Matematiksel modellerin elemanları

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Matematiksel modellerin elemanları"

Transkript

1 Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme durumunda ilgilenilen sistem dikkatli bir şekilde gözlemlenir ve değerleri kontrol edilebilen ve sistemin performansını etkileyen değişkenler belirlenir. Bu değişkenler yöneticilerin kontrolü altındadır ve karar değişkenleri olarak tanımlanırlar. Bir üretim sisteminde farklı ürünlerin üretilecek miktarları, bir yerden başka yere taşınacak ürün miktarı, işçi sayısı, makina sayısı vb. 2. Amaç fonksiyonu: Karar değişkenlerinin amaç üzerindeki etkilerinin analitik olarak gösterilmesiyle amaç fonksiyonu oluşturulur. 3. Kısıtlar: Sistemin içinde bulunduğu koşullardan kaynaklanmaktadır (talep kısıtları, kapasite kısıtları gibi) Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Management Science by Cliff T. Ragsdale Matematiksel Programlama Matematiksel programlama yöneylem araştırmasının, amaçlara ulaşmak için sınırlı kaynakların optimal veya en etkin şekilde kullanılmasının yollarını arayan bir dalıdır. Literatürde matematiksel programlama problemleri yerine optimizasyon problemleri de kullanılmaktadır. Tek ya da çok değişkenin sayısal bir fonksiyonu ile ilgili maksimum ya da minimum değerleri araştıran problemlere optimizasyon problemleri denir. Optimizasyon modelleri, bir sistem çıktısını en iyilemek için, sistemin ilişkilerinin matematiksel ifadelerle tanımlanmış biçimidir. Optimizasyon Problemi MAX (veya MIN): f 0 (X 1, X 2,, X n ) ş.k.g.: f 1 (X 1, X 2,, X n ) <= b 1 f k (X 1, X 2,, X n ) >= b k f m (X 1, X 2,, X n ) = b m Bir optimizasyon probleminde tüm fonksiyonlar doğrusal ise, problem doğrusal programlama modelidir. Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Management Science by Cliff T. Ragsdale Spreadsheet Modeling and Decision Analysis: A Practical Introduction to Management Science by Cliff T. Ragsdale Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 1

2 Doğrusal Programlama (DP) Bir doğrusal programlama modeli doğrusal kısıtlar altında bir doğrusal fonksiyonun değerini maksimize veya minimize etmeye çalışır. y = mx + b bir doğrunun denklemidir. Örn: y = -4/3x + 6 düzenlenirse 4x + 3y = 18 (2 değişkenli doğrusal fonksiyon) Bir doğrusal fonksiyon bir pozitif, negatif veya sıfır sabitinin değişkenlerle çarpımlarının toplamıdır: Örn: 5x 1-4x 2 + 0x 3 + 6x 4 Doğrusal bir fonksiyonda x 1 2, x 1 /x 2, x 1 gibi değerler yer almaz. Doğrusal Programlama (DP) Doğrusal programlama, kaynakların optimal dağılımını elde etmeye, maliyetleri minimize, karı ise maksimize etmeye yarayan bir tekniktir. Doğrusal Programlama, optimizasyon problemlerinin çözümünde kullanılan bir yöntemdir. Doğrusal Programlama, kıt kaynakların optimum şekilde dağılımını içeren deterministik bir matematiksel tekniktir. Doğrusal programlama, iyi tanımlanmış doğrusal eşitliklerin veya eşitsizliklerin kısıtlayıcı koşulları altında doğrusal bir amaç fonksiyonunu en iyi (optimum / maksimizasyon - minimizasyon) kılan değişken değerlerinin belirlenmesinde kullanılan matematiksel programlama tekniğidir. DP Modelinin Yapısal Unsurları 1. Amaç fonksiyonu Karar vericinin ulaşmak istediği hedef doğrusal bir denklem ile açıklanır. Amaç fonksiyonu olarak bilinen bu denklem, karar değişkenleri ile karar vericinin amacı arasındaki fonksiyonel ilişkiyi gösterir. Z enk/enb = c 1 x 1 + c 2 x c n x n 2. Kısıtlayıcı fonksiyonlar (kısıtlayıcılar/kısıtlar) Karar değişkenleri ve karar değişkenleriyle parametrelerin birbirleriyle olan ilişkilerinde sağlanması zorunlu olan ilişkilerin matematiksel olarak açıklanmasıyla elde edilen denklemlere kısıtlayıcı fonksiyonlar denir. Kısıtlayıcıların değerleri kesin olarak önceden belirlenmiş olup sistemin tanımlanmasında kullanılır. Kısıtlayıcı fonksiyonlar sadece kaynakların sınırlarını değil, gereksinim ve yönetim kararlarını ifade etmekte de kullanılır. a 11 x 1 +a 12 x a 1n x n = b 1 a 21 x 1 +a 22 x a 2n x n = b 2 DP Modelinin Yapısal Unsurları 3. Negatif olmama koşulları Karar değişkenlerinin değerleri negatif olmaz. x 1, x 2,..., x n 0 veya kısaca x j 0 (j = 1, 2, 3,, n) 4. Karar değişkenleri Karar vericinin denetimi altında olan niteliklere karar değişkenleri denir. Bunlar modele ilişkin bilinmeyenler olup değerleri modelin çözümünden sonra belirlenir. Bu değişkenler karar vericinin denetimi altında olduklarından bunlara kontrol değişkenleri de denir. x j : Belirli bir zaman döneminde j. ürünün üretim miktarı veya faaliyet düzeyi. j=1, 2, 3,, n : Ürün çeşidi, faaliyet sayısı. a m1 x 1 +a m2 x a mn x n = b m Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 2

3 11/11/11 DP Modelinin Yapısal Unsurları (Devam) 5. Parametreler Alabileceği değerlerde karar vericinin hiçbir etkisi olmayan niteliklere parametre veya kontrol dışı değişkenler denir. Belirli koşullarda belirli değerler alan parametreler problem için veri durumundadır. DP Modelinin Genel Görünümü Amaç Fonksiyonu Zenk/enb = c1x1 + c2x cnxn Kısıtlayıcı Fonksiyonlar Cj : j. karar değişkeninin amaç fonksiyonu katsayısı (parametre) - (birim kar, birim fiyat, birim maliyet vs.). a11x1+a12x2+...+a1nxn = b1 aij : j. üründen bir birim üretmek için i. kaynaktan tüketilen kaynak miktarı veya girdi katsayısı bi : n sayıdaki ürün için elde bulunan i. sınırlı kaynak miktarı. i = 1, 2, 3,, m: Üretim bölümlerinin veya üretim kaynaklarının sayısı. DP Modelinin Matris Gösterimi a21x1+a22x2+...+a2nxn = b2 am1x1+am2x2+...+amnxn = bm Negatif Olmama Koşulu x1, x2,..., xn 0 DP nin Varsayımları Amaç Fonksiyonu 1. Belirlilik (Certainity) 2. Doğrusallık (Linearity) 3. Bölünebilirlik (Divisibility) Kısıtlayıcı Fonksiyonlar 4. Toplanabilirlik (Additivity) 5. Orantısallık (Proportionality) Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 3

4 DP nin Varsayımları 1. Belirlilik Varsayımı : Bir DP modelinde yer alan parametrelerin bilindiği ve değişmediği kabul edilir. Yani, birim başına kar ya da maliyetlerin (c j ), her faaliyet için gerekli olan kaynak miktarlarının (a ij ) ve mevcut kaynak miktarlarının (b i ) kesin olarak bilindiği varsayılır. Bu varsayımın kabul edilmesiyle DP problemlerinin çözümu kolaylaşmaktadır. Ancak, uygulamada bu parametrelerin sık sık değişme eğiliminde olması, DP de duyarlılık analizi çalışmalarının yürütülmesini gerektirmektedir. Problemin optimum çözümu elde edildikten sonra duyarlılık analizi başlığı altında parametrelerdeki değişmelerin optimal çözüm üzerindeki etkileri incelenebilir. 2. Bölünebilirlik Varsayımı : Bölünebilirlik varsayımı ile karar değişkenlerinin optimal çözüm değerlerinin kesirli değerler alabileceği kabul edilir. Örneğin herhangi bir DP modelinin optimal çözümünde 4.6 adet araba üretileceği gibi bir üretim çıktısı sonucuna ulaşılabilir. Kesirli optimal çözüm değerleri Tam Sayı Programlama algoritmalarıyla tamsayılaştırılır. DP nin Varsayımları 3. Doğrusallık Varsayımı : Bir DP modelinin amaç fonksiyonu ve kısıt denklemleri doğrusal olmalıdır. Bir başka deyişle x j ler birinci dereceden değişkenler olmalıdır. Bir işletmenin girdileri ile çıktıları arasında doğrusal bir ilişki olduğu varsayılır. 4. Toplanabilirlik Varsayımı : Herhangi bir değişkenin amaç fonksiyonuna katkısı, diğer karar değişkenlerinin değerlerinden bağımsızdır. Örnek olarak, Zmaks. = 3x 1 + 2x 2 şeklinde bir amaç fonksiyonu olsun. x 2 nin değeri ne olursa olsun x 1 birim ünite üretimiyle amaç fonksiyonuna her zaman 3x 1 pb. katkı yapılacaktır. Bir değişkenin her bir kısıt denkleminin sol tarafına yaptığı katkı diğer değişkenlerin değerlerinden bağımsızdır. 2x 1 + 1x 2 6 (Kısıt I) x 1 + 3x 2 9 (Kısıt II) şeklinde 2 adet kısıt denklemi olsun. x 1 in değeri ne olursa olsun x 2 birim ünite üretimi 1 birim Kaynak I ve 3 birim Kaynak II kullanımı gerektirir. DP nin Varsayımları 5. Orantısallık Varsayımı : Her bir karar değişkeninin amaç fonksiyonuna ve kısıt denklemlerinin sol tarafına yapacağı katkı karar değişkeninin değeri ile orantılıdır. Örnek olarak bir adet A tipi oyuncağın amaç fonksiyonu katkısı 0.8 TL ise dört adet A tipi oyuncağın amaç fonksiyonuna toplam katkısı bunun dört katı olan 3.2 TL (4x0.8) olacaktır. Bir adet A tipi oyuncak plastik departmanında 4 dakikada işleniyorsa, 5 adet A tipi oyuncak bunun beş katı olan 20 dakikada (4x5=20) işlenecektir. DP nin Uygulama Alanları Ulaştırma ve dağıtım kanalları Beslenme ve karıştırma problemleri Üretim planlaması Yatırım planlaması Görev dağıtımı Arazi kullanımı planlaması Kuruluş yeri seçimi Oyun teorisi Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 4

5 DP Problemlerinin Modelinin Kurulması DP Problemlerinin modelinin kurulmasında aşağıdaki adımların izlenmesi gerekmektedir: Adım 1: Problemin anlaşılması Adım 2: Karar değişkenlerinin tanımlanması ve bunların sembolize edilmesi. Adım 3: Amacın belirlenerek amaç fonksiyonun karar değişkenlerinin doğrusal bir fonksiyonu olarak yazılması Adım 4: Tüm kısıtlamaların karar değişkenlerinin doğrusal bir fonksiyonları olarak eşitlik veya eşitsizlik olarak yazılması Adım 5: Negatif olmama koşullarının yazılması. Örnek Bir Doğrusal Programlama Problemi Bir firma iki tip jakuzi üretmektedir: Aqua Spa ve Hydro Lux. JAKUZİ AQUA SPA HYDRO - LUX Pompalar 1 1 İşçilik 9 saat 6 saat Tesisat 12 metre 16 metre Birim Kar $ 350 $ 300 Firmanın çeşitli sebeplerden dolayı 200 adet pompa, 1566 işçilik saati ve 2880 metre tesisat kısıtı bulunmaktadır. Verilen kısıtlar altında firmanın amacı mümkün olan en yüksek karı sağlayacak üretim miktarlarını belirlemektir. DP Modeli Kurarken 5 Adım 1. Problemi anla. 2. Karar değişkenlerini belirle. X 1 = Üretilecek Aqua Spa tipi jakuzi sayısı X 2 = Üretilecek Hydro Lux tipi jakuzi sayısı DP Modeli Kurarken 5 Adım - Devam 4. Karar değişkenlerinin doğrusal fonksiyonları şeklinde kısıtları yaz. 1 X X 2 <= 200 } pompalar 9 X X 2 <= 1566 } işçilik 12 X X 2 <= 2880 } tesisat 3. Karar değişkenlerinin doğrusal bir fonksiyonu şeklinde amaç fonksiyonunu oluştur. MAX. Z = 350 X X 2 5. Negatif olmama koşullarını yaz. X 1 >= 0 X 2 >= 0 Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 5

6 DP Modeli Kurarken 5 Adım - Devam MAX. Z = 350 X X 2 S.T.: 1 X X 2 <= X X 2 <= X X 2 <= 2880 X 1 >= 0 X 2 >= 0 Maksimizasyon Modeli Örneği 1 (1 / 3) Ürün karışımı problemi: Kase ve kupa üreten bir firma üretim için kil kullanmaktadır. Bir kase üretimi için 4 kg kil, bir kupa üretimi için 3 kg kil gerekmektedir. Bir kase 1 saatte, 1 kupa ise 2 saatte üretilmektedir. Çeşitli nedenlerden dolayı firmanın sağlayabildiği kil miktarı günlük 120 kg ile sınırlıdır. Günde 40 saat çalışılmaktadır. Üretilen kaselerin herbiri firmaya 40$, kupaların herbiri ise 50$ kar bırakmaktadır. Verilen işçilik ve malzeme kısıtları altında firmanın amacı mümkün olan en yüksek karı sağlayacak üretim bileşimini seçmektir. ÜRÜN KAYNAK İHTİYAÇLARI İşçilik (saat / birim) Kil (kg / birim) Kar ($ / birim) Kase Kupa Kaynaklar 40 saat / gün 120 kg Maksimizasyon Modeli Örneği 1 (2 / 3) Maksimizasyon Modeli Örneği 1 (3 / 3) Kaynaklar: Günde 40 saat işçilik Karar Değişkenleri: Amaç Fonksiyonu: Kaynak Kısıtları: Negatif olmama Kısıtları: 120 kg kil x 1 = günlük üretilecek kase sayısı x 2 = günlük üretilecek kupa sayısı Maximize Z = $40x 1 + $50x 2 1x 1 + 2x 2 40 saat işçilik 4x 1 + 3x kg kil x 1 0 ; x 2 0 Maximize Z = $40x 1 + $50x 2 subject to: 1x 1 + 2x x 1 + 3x x 1, x 2 0 Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 6

7 Fizibil Çözüm Fizibil Olmayan Çözüm Bir fizibil çözüm hiçbir kısıtı bozmaz (ihlal etmez). Örn: x 1 = 5 kase x 2 = 10 kupa Z = $40x 1 + $50x 2 = $700 İşçilik kısıtı kontrolü: 1(5) + 2(10) = 25 < 40 saat, Kil kısıtı kontrolü: 4(5) + 3(10) = 70 < 120 kg Fizibil olmayan bir çözüm kısıtlardan en az birini ihlal etmektedir. Örn: x 1 = 10 kase x 2 =20 kupa İşçilik kısıtı kontrolü: 1(10) + 2(20) = 50 < 40 saat Maksimizasyon Modeli Örneği 2 (1 / 2) Mügesüt şirketi kapasite sorunu yüzünden günde kg. dan daha çok süt işleyememektedir. Yönetim, yağ veya işlenmiş süt için kullanılan sütün dengelenmesi için peynir fabrikasında en az kg. lık günlük süt kullanmak istemektedir. Bir kg. sütün yağ üretimi için kullanıldığında, kara katkısı, 4 TL., şişe sütü olarak kullanıldığında katkısı 8 TL. ve peynir üretimi için kullanıldığında ise katkısı 6 TL. dir. Yağ bölümü günde kg., süt şişeleme donanımı günde kg., peynir donanımı ise günde kg. süt işleyebilir. Şirket karını maksimize etmek istediğine göre problemi doğrusal programlama modeli olarak ifade ediniz. Maksimizasyon Modeli Örneği 2 (2 / 2) Karar Değişkenleri x 1 = Yağ yapımında kullanılan süt miktarı (kg) x 2 = Şişelemede kullanılan süt miktarı (kg) x 3 = Peynir yapımında kullanılan süt miktarı (kg) İşletmenin karını maksimize edecek amaç fonksiyonu; Maksimum z = 4x 1 + 8x 2 + 6x 3 Kısıtlar ise; x x x x x 1 + x 2 + x Negatif Olmama Koşulu; x 1, x 2, x 3 0 Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 7

8 Minimizasyon Modeli Örneği 1 (1 / 3) Problem : 1000 gr malzeme içeren sandviç Malzemeler: İki çeşit, tavuk ($3/gr) ve biftek ($5/gr) Tarif gereksinimi: en az 500 gr tavuk en az 200 gr biftek Tavuğun bifteğe oranı en az 2 ye 1 olmalı. Maliyetleri minimize edecek optimal malzeme karışımını belirleyiniz. Minimizasyon Modeli Örneği 1 (2 / 3) Adım 1: Karar değişkenlerini tanımla. x 1 = tavuk (gr) x 2 = biftek (gr) Adım 2: Amaç fonksiyonunu belirle. Minimize Z = $3x 1 + $5x 2 $3x 1 = tavuk maliyeti $5x 2 = biftek maliyeti Minimizasyon Modeli Örneği 1 (3 / 3) Adım 3: Model kısıtlarını tanımla. x 1 + x 2 = 1,000 gr x (tavuk gramı kısıtı) x (biftek gramı kısıtı) x 1 / x 2 2 / 1 veya x 1 2 x 2 0 (tavuk-biftek oranı kısıtı) x 1, x 2 0 Model: Minimize Z = $3x 1 + $5x 2 subject to: x 1 + x 2 = 1,000 x x x 1 2x 2 0 x 1, x 2 0 Minimizasyon Modeli Örneği 2 (1 / 2) İnci kimya firması X ve Y gibi iki tip kimyasal madde üretmektedir. 1 litre X ürününün maliyeti 160 TL., 1 litre Y ürününün maliyeti ise 240 TL. dir. Müşteri talebine göre, firma, gelecek hafta için en az 6 litre X ve en az 2 litre Y ürünu üretmelidir. X ve Y kimyasal ürünlerinde kullanılan hammaddelerden birisinin sunumu azdır ve sadece 30 gr. sağlanabilmektedir. X ürününün bir litresinde bu hammaddeden 3 gr. ve Y nin litresinde de 5 gr. gerekli olmaktadır. İnci firması, toplam maliyetini minimize etmek için X ve Y ürünlerinden kaçar litre üretmesi gerektiği konusunda çok büyük bir kararsızlık içerisine girmiştir. Bu soruyu yanıtlayacak modeli kurunuz. Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 8

9 Minimizasyon Modeli Örneği 2 (2 / 2) Problemde karar değişkenleri, x 1 = Üretilecek X ürününün miktarı (litre) x 2 = Üretilecek Y ürününün miktarı (litre) Minimize edilmek istenen toplam maliyet 160 x x 2 dir. İstenen gerekli minimum miktar ise x 1 6 ve x 2 2 dir. Hammadde kısıtlayıcısı ise 3 x x 2 30 dur. Böylece minimizasyon modeli şöyle olacaktır. Min. z = 160 x x 2 x 1 6 x x x 2 30 x 1, x 2 0 Modellemeye Giriş Yrd. Doc. Dr. Ceyda GÜNGÖR ŞEN 9

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

YÖNEYLEM ARAŞTIRMASI-I

YÖNEYLEM ARAŞTIRMASI-I YÖNEYLEM ARAŞTIRMASI-I İST205U KISA ÖZET DİKKAT Burada ilk 4 sahife gösterilmektedir. Özetin tamamı için sipariş veriniz www.kolayaof.com 1 1.ÜNİTE Yöneylem Araştırmasına Giriş GİRİŞ Yöneylem Araştırması

Detaylı

Çözümlemeleri" adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu.

Çözümlemeleri adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu. Dersi Veren Öğretim Üyesi: Doç. Dr. Mehmet KORKMAZ Özgeçmişi Mehmet KORKMAZ, 1975 yılında Malatya da doğdu. İlkokul, ortaokul ve liseyi memleketi olan Isparta da tamamladı. 1996 yılında İ.Ü. Orman Fakültesi,

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10 Bölüm 10 Ders 10 Simpleks Yöntemine Giriş 10.1 Alıştırmalar 10 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 197 198 BÖLÜM 10. DERS 10 1. Soru 1 1. Aşağıda verilen simpleks tablolarında temel, temel olmayan,

Detaylı

İbrahim Küçükkoç Arş. Gör.

İbrahim Küçükkoç Arş. Gör. Doğrusal Programlamada Karışım Problemleri İbrahim Küçükkoç Arş. Gör. Balikesir Üniversitesi Endüstri Mühendisliği Bölümü Mühendislik-Mimarlık Fakültesi Çağış Kampüsü 10145 / Balıkesir 0 (266) 6121194

Detaylı

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1 EKON 305 Yöneylem Araştırması I Doğrusal Programlama Doç. Dr. Murat ATAN 1 Doğrusal Programlama Karar Verme ve Modeller Algılanan ihtiyaçlara özgü kasıtlı ve düşünceli seçim (Kleindorfer ve diğ., 1993)

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/ Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/25.12.2016 1. Bir deri firması standart tasarımda el yapımı çanta ve bavul üretmektedir. Firma üretmekte olduğu her çanta başına 400TL, her

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

YÖNEYLEM ARAŞTIRMASI

YÖNEYLEM ARAŞTIRMASI GİRİŞ 1 Yönetim fonksiyonları Sanayi devrimi ile birlikte endüstri işletmelerinin hızla büyümeleri sonucunda bir kişinin bütün yöneticilik fonksiyonlarını tek başına yürütebilmesi imkansız hale gelmiştir

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

OPTİMİZASYON maksimizasyon ve minimizasyon optimizasyon

OPTİMİZASYON maksimizasyon ve minimizasyon optimizasyon OPTİMİZASYON Bir işletmede, tasarımda, işletilmesinde, fabrika makina ve techizatların analizinde, endüsstriyel proseslerde, üretimin planlanmasında, herhangi bir harcamanın yapılmasında ve gelirin sağlanmasında

Detaylı

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER Örnek 1: Bir boya fabrikası hem iç hem dış boya üretiyor. Boya üretiminde A ve B olmak üzere iki tip hammadde kullanılıyor. Bir günde A hammaddesinden

Detaylı

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü KARAR TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü Karar Ortamları Karar Analizi, alternatiflerin en iyisini seçmek için akılcı bir sürecin kullanılması ile ilgilenir. Seçilen

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or HRS şirketi BRN Endüstrileri ile bir anlaşma yapmış ve her ay BRN ye üretebildiği kadar A ürününden sağlamayı garanti etmiştir. HRS de vasıflı ustalar ve çıraklar çalışmaktadır. Bir usta, bir saatte 3

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI (OPERATIONAL RESEARCH) ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SUNUM PLANI Yöneylem araştırmasının Tanımı Tarihçesi Özellikleri Aşamaları Uygulama alanları Yöneylem

Detaylı

YÖNEYLEM ARAŞTIRMALARI 1

YÖNEYLEM ARAŞTIRMALARI 1 YÖNEYLEM ARAŞTIRMALARI 1 1.HAFTA Amacı:Karar vericiler işletmelerde sahip oldukları kaynakları; insan gücü makine ve techizat sermaye kullanarak belirli kararlar almak ister. Örneğin; en iyi üretim miktarı

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP)

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) 1. Non-lineer kar analizi, 2. Kısıtlı optimizasyon, 3. Yerine koyma (substitution) yöntemi, 4. Lagranj Çarpanları Yöntemi 5. Başabaş Analizleri ve Duyarlılık Testleri

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ Örnek (2-5) Güzel-Giyim konfeksiyon piyasaya ceket, etek ve elbise yapmaktadır. Konfeksiyoncu, ceketi, eteği ve elbiseyi kendisinin A1, A2

Detaylı

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir. MODELLEME MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

Applied Management Science: Modeling, Spreadsheet Analysis, and Communication for Decision Making

Applied Management Science: Modeling, Spreadsheet Analysis, and Communication for Decision Making YÖNEYLEM ARAŞTIRMASI (Ders Akış Programı) Ders Sorumlusu : Y.Doç. Dr. Fazıl GÖKGÖZ, İletişim Bilgileri : 595 13 37, e-posta: fgokgoz@politics.ankara.edu.tr tr Applied Management Science: Modeling, Spreadsheet

Detaylı

Ders içeriği (7. Hafta)

Ders içeriği (7. Hafta) Ders içeriği (7. Hafta) 7.Üretim Teorisi 7.1. Uzun dönem ve ölçeğe göre getiri (Ölçeğin verimi) 7.2. Üretim fonksiyonu 7.3. Azalan Verim Kanunu 7.4. Tek ve iki değişkenli üretim fonksiyonları Ek Kaynak:

Detaylı

İTÜ İŞLETME FAKÜLTESİ İŞLETME MÜHENDİSLİĞİ BÖLÜMÜ

İTÜ İŞLETME FAKÜLTESİ İŞLETME MÜHENDİSLİĞİ BÖLÜMÜ İTÜ İŞLETME FAKÜLTESİ İŞLETME MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI-I DERS NOTLARI Doç. Dr. Demet BAYRAKTAR Yard. Doç. Dr. Ferhan ÇEBİ Eylül 2003-Istanbul 1. KARAR VERMEDE YÖNEYLEM ARAŞTIRMASI 1.1.

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ Yöneylem Araştırması III Prof.Dr. Bilal TOKLU btoklu@gazi.edu.tr Yöneylem Araştırması III BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA HEDEF

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak GAMS Giriş GAMS (The General Algebraic Modeling System) matematiksel proglamlama ve optimizasyon için tasarlanan yüksek seviyeli bir dildir. Giriş dosyası:

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X 1 + 4 X subject to: X

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 İÇİNDEKİLER Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 1.1. Yöneticilik / Komutanlık İşlevi ve Gerektirdiği Nitelikler... 2 1.1.1. Yöneticilik / Komutanlık

Detaylı

Ders 11. Kısıtlamalı Minimizasyon Problemleri Alıştırmalar 11. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay

Ders 11. Kısıtlamalı Minimizasyon Problemleri Alıştırmalar 11. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Bölüm 11 Ders 11 Kısıtlamalı Minimizasyon Problemleri 11.1 Alıştırmalar 11 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1. Soru 1 Aşağıdaki problemlerde, dual problemi yazınız; dual problemi simpleks yöntemi

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/71 İçerik n Bulunması Kuzey-Batı Köşe Yöntemi En Küçük Maliyetli Göze Yöntemi Sıra / Sütun En Küçüğü Yöntemi Vogel Yaklaşım Metodu (VAM) Optimum Çözümün Bulunması Atlama Taşı

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

ATAMA (TAHSİS) MODELİ

ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ Doğrusal programlamada kullanılan bir başka hesaplama yöntemidir. Atama problemleri, doğrusal programlama (simpleks yöntem) veya transport probleminin çözüm

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

Yöneylem Araştırması

Yöneylem Araştırması Yöneylem Araştırması Çok sayıda teknik ve bilimsel yaklaşımı içeren Yöneylem Araştırması, genellikle kıt kaynakların paylaşımının söz konusu olduğu sistemlerin en iyi şekilde tasarlanması ve işletilmesine

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

DP Model Kurma (Derste Çözülecek Örnekler)

DP Model Kurma (Derste Çözülecek Örnekler) 1*. Bir tekstil firması 3 ebatta (S-M-L) gömlek üretmektedir. Her bir gömleğin üretim maliyeti sırasıyla 3 pb., 4 pb. ve 6 pb. dir. Firmanın Türkiye çapındaki bayileri; haftada en az 2000 adet S, 3000

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

YÖNEYLEM ARAŞTIRMASI - II

YÖNEYLEM ARAŞTIRMASI - II YÖNEYLEM ARAŞTIRMASI - II Araş. Gör. Murat SARI 1/35 I Giriş Biri diğerini izleyen ve karşılıklı etkileri olan bir dizi kararın bütünüyle ele alındığı problemler için geliştirilen karar modelleri ve bunların

Detaylı

KONU 13: GENEL UYGULAMA

KONU 13: GENEL UYGULAMA KONU : GENEL UYGULAMA Kahve üretimi apan bir şirket anı zamanda cezve ve fincan üretmektedir. Üretilen cezveler ve fincanlar boama kısmında işlem görmekte ve arıca fincanlar kaplanmaktadır. Bir cezve apımı

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

TÜRKİYE DEKİ ÖZEL GÜVENLİK YAPILANMASINDAKİ RİSKLERİN DOĞRUSAL PROGRAMLAMA YÖNTEMİ İLE BELİRLENMESİ

TÜRKİYE DEKİ ÖZEL GÜVENLİK YAPILANMASINDAKİ RİSKLERİN DOĞRUSAL PROGRAMLAMA YÖNTEMİ İLE BELİRLENMESİ 3. Ulusal Özel Güvenlik Sempozyumu 1-2 Mart 2013 Gaziantep TÜRKİYE DEKİ ÖZEL GÜVENLİK YAPILANMASINDAKİ RİSKLERİN DOĞRUSAL PROGRAMLAMA YÖNTEMİ İLE BELİRLENMESİ Orhan ECEMİŞ 1,Metehan YAYKAŞLI 2, Fahriye

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım.

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım. 3. Simpleks Yöntem Doğrusal programlama modelleri grafik yöntem dışında simpleks yöntem adı altında özel bir yöntemle çözülebilir. Bu yöntem Simple Matrix kelimlerinin kısaltmasıdır ve bir çeşit matris

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL Problem 1 (KMS-2001) Bir endüstride iktisadi kârın varlığı, aşağıdakilerden hangisini gösterir? A)

Detaylı

S2. İnova kimya İşletmesi, aşağıdaki özellikleri taşıyan ürün üretmektedir:

S2. İnova kimya İşletmesi, aşağıdaki özellikleri taşıyan ürün üretmektedir: Ödev soruları S1. Kimsan kimya firması X ve Y gibi iki tip kimyasal madde üretmektedir. 1 litre X ürününün maliyeti 160 TL., 1 litre Y ürününün maliyeti ise 240 TL. dir. Müşteri talebine göre, firma, gelecek

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

UZMANLAR İÇİN MODELLEME. Doç.Dr.Aydın ULUCAN

UZMANLAR İÇİN MODELLEME. Doç.Dr.Aydın ULUCAN UZMANLAR İÇİN MODELLEME Doç.Dr.Aydın ULUCAN Karar Modellerinin Temel Bileşenleri Karar Değişkenleri: Amaca ulaşmak için kontrol edilen faktörler. Amaç Fonksiyonu: Ulaşılmak istenen hedefin karar değişkenlerinin

Detaylı

Çok değişkenli fonksiyonlar. Maksimum- Minimum

Çok değişkenli fonksiyonlar. Maksimum- Minimum 66 Bölüm 6 Ders 06 Çok değişkenli fonksiyonlar. Maksimum- Minimum 6.1 Çözümler:Alıştırmalar 06 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Ön Bilgi: z = f (x, y) fonksiyonu 3-boyutlu uzayda bir yüzeyin denklemidir.

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Öğr. Gör. Barış Alpaslan

Öğr. Gör. Barış Alpaslan Dersin Adı DERS ÖĞRETİM PLANI Matematik I Dersin Kodu ECO 05/04 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 5 Haftalık Ders Saati 3 Haftalık

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ SORU-1.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Bu ders notları, 2012-2013 ve 2013-2014 Bahar yarıyılında PAÜ Endüstri Mühendisliği bölümünde

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2016-2017 Güz Dönemi Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 2 Tesis Yer Seçimi Problemi (TYSP) TEK AMAÇLI

Detaylı

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.8. TAM REKABET PİYASALARI A.8.1. Temel Varsayımları Atomisite Koşulu: Piyasada alıcı ve satıcılar,

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

Karar Verme. Karar Verme ve Oyun Teorisi. Kararların Özellikleri. Karar Analizi

Karar Verme. Karar Verme ve Oyun Teorisi. Kararların Özellikleri. Karar Analizi Karar Verme Karar Verme ve Oyun Teorisi Yrd.Doç.Dr. Gökçe BAYSAL TÜRKÖLMEZ Belirli bir amaca ulaşabilmek için, Değişik alternatiflerin belirlenmesi ve Bunlar içinden en etkilisinin seçilmesi işlemidir.

Detaylı

Gazi Üniversitesi, Kimya Mühendisliği Bölümü KM 378 Mühendislik Ekonomisi

Gazi Üniversitesi, Kimya Mühendisliği Bölümü KM 378 Mühendislik Ekonomisi Problem Seti 1 (Arz-Talep) 1. Bir firma, satış fiyatı ile talep arasında D=780$-10p eşitliğini geliştirmiştir. Aylık sabit gider 800$ ve ürün başına değişken gider 30$ dır. Aylık karı maksimum yapmak için

Detaylı

BAŞABAŞ NOKTASI ANALİZİ

BAŞABAŞ NOKTASI ANALİZİ BAŞABAŞ NOKTASI ANALİZİ Herhangi bir işe girişirken, genellikle o iş için harcanacak çaba ve kaynaklarla, o işten sağlanacak fayda karşılaştırılır. Bu karşılaştırmada amaç, kaynaklara (üretim faktörlerine)

Detaylı