elektrik Devreleri Lorturı I 0-05 DENEY Whetstone Köprüsü Deneyi Ypnın Değerlendirme dı Soydı : Deney Sonuçlrı (0/00)

Detaylı

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise

SORU SORU. ABCDEF... düzgün çokgenin ard fl k köfleleridir. m(ebf) = 12 ise GMR erginin bu sy s nd Çokgenler ve örtgenler konusund çözümlü sorulr yer lmktd r. u konud, ÖSS de ç kn sorulr n çözümü için gerekli temel bilgileri ve prtik yollr, sorulr m z n çözümü içinde ht rltmy

Detaylı

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM

ASAL SAYILAR. Asal Sayılar YILLAR MATEMATĐK ĐM YILLAR 00 003 004 00 006 007 008 009 00 0 ÖSS-YGS - - - - - - - ASAL SAYILAR ve kendisinden bşk pozitif böleni olmyn den büyük tmsyılr sl syı denir Negtif ve ondlıklı syılr sl olmz Asl syılrı veren bir

Detaylı

steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k

steme Adresi Ekstrem Yayıncılık Tlf: (0322) 235 64 65 Belgeç : (0322) 232 86 27 www.ekstrem.com.tr Grafik Tasar m Dizgi Ekstrem Yay nc l k u kit n her hkk skl d r ve kstrem Y nc l k ittir. Kit it metin ve sorulr, knk gösterilerek de ols kulln lmz. Kit n hz rln fl öntemi tklit edilemez. ISN: 978 0 9 8 9 steme dresi kstrem Yıncılık Tlf: (0)

Detaylı

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ

LYS 1 / MATEMATİK DENEME ÇÖZÜMLERİ LYS / MATEMATİK DENEME ÇÖZÜMLERİ Deneme -. A) - - + B) - 7 - + C) 5-5 - 5 +. + m ; + me + > H + D) - 5 - + E) 7- - + Sılrın plrı eşit olduğun göre, pdsı en üük oln sı en küçüktür. Bun göre A seçeneğindeki

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0)

Tanım : Merkezi orijin ve yarıçapı 1 birim olan çembere trigonometrik çember veya birim çember denir. y B(0,1) C(1,0) BÖLÜM TRİGONOMETRİ.. TRİGONOMETRİK BAĞINTILAR... BİRİM ÇEMBER Tnım : Merkezi orijin ve yrıçpı birim oln çembere trigonometrik çember vey birim çember denir. Trigonometrik çemberin denklemi + y dir.yni

Detaylı

) = 5 = 0,5 Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. işleminin sonucu kaçtır? A) 3 B) 9 C) 27 D) Çözüm 1 = 3. isleminin sonucu kaçtır?

) = 5 = 0,5 Ö.S.S MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. işleminin sonucu kaçtır? A) 3 B) 9 C) 27 D) Çözüm 1 = 3. isleminin sonucu kaçtır? Ö.S.S. 00 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. ( 9 (9 9 9 işleminin sonucu kçtır? 0 A B 9 C 7 D 8 E 9 Çözüm ( 9 (9 9 9 0 8 8 80 9 9 9 9.. 4 isleminin sonucu kçtır? A 4 B 4 C D E 4 Çözüm 4 4.(.(. 4.( ².( 4.

Detaylı

ALIN DÜZLEMİ: Alın izdüşüm düzlemine paralel veya çakışık olan düzlemlere ALIN DÜZLEMİ denir. (Şekil 2.1)

ALIN DÜZLEMİ: Alın izdüşüm düzlemine paralel veya çakışık olan düzlemlere ALIN DÜZLEMİ denir. (Şekil 2.1) r. Doç. Dr. Mus Glip ÖZK DÜZLEMLERİN İZDÜŞÜMLERİ ir üzlemin üzerine çeşitli noktlmlr ypmk ve üzlem üzerine oğrulr çizmek mümkünür. u neenle üzlemler: ) ynı oğrultu olmyn üç nokt ile, ) ir oğru ve u oğru

Detaylı