1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E)"

Transkript

1 İktisadi ve İdari Bilimler Fakültesi MAT 152 Genel Matematik II Final Sorularının Çözümleri: 1) Toplam gelir fonksiyonu olarak verildiğine göre marjinal gelir fonksiyonu MG aşağıdakilerden hangisidir? A) ** B) C) D) E) Çözüm: Doğru cevap A dır. 2) Talep fonksiyonu olan ve toplam maliyet fonksiyonu TM=60+3q+0.2q 2 ile verilen malın toplam kar fonksiyonu aşağıdakilerden hangisidir? A) q-0.4 B) q-0.3 C) q-0.4 D) q-0.4 E) q-0.4 ** Çözüm: Talep fonksiyonu olduğuna göre Toplam gelir fonksiyonu TG=p.q=( ).q=30q-0.2 elde edilir. Diğer taraftan toplam kar fonksiyonu için TK=TG-TM eşitliği sağlandığından TK=TG-TM =(30q-0.2 )-( 60+3q+0.2q 2 )=30q q-0.2q 2 = =-60+27q-0.4 bulunur. Doğru cevap E dir.

2 3) Bir şirketin adet cep telefonu üretildiğinde maliyet fonksiyonu olarak veriliyor. Üretilen 100. cep telefonunun marjinal maliyeti aşağıdakilerden hangisidir? A) 130 B) 120 ** C) 100 D) 90 E) 80 Çözüm. Marjinal maliyet fonksiyonu maliyet fonksiyonunun türevi olduğundan elde edilir. Marjinal maliyet fonksiyonu bulunur. Buna göre üretilen 100. cep telefonunun marjinal maliyeti MM q=100 =40+(0.8)100=40+80=120 TL olarak bulunur. Doğru cevap B dir. 4) Toplam maliyet fonksiyonu TM = q 6q q 3 şeklinde verildiğine göre ortalama değişken maliyet q nun hangi değeri için minimum değerde olur? A) 40 B) 30 C) 20 D) 10 ** E) 5

3 Çözüm: Toplam maliyet fonksiyonu TM = q 6q q 3 şeklinde verildiğine göre değişken maliyet fonksiyonu DM=200q 6q q 3 olacağına göre ortalama değişken maliyet fonksiyonu (DM)/q olacağından dolayı ortalama değişken maliyet fonksiyonu bulunur. Ortalama değişken maliyet, ortalama değişken maliyet fonksiyonunun alacağı minimum değerde minimum olacaktır. Bu da türevinin sıfır olduğu yerde olabilir. elde edilir. 0 olduğundan birinci türevi sıfır yapan q=10 de minimum vardır. Doğru cevap D dir. 5) Eğer p=62-3q ise fiyat 32 TL iken talep nokta esnekliği aşağıdakilerden hangisidir? A) B) C) ** D) E) Çözüm: Talep nokta esnekliği formülü

4 olduğuna göre ve fiyat olan p verilmiş olduğuna göre talep miktarı q yu ve p=62-3q talep fonksiyonunun q ya göre türevini bulup p= 32 için değerini bulup formülde yerlerine yazacağız. Önce p=62-3q de p=32 yazıp q yu bulalım. p=62-3q 32=62-3q 3q= q=30 q=(30)/3=10 q=10 bulunur. Şimdi de yu bulalım. = elde edilir. Bu bulduğumuz q=10, değerlerini ve hipotezde verilmiş olan p=32 değerini talep nokta esneklik formülü de yerlerine yazarsak, elde ederiz. Doğru yanıt C dir. 6) Bir rekabet pazarında bir malın talep çizelgesi p = 60 4q dır ve arz çizelgesi p = 20 + q dır. Hükümet bu mala ne kadar vergi koyarsa vergi hasılatını maksimum yapar? A) 20 **

5 B) 30 C) 40 D) 50 E) 60 Çözüm: Vergilendirilmiş arz fonksiyonu p = 20 + q +t olacaktır. Maksimum satış ya da arz denge (equilibrium) durumunda maksimum olacağından ve denge durumu da talep fiyatı arz fiyatına eşit olduğunda gerçekleşeceğinden, 60 4q = 20 + q +t eşitliğinden q yu t cinsinden elde edeceğiz t= 4q+q 40- t = 5q (40- t)/5 = q 8-0.2t= q buluruz. Hükümetin elde edeceği toplam vergi TV=t.q olacağından dolayı yukarıda bulduğumuz q değerini bu eşitlikte yerine yazarsak, hükümetin elde edeceği toplam vergi hasılat fonksiyonu, TV=t.q=t. (8-0.2t) olacaktır. Toplam vergi hasılatı fonksiyonunun kritik noktalarını türevi 0 a eşitleyerek bulalım. eşitliğini çözeceğiz. O halde türevini bulmamız gerekiyor. t. (8-0.2t)]= t]. (8-0.2t) + (8-0.2t)= =1. (8-0.2t) +t.(-0.2)

6 =8-0.2t-0.2t =8-0.4t (t. (8-0.2t))=8t-0.2t 2 8t-0.2t 2 )= 8-2(0.2)t 2-1 =8-0.4t ( 20=t bulunur. Şimdi de toplam vergi fonksiyonunun ikinci türevini hesaplayalım ve ikinci türev testini uygulayalım. = = = Burada t=20 değerini yerine koyarsak, = 0 elde edilir ki t=20 TL vergi için hükümetin toplayacağı vergi hasılatı maksimum olur. Doğru cevap A dır. 7) Terimleri sırasıyla, 0,,, şeklinde sıralanan aritmetik dizinin 202. terimi aşağıdakilerden hangisidir? A) -1/(5) 200 B) -20 C) -30 D) -44

7 E) -40 ** Çözüm., olduğundan bu aritmetik dizinin ortak sabit farkı 0- = dir. eşitliğinde n=202, ve değerlerini yerlerine yazarsak, elde edilir. Doğru yanıt E dir. 8) TL para bankaya yıllık %10 faizle yatırılsa kaç yıl sonra TL olur? A) (ln 2)/ (ln(1, 01)) B) (ln 2)/ (ln(1,1)) ** C) (ln 2)/ (ln(1,11)) D) (ln 2)/ (ln(1,101)) E) (ln 2)/ (ln(1,12)) Çözüm: GD = ŞD (1 + i) n = ( ) n (200000)/(100000)=( ) n 2=( ) n ln 2=ln( ) n ln 2=nln( ) ln 2=n (ln1.1)

8 (ln 2)/ (ln(1,1))=n / =n O halde TL para (ln 2)/ (ln(1,1)) katı olur. (yani ) yıl sonra iki 9) Bir hasta her gün aynı saatte 1 gram dozda bir hap yutmaktadır. Vücut metabolizması bu ilacın bir kısmını kana karıştırmakta ve %2 sini de vücutta bırakmaktadır. Her bir hapı yuttuğunda vücutta bulunan haptaki ilacın toplam miktarı ise yuttuğu hap miktarı artı vücutta daha önceden kalan doz miktarı olacaktır. Eğer hasta 1000 yıl yaşamış olsa gününcü hapı yuttuğunda yaklaşık olarak ne kadar gram ilaç hastanın vücudunda bulunur. A) B) C) D) ** E) Çözüm: Buna göre yılda gününcü hapı yuttuğunda vücutta bulunan ilaç miktarı olarak gösterilirse, eşitliğinde n= gününcü hapı yuttuğunda, r=0.02 yazarsak = gram olacaktır. Doğru yanıt D dir.

9 10) Bir başka şirkete bir milyon TL toplam borcu olan bir şirket her yılın başında TL vermeyi taahhüt etmektedir. Bu ödemelerini sonsuza kadar yapacağını taahhüt etmektedir. Bankaya yatırsa yıllık %5 faiz alabilecekken her yıl TL para alan şirket 1000 yıl sonra bu günkü değerinde o yıla kadar toplam ne kadar TL para yaklaşık olarak almış olur. A) B) C) ** D) E) Çözüm: GD=ŞD(1.05) ŞD=(GD)/(1.05) olacaktır. eşitliğinde, ve yazarsak,

10 TL bulunur. 11) Toplam maliyet fonksiyonu TM = q q q 3 olduğuna göre ortalama değişken maliyet fonksiyonu aşağıdakilerden hangisidir? a) ** b) c) d) e) 12q 6q 2-0.1q 3 Çözüm: Toplam maliyet fonksiyonu TM = q q q 3 olduğuna göre değişken maliyet fonksiyonu DM=12q q q 3 olacaktır dolayısıyla ortalama değişken maliyet fonksiyonu (DM)/q olacağından dolayı değişken maliyet fonksiyonu bulunur. Doğru cevap A dır. E) Çözüm. 1 y ( 1 3sin x) x 1 12) lim x x 0 (1 3sin x) değeri aşağıdakilerden hangisidir? A) 0 B) 1 C) e D) 3 **

11 ln ln 1 y ln(1 3sin x) x 1 y ln(1 3sin x) x lim lim x 0 x 0 lim x 0 ln y lim x 0 (1 3sin x)' 1 3sin x 1 1 ( x 1 3sin x) = 1 ln(1 3sin x) lim x lim x 0 x 0 3cosx 3 1 3sin x ln(1 3sin x) x lim x 0 (ln(1 3sin x))' x' elde edilir. Doğru cevap E şıkkıdır. 13) 158 kişilik İktisadi ve İdari Bilimler Fakültesi 1. sınıfta MAT 152 Genel Matematik II dersinin hocası finalde 10 uncu sıraya giren öğrenciye 2 şeker verdiğine ve birinci olan öğrenciye 40 şeker verdiğine göre ve her bir derecede aynı adette şeker olarak artıyorsa (yani her bir derece azaldığında aynı adette şeker olarak azalıyorsa) dersin hocası toplam kaç adet şeker dağıtacaktır? A) 420 B) 210 ** C) 110 D) 200 E) 100 Çözüm. Birinci olan öğrencinin aldığı şeker miktarını, ikinci olan öğrencinin aldığı şeker miktarını, üçüncü olan öğrencinin aldığı şeker miktarını ile ve böyle devam ederek 9 uncu olan öğrencinin aldığı şeker miktarını ile ve son olarak onuncu

12 olan öğrencinin aldığı şeker miktarını seriler için toplam formülü ile gösterelim. Bu takdirde sonlu aritmetik de ve =2 yazarsak, bulunur. O halde doğru yanıt B dir. 14) Fiyat fonksiyonu p=(60-2q) 0.5 nun q=22 için talep nokta esnekliği aşağıdakilerden hangisidir? A) 4/11 B) 6/11 C) 7/11 D) 8/11 ** E) 9/11 Çözüm: Talep nokta esnekliği formülü olduğuna göre ve talep miktarı olan q verilmiş olduğuna göre fiyat olan p yi ve p=40-2q talep fonksiyonunun q ya göre türevini bulup bulunacak p için

13 değerini bulup formülde yerlerine yazacağız. Önce p=(60-2q) 0.5 de q=22 yazıp p yi bulalım. p=(60-2q) 0.5 p=( ) 0.5 p=(60-44) 0.5 p=(16) 0.5 p=4 bulunur. Şimdi de yu bulalım. = (60-2q) 0.5 = =. =.( elde edilir. Bu bulduğumuz p=4, değerlerini ve hipotezde verilmiş oılan q=22 değerini talep nokta esneklik formülü de yerlerine yazarsak, elde ederiz. Doğru yanıt D dir. 15) Marjinal gelir fonksiyonu olarak verildiğine göre toplam gelir fonksiyonu TG aşağıdakilerden hangisi olabilir? A) B) C) ** D)

14 E) Çözüm. Marjinal gelir fonksiyonu toplam gelir fonksiyonunun türevi olduğundan dolayı toplam gelir fonksiyonu marjinal gelir fonksiyonun integrali olan fonksiyonlardan biridir. = buluruz. Doğru cevap C dir. 16) MAT 152 dersinin 10 Mayıs 2013 tarihinde saat 09:00 dan 10:50 ye kadar olan sınıftaki derste bulunan toplam öğrenci sayısındaki artış hızı t değeri her bir on dakika için değer almak üzere 0 t 5 için fonksiyonu ile veriliyor. 09:10 ile 09:20 arasındaki sınıftaki öğrenci sayısındaki artış nedir? A) 16 ** B) 18 C) 20 D) 22 E) 24 Çözüm. = = = =(8-4+24)-(1-1+12)=28-12=16 =

15 dır. Bir malın talep fonksiyonu p=-0.2q 2 +20q+300 ve arz fonksiyonu p=0.6q 2-8q- 300 olarak verildiğine aşağıdaki 17, 18, 19 ve 20. soruları cevaplayınız. A) 10 B) 20 C) 30 D) 40 E) 50 ** 17) Denge (equilibrium) durumunda talep sayısı aşağıdakilerden hangisidir? Çözüm. Talep ile arz ın eşit olduğu durumda denge durumu olacağından dolayı -0.2q 2 +20q+300 =0.6q 2-8q- 300 dir. 0 =0.2q q 2-20q -8q =0.8q 2-28q =(0.4q-20) (2q+30) 0.4q-20=0 ve 2q+30=0 0.4q=20 ve 2q=-30 q=(20)/0.4 ve q=(-30)/2 1 =50 ve q 2 =-15 bulunur ki negatif değeri dikkate alamayacağımızdan dolayı dengedeki miktar 50 dir.

16 18) Denge (equilibrium) durumunda fiyat aşağıdakilerden hangisidir? A) 900 B) 800 ** C) 700 D) 600 E) 500 Çözüm. Bir önceki soruda elde edilen q=50 değerini verilen fonksiyonlardan birinde örneğin talep fonksiyonunda yerine koyarsak denge satış fiyatını buluruz. p=-0.2q 2 +20q+300 p=-0.2(50) (50)+300 p=-0.2(2500)+20.(50)+300 p= p=800 denge fiyatı p= 800 TL olarak bulunur. A) (-29000)/3TL B) (-28000)/3TL C) (-26000)/3TL 19) Denge (equilibrium) fiyatına göre tüketiciler artısı (ya da tüketiciler eksisi) aşağıdakilerden hangisidir? D) (-25000)/3 TL ** E) (-23000)/3TL

17 Çözüm. Yukarıdaki iki soruda bulduklarımızı dikkate alarak denge durumunda tüketici artısını bulalım. O halde tüketici tasarrufu (tüketici artısı) Yani olacaktır. =( ) =(-25000)/ =(-25000)/ (-25000)/3 TL tüketici tasarrufu (tüketiciler artısı ya da tüketiciler eksisi) bulunur. 20) Denge (equilibrium) fiyatına göre üreticiler artısı aşağıdakilerden hangisidir? A) TL B) TL C) TL ** D) TL E) TL Çözüm. Denge durumunda üretici artısını bulalım. O halde üretici artısı (producer s surplus) Yani

18 olacaktır. =40000-{[ = = =40000-( )=40000-(0)=40000 =40000 bulunur. O halde üreticiler tasarrufu (üreticiler artısı) bulunur. Doğru yanıt C dir. UYARI: HER BİR SORU EŞİT DEĞERDE OLUP, YANLIŞ YANITLAR DİKKATE ALINMAYACAK, DOĞRU SAYISININ 5 PUAN İLE ÇARPILMASI SONUCU ELDE EDİLECEK PUAN YÜZ ÜZERİNDEN DEĞERLENDİRMEYE ALINACAKTIR. SÜRE 90 DAKİKADIR. BAŞARILAR BAZI İŞLEMLER 10.(42)=420

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.9. TEKEL (MONOPOL) Piyasada bir satıcı ve çok sayıda alıcının bulunmasıdır. Piyasaya başka

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

Belli tarihlerde yatırılan taksitlerle, belli bir süre sonunda meydana gelecek kapital, taksitlerin baliğleri toplamına eşit olur.

Belli tarihlerde yatırılan taksitlerle, belli bir süre sonunda meydana gelecek kapital, taksitlerin baliğleri toplamına eşit olur. 1 KAPİTAL OLUŞTURULMASI Kapital oluşturulması, bir kredi kurumuna belli tarihlerde, belli miktarlarda yatırılan paralarla, belli bir süre sonunda belli büyüklükte bir para meydana getirme işlemidir. Küçük

Detaylı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı (30)1.a) İki reel sayının mantissa ları (gövde kısımları) eşit ve mantissa1 = mantissa2

Detaylı

Maltepe Üniversitesi [İktisadi ve İdari Bilimler Fakültesi] [MAT 151 Genel Matematik I] 2013-2014 Güz Yarıyılı Final Soruları

Maltepe Üniversitesi [İktisadi ve İdari Bilimler Fakültesi] [MAT 151 Genel Matematik I] 2013-2014 Güz Yarıyılı Final Soruları Öğrenci Numarası: Adı Soyadı: Bölümü: 1) Bütçe artarsa üretim artar ve Üretim artarsa toplam gelir artar bileşik önermelerinin doğru olduğu bilindiğine göre aşağıdaki bileşik önermelerden hangisi doğrudur.

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ

BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ BİRİNCİ SEVİYE ÖRNEK SORULARI EKONOMİ SORU 1: Tam rekabet ortamında faaliyet gösteren bir firmanın kısa dönem toplam maliyet fonksiyonu; STC = 5Q 2 + 5Q + 10 dur. Bu firma tarafından piyasaya sürülen ürünün

Detaylı

4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 4. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 B.3.2. Taban Fiyat Uygulaması Devletin bir malın piyasasında oluşan denge fiyatına müdahalesi,

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Adı Soyadı: No: 05.04.2010 Saat: 08:30

Adı Soyadı: No: 05.04.2010 Saat: 08:30 Adı Soyadı: No: 05.04.2010 Saat: 08:30 ID: Z Mikro 2 Ara 2010 Çoktan Seçmeli Sorular Cümleyi en iyi biçimde tamamlayan veya sorunun yanıtı olan seçeneği yanıt anahtarına işaretleyiniz. 1. Çapraz satış

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB00 Analiz I 3 Aralık 03 Final Sınavı Öğrenci Numarası: Adı Soyadı: - Taatlar: Sınav süresi 0 dakikadır. İlk 30 dakika sınav salonunu terk etmeyiniz.

Detaylı

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2 . SINIF MTEMTİK FONKSİYONLRD İŞLEMLER- ÇKEY NDOLU LİSESİ MTEMTİK ÖLÜMÜ . ÜNİTE.. FONKSİYONLRD DÖRT İŞLEM Neler öğreneceksiniz? Fonksiyonlarda dört işlem yani toplama çıkarma, çarpma ve bölmeyi öğreneceksiniz.

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 6. SINIF TEST SORULARI 1. a ve b birer pozitif tamsayıdır. 12. a = b³ olduğuna göre, a + b toplamının alabileceği en küçük değer kaçtır? A) 21 B) 23 C) 24 D) 25 3. Beş kişinin yaşlarının aritmetik ortalaması 24 tür. Aşağıda

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

İÇİNDEKİLER. Önsöz... iii. KİTABIN KULLANIMINA İLİŞKİN BAZI NOTLAR ve KURUM SINAVLARINA İLİŞKİN UYARILAR... 1 BİRİNCİ BÖLÜM İKTİSATIN TEMELLERİ

İÇİNDEKİLER. Önsöz... iii. KİTABIN KULLANIMINA İLİŞKİN BAZI NOTLAR ve KURUM SINAVLARINA İLİŞKİN UYARILAR... 1 BİRİNCİ BÖLÜM İKTİSATIN TEMELLERİ İÇİNDEKİLER Önsöz... iii KİTABIN KULLANIMINA İLİŞKİN BAZI NOTLAR ve KURUM SINAVLARINA İLİŞKİN UYARILAR... 1 BİRİNCİ BÖLÜM İKTİSATIN TEMELLERİ 1. İKTİSATIN TEMELLERİ... 9 1.1. İKTİSADIN TANIMI... 9 1.2.

Detaylı

Mikroiktisat Final Sorularý

Mikroiktisat Final Sorularý Mikroiktisat Final Sorularý MERSĐN ÜNĐVERSĐTESĐ ĐKTĐSADĐ VE ĐDARĐ BĐLĐMLER FAKÜLTESĐ MALĐYE VE ĐŞLETME BÖLÜMLERĐ MĐKROĐKTĐSAT FĐNAL SINAVI 10.01.2011 Saat: 13:00 Çoktan Seçmeli Sorular: Sorunun Yanıtı

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.7. MALİYET TEORİSİ: YENİDEN Sabit Maliyetler (FC): Üretim miktarından bağımsız olan maliyetleri

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Karşılaştırmalı Durağan Analiz ve Türev kavramı. 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri

Karşılaştırmalı Durağan Analiz ve Türev kavramı. 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri Karşılaştırmalı Durağan Analiz ve Türev kavramı 6. Bölüm :Alpha Chiang,Matematiksel İktisadın Temel Yöntemleri 1 Karşılaştırmalı durağan analiz 6. Karşılaştırmalı Durağanlıklar ve Türev Kavramı 6.1 doğası

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

AÖĞRENCİLERİN DİKKATİNE!

AÖĞRENCİLERİN DİKKATİNE! A KİTAPÇIK TÜRÜ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ 8. SINIF MATEMATİK 205 8. SINIF. DÖNEM MATEMATİK DERSİ MERKEZİ ORTAK SINAVI 25 KASIM 205 Saat: 0.0 Adı

Detaylı

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.C. YÜKSEKÖĞRETİM KURULU ÖĞRENCİ SEÇME VE YERLEŞTİRME MERKEZİ LİSANS YERLEŞTİRME SINAVI MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 9 HAZİRAN 00 BU SORU KİTAPÇIĞI 9 HAZİRAN 00 LYS MATEMATİK

Detaylı

Mikro Final. ĐKTĐSAT BÖLÜMÜ MĐKROĐKTĐSAT 1 FĐNAL-SINAVI SORULARI Saat: 10:45

Mikro Final. ĐKTĐSAT BÖLÜMÜ MĐKROĐKTĐSAT 1 FĐNAL-SINAVI SORULARI Saat: 10:45 MERSĐN ÜNĐVERSĐTESĐ ĐKTĐSADĐ VE ĐDARĐ BĐLĐMLER FAKÜLTESĐ ĐKTĐSAT BÖLÜMÜ MĐKROĐKTĐSAT 1 FĐNAL-SINAVI SORULARI 21.01.2011 Saat: 10:45 Mikro1 2010 Final Çoktan Seçmeli Sorular Sorunun yanıtı olan veya cümleyi

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklama ve uyarılar: Bu sınav toplam 100 puan değerinde 6 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

Kamu Ekonomisi-I NEGATİF DIŞSALIKLAR

Kamu Ekonomisi-I NEGATİF DIŞSALIKLAR Kamu Ekonomisi-I NEGATF IŞSALIKLAR 1 1. Negatif ışsallık (Üretimde Negatif ışsallık): Bir firmanın üretiminin kişisel maliyetinin yanısıra topluma sosyal maliyetinin de olması durumu: Örnek: 1. Kızılırmak

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

Soru 1. Soru 4. Soru 2. Soru 5. Soru 3. Soru 6.

Soru 1. Soru 4. Soru 2. Soru 5. Soru 3. Soru 6. İ s t a n b u l K ü l t ü r Ü n i v e r s i t e s i Matematik -Bilgisayar Bölümü MB500, MC 56, MC 56 - NÜMERİK ANALİZ (I) 0 Ocak 0 CEVAPLAR Talimatlar Sınav süresi 5 dakikadır. İlk 0 dakika sınav salonunu

Detaylı

SDÜ Matematik Bölümü Analiz-IV Final S nav

SDÜ Matematik Bölümü Analiz-IV Final S nav Dersin Kodu: MAT0 Dönemi: 00-0 Bahar Tarihi: 0.0.0 Saat:. 00 Yer: Am III-IV Süre: 90 Dakika Dersin Sorumlusu Gözetmenler SDÜ Matematik Bölümü Analiz-IV Final S nav : Prof. Dr. Seril PEHL IVAN : Araş. Gör.

Detaylı

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1.

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1. BİR KARMAŞIK SAYININ MUTLAK DEĞERI (MODÜLÜ) Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın (A noktasının), başlangıç noktasına uzaklığına bu sayının mutlak değeri (modülü) denir ve z şeklinde

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-II HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-II Fonksiyonların Bükeyliği Maksimum - Minimum Problemleri Belirsiz Haller MATEMATİK-1 Doç.Dr.Murat SUBAŞI Bu üniteyi çalıştıktan sonra; Fonksiyonların grafiklerinin

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

Analiz II Çalışma Soruları-3

Analiz II Çalışma Soruları-3 Analiz II Çalışma Soruları- Son güncelleme: 44 (I)( A ) Aşağıdaki fonksiyon için verilen noktaların ektremum nokta olup olmadıklarının gözlemini yapınız y y f ( ) a b c d e k r s ( B) Aşağıdaki fonksiyonların

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah KOPUZLU İÇİNDEKİLER HEDEFLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah KOPUZLU İÇİNDEKİLER HEDEFLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI HEDEFLER İÇİNDEKİLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI Logaritmik ve Üstel Fonksiyonların İktisadi Uygulamaları Bileşik Faiz Problemleri Nüfus Problemleri MATEMATİK-1 ProfDrAbdullah

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

15.010/15.011 Örnek Ara sınav Cevap Kâğıdı - 1999. 1) Doğru, Yanlış, Belirsiz

15.010/15.011 Örnek Ara sınav Cevap Kâğıdı - 1999. 1) Doğru, Yanlış, Belirsiz 15.010/15.011 Örnek Ara sınav Cevap Kâğıdı - 1999 1) Doğru, Yanlış, Belirsiz a) DOĞRU. İki mağaza tarafından arz edilen videolar birbirlerine ikame. Somerville deki Hollywood mağazasındaki videoların fiyatı

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04.

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04. UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ.04.006. Aşağıdaki gibi, M ve M merkezli br yarıçaplı iki dairenin kesişimi şeklinde bir park inşa edilmektedir. Bu iki dairenin

Detaylı

2017 MÜKEMMEL YGS MATEMATİK

2017 MÜKEMMEL YGS MATEMATİK 2017 MÜKEMMEL YGS MATEMATİK 1. 2,31 0,33 0,65 0,13 + 3,6 0,6 işleminin sonucu kaçtır? A)0,5 B) 0,8 C)0,9 D)5 E)8 4. Üç basamaklı ABB doğal sayısı 4 e ve 9 a kalansız bölünmektedir. Buna göre, A+B toplamının

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: POLİNOMLAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın sınıf

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

FİNANSMAN MATEMATİĞİ

FİNANSMAN MATEMATİĞİ FİNANSMAN MATEMATİĞİ Serbest piyasa ekonomisinde, sermayeyi borç alan borç aldığı sermayenin kirasını (faizini) öder. Yatırımcı açısından faiz yatırdığı paranın geliridir. Başlangıçta yatırılan para ise

Detaylı

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi 2 Matematik Olimpiyatlarına Hazırlık 4 Mustafa Özdemir MATEMATİK OLİMPİYATLARINA HAZIRLIK 4 (336 sayfa) ANALİZ CEBİR 1 TANITIM DÖKÜMANI (Kitabın içeriği hakkında bir bilgi verilmesi amacıyla bu döküman

Detaylı

Bu optimal reklam-satış oranının reklam etkinliğini (reklam esnekliği) fiyat esnekliğine bölerek de hesaplarız anlamına gelir.

Bu optimal reklam-satış oranının reklam etkinliğini (reklam esnekliği) fiyat esnekliğine bölerek de hesaplarız anlamına gelir. Sloan Yönetim Okulu 15.010/ 15.011 Massachusetts Teknoloji Enstitüsü Đş Kararları için Đktisadi Analiz Profesör McAdams, Montero, Stoker ve van den Steen 2000 Final Sınavı Cevapları: Asistanların Notlandırması

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

iktisaoa GiRiş 7. Ürettiği mala ilişkin talebin fiyat esnekliği değeri bire eşit olan bir firma, söz konusu

iktisaoa GiRiş 7. Ürettiği mala ilişkin talebin fiyat esnekliği değeri bire eşit olan bir firma, söz konusu 2009 BS 3204-1. şağıdakilerden hangisi dayanıksız mal veya hizmet grubu içerisinde ~ almaz? iktiso GiRiş 5. Gelirdeki bir artış karşısında talebi azalan mallara ne ad verili r? ) Benzin B) Mum C) Ekmek

Detaylı

2009 S 4200-1. Değeri zamanın belirli bir anında ölçülen değişkene ne ad verilir? ) Stok değişken B) içsel değişken C) kım değişken D) Dışsal değişken E) Fonksiyonel değişken iktist TEORisi 5. Yatay eksende

Detaylı

EKO 205 Mikroiktisat. Kar Maksimizasyonu Profit Maximization

EKO 205 Mikroiktisat. Kar Maksimizasyonu Profit Maximization EKO 205 Mikroiktisat Kar Maksimizasyonu Profit Maximization Tartışılacak Konular Tam Rekabet Piyasaları Kar Maksimizasyonu Marjinal Hasıla, Marjinal Maliyet ve Kar Kısa Dönemde Çıktı Düzeyinin Belirlenmesi

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

ANAL IZ III Aras nav Sorular

ANAL IZ III Aras nav Sorular Ad ve Soyad : Numaras : ANAL IZ III Aras nav Sorular 26.11.27 1. x 1 = p 3 ve x n+1 = p 3 + x n ; n = 1; 2; ::: biçiminde tan mlanan (x n ) dizisinin yak nsak oldu¼gunu gösteriniz ve limitini bulunuz.(2)

Detaylı

MİKRO İKTİSAT 1. Aşağıdakilerden hangisi ekonomide belirtilen ihtiyaçların özelliklerinden biridir? A) İhtiyaçlar sabittir B) İhtiyaçlar birbirini

MİKRO İKTİSAT 1. Aşağıdakilerden hangisi ekonomide belirtilen ihtiyaçların özelliklerinden biridir? A) İhtiyaçlar sabittir B) İhtiyaçlar birbirini MİKRO İKTİSAT 1. Aşağıdakilerden hangisi ekonomide belirtilen ihtiyaçların özelliklerinden biridir? A) İhtiyaçlar sabittir B) İhtiyaçlar birbirini tamamlayabilirler C) Subjektiftir D) Kesinlikle parayla

Detaylı

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır?

1991 ÖYS. 9. Parasının 7. ünü kardeşine veren Ali nin geriye lirası kalmıştır. Buna göre, Ali nin başlangıçtaki parası kaç liradır? 99 ÖYS.,8 + (, + ), işleminin sonucu kaçtır? B) 7 D) 86 987 B) D). a, b, c birer pozitif gerçel sayı ve a=b b=c olduğuna göre, aşağıdakilerden hangisi doğrudur? a

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ

FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ FİYATLAR GENEL DÜZEYİ VE MİLLİ GELİR DENGESİ Bu bölümde Fiyatlar genel düzeyi (Fgd) ile MG dengesi arasındaki ilişkiler incelenecek. Mg dengesi; Toplam talep ile toplam arzın kesiştiği noktada bulunacaktır.

Detaylı

Case & Fair & Oster. ÇOKTAN SEÇMELİ SORULAR: Cümleyi en iyi tamamlayan ya da sorunun cevabı olan seçeneği işaretleyiniz.

Case & Fair & Oster. ÇOKTAN SEÇMELİ SORULAR: Cümleyi en iyi tamamlayan ya da sorunun cevabı olan seçeneği işaretleyiniz. ÇOKTAN SEÇMELİ SORULAR: Cümleyi en iyi tamamlayan ya da sorunun cevabı olan seçeneği işaretleyiniz. Aşağıdaki soruları Şekil 5.1 e göre cevaplayınız. Şekil 5.1 1. Şekil 5.1 e bakınız. Bilet talebi a. fiyata

Detaylı

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak

18 Sağ son örnek x 3 yerine 3 x yazılacak 20 5 Soru denkleminin reel köklerinin olacak MAT 1 Hata 73 1 C 135 8 A 137 7 D şıkkına parantez konacak 143 Sol üst örnek Sıkça yapılan yanlış ün son cümlesi O halde. 144 Son örnek tam yerine doğal 208 9 18 yerine 18 8 5 225 2 A 246 6 Doğru cevap:

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin

Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin GİRİŞ: Tıbbi kaynakların son derece kısıtlı olması var olan kaynaklarında etkin Kullanılmaması sonucu her yıl yüz binlerce kişi hayatını kaybediyor. Tıpta ve sağlık Sistemlerinde sayısal tekniklerin kullanılması

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı