Bölüm 2 Matematik Dili

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bölüm 2 Matematik Dili"

Transkript

1 Bölüm 2 Matematik Dili Kümeler p Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir p Kümenin elemanları element olarak adlandırılır p Kümeler nasıl gösterilir Liste şeklinde p Örnek: A = {,3,5,7} Tanım şeklinde p Örnek: B = {x x = 2k +, < k < 3}

2 Sonlu ve Sonsuz Kümeler (Finite and İnfinite Sets) p Sonlu kümeler (Finite sets) Örnekler: q A = {, 2, 3, 4} q B = {x x is an integer, < x < 4} q Sonsuz kümeler (Infinite sets) q Örnekler: q Z = {integers} = {, -3, -2, -,,, 2, 3, } q S={x x is a real number and < x < 4} = [, 4] Bazı önemli kümeler p Boş küme (empty set veya { }), elemanı olmayan küme null set veya void set adını da alırlar q Evrensel küme (Universal set): Bahsettiğimiz guruptaki bütün elemanları içine alır q Örnekler: U = {all natural numbers} U = {all real numbers} U = {x x is a natural number and < x<} 2

3 Cardinality p Bir A kümesinin cardinatilty si o A kümesinin eleman sayısıdır. A olarak gösterilir p Örnekler: If A = {, 2, 3} then A = 3 If B = {x x is a natural number and < x< 9} then B = 9 p Sonsuz (Infinite) cardinality Sayılabilir (Countable) (örnek, natural numbers, integers) Sayılamayan (Uncountable) (örnek, real numbers) Altkümeler (Subsets) p Eğer X kümesinin bütün elemanları Y kümesi içerisinde yer alıyorsa X e Y kümesinin bir alt (subset) kümesidir denir (in symbols X Y) q Eşitlik(Equality): X = Y if X Y and Y X p Eğer X kümesi, Y kümesinin bir alt kümesi iken Y kümesi, X kümesinin bir alt kümesi değilse; X kümesi, Y kümesinin bir öz-alt kümesidir (proper subset) denir p if X Y but Y X Gözlem: her kümenin bir alt kümesidir 3

4 Power set p X kümesinin power set i, X kümesinin bütün alt kümelerinin kümesi olup, P(X) ile gösterilir P(X)= {A A X} Örnek: if X = {, 2, 3}, then P(X) = {, {}, {2}, {3}, {,2}, {,3}, {2,3}, {,2,3}} q Theorem : If X = n, then P(X) = 2 n Küme İşlemleri (Set operations): Birleşim ve Kesişim (Union and Intersection) X ve Y verilen iki küme olsun p X ve Y kümesinin birleşimi (union) X Y = { x x X or x Y} q X ve Y kümesinin kesişimi (intersection) X Y = { x x X and x Y} X ve Y gibi iki kümenin kesişimi boş küme ise X ve Y kümeleri ayrık (disjoint-pairwise) kümeler olarak adlandırlır if X Y = 4

5 Tümleyen ve Fark (Complement and Difference) p İki kümenin farkı X Y = { x x X and x Y} Fark(difference), X kümesine göre Y nin göreceli ttümleyeni (relative complement ) olarak da adlandırılır q Simetrik Fark (Symmetric difference ) X Δ Y = (X Y) (Y X) q Evrensel küme (universal set ) içerisinde yer alan A kümesinin tümleyeni (complement) A c = U A şeklinde gösterilir Sembolü A c = U - A Venn şemaları (diagrams) p Bir venn şeması verilen iki kümenin grafik olarak gösterilimini sağlar p Bir kümenin birleşimi(union), kesişimi (intersection), farkı (difference), simetrik farkı (symmetric difference) ve tümleyeni (complement) tanımlanabilir 5

6 Küme işlemlerinin özellikleri () Theorem : U, evrensel bir küme; A, B ve C evrensel kümenin bir alt kümesi olduğunda aşağıdaki özellikler mevcuttur a) Birleşim(Associativity): (A B) C = A (B C) (A B) C = A (B C) b) Değişim(Commutativity): A B = B A A B = B A Küme işlemlerinin özellikleri(2) c) Dağılma (Distributive): A (B C) = (A B) (A C) A (B C) = (A B) (A C) d) Özdeşlik (Identity): A U=A A = A e) Tümleyeni(Complement): A A c = U A A c = 6

7 Küme işlemlerinin özellikleri(3) f) Idempotent: A A = A A A = A g) Bound laws: A U = U A = h) İçine alma (Absorption): A (A B) = A A (A B) = A Küme işlemlerinin özellikleri(4) i) Gerektirme (Involution): (A c ) c = A j) / kanunu: c = U U c = k) Kümeler için De Morgan: (A B) c = A c B c (A B) c = A c B c 7

8 Kartezyen Çarpım (Cartesian Product) p Verilen iki kümenin kartezyen çarpımı (cartesian product) A x B = {(a,b) a A Λ b B } şeklinde gösterilir p p A x B B x A A x B = A. B Genelleştirilmiş birleşim ve kesişim p p p A, A 2, A 3,...,A n kümelerinin birleşimi A A 2 A 3,...,A n = n A, A 2, A 3,...,A n kümelerinin I i = A i kesişimi A A 2 A 3,...,A n = n U i = n I i = Birleşim ve Kesişim kümelerinin eleman sayısı s(a B) = s(a) + s(b) s(a B) A i A i 8

9 Düzenli Seriler ve Dizgiler (Sequences and Strings) p Düzenli Dizi (sequence) Sıralı bir listeyi göstermek için kullanılan ayrık yapıya denir. N elemanlı bir dizinin gösterilimi s n = n nin bir fonksiyonu olup n =, 2, 3,... p Eğer s sıralı bir diziyse {s n n =, 2, 3, }, s birinci elemanı gösterir, s 2 ikinci elemanı gösterir, s n n. elemanı gösterir p {n} düzenli bir serinin indeksidir. N doğal sayılardan oluşur veya bu kümenin sonlu bir alt kümesidir Düzenli serilere (sequences) örnek Örnekler:. s = {s n } aşağıdaki gibi tanımlanmış olsun s n = /n, for n =, 2, 3, Sequence ın ilk birkaç elementi:, ½, /3, ¼, /5,/6, 2. s = {s n } aşağıdaki gibi tanımlanmış olsun s n = n 2 +, for n =, 2, 3, Sequence ın ilk birkaç elementi : 2, 5,, 7, 26, 37, 5, 9

10 Artan ve Azalan (Increasing and Decreasing) s = {s n } için aşağıdakiler söylenebilir increasing if s n < s n+ decreasing is s n > s n+, for every n =, 2, 3, Örnekler: S n = 4 2n, n =, 2, 3, azalan: 2,, -2, -4, -6, S n = 2n -, n =, 2, 3, artan:, 3, 5, 7, 9, Düzenli altseriler (Subsequences) p Bir s sequence ının s = {s n }, alt sequence ı t = {t n }ile gösterilir ve sıralama düzeni aynı kalmak şartıyla s sequence ının elemanlarından elde edilir Örnek: s = {s n = n n =, 2, 3, } p, 2, 3, 4, 5, 6, 7, 8, t = {t n = 2n n =, 2, 3, } p 2, 4, 6, 8,, 2, 4, 6, p t, s nin bir düzenli altserisidir (Subsequences)

11 Toplam (Sigma) gösterilimi p Eğer {a n } bir sequence ise, bu sequence ın toplamı m Σ a k = a + a a m k= Bu toplam gösterilimi (sigma notation), olup Yunan alfabesindeki Σ ile gösterilir Çarpım (Pi) gösterilimi p Eğer {a n } bir sequence ise, bu sequence ın çarpımı m Π a k = a a 2 a m k= Bu çarpım gösterilimi (pi notation), olup Yunan alfabesindeki Π ile gösterilir

12 Dizgi-Katar (String) p X sonlu elemanlardan oluşan bir küme olsun Örnek: if X = {a, b, c} α = bbaccc X kümesi üzerinden tanımlanmış olsun Gösterilim: bbaccc = b 2 ac 3 α string inin uzunluğu (length) α string inin eleman sayısını verir ve α ile gösterilir. Eğer α = b 2 ac 3 ise α = 6. p Eğer bir string eleman içermiyorsa boş string (null string) adını alır ve Yunan alfabesindeki λ (lambda)ile gösterilir p X* = {all strings over X dahil λ} p X + = X* - {λ}, the set of all non-null strings p α ve β gibi iki string in birleşimi(concatenation), α ve arkasına β nın eklenmesiyle elde edilen αβ string i şeklindedir. p Örnek: α = bbaccc ve β = caaba, αβ = bbaccccaaba = b 2 ac 4 a 2 ba Kısaca, αβ = α + β 2

13 Sayı Sistemleri (Number systems) p İkili (Binary) sayılar: ve, bits adını alır. p Binary(base 2), hexadecimal(base 6) ve octal(base 8) sayı sistemleri Decimal(base ) sistem: Örnek: 45,238 8 bir 8 x = 8 3 on 3 x = 3 2 yüz 2 x = 2 5 bin 5 x = 5 4 on bin 4 x = 4 İkili (Binary) sayı sistemi p Binary den decimal a: p İki tabanındaki sayı olsun bir x2 = iki x2 = 2 dört x2 2 = sekiz x2 3 = 8 on-altı x2 4 = otuz-iki x2 5 = 32 almış-dört x2 6 = 64 7 (taban ) 3

14 Decimal den binary e p Decimal sayı 73 olsun 73 = 2 x 36 + kalan 36 = 2 x 8 + kalan 8 = 2 x 9 + kalan 9 = 2 x 4 + kalan 4 = 2 x 2 + kalan 2 = 2 x + kalan (kalanlar ters sırada yazılır) 73 = 2 İkili (Binary) toplama (addition) tablosu 4

15 İkili (binary) sayılarda toplama p Örnek: add elde birler Hexadecimal sayı sistemi Decimal sistem Hexadecimal sistem A B C D E F 5

16 Hexadecimal den decimal e p Hexadecimal sayımız 3AB 6 olsun x 6 = x 6 = x 6 2 = x 6 3 = Decimal den hexadecimal e Verilen sayı 2345 olsun 2345 = 46x6 + remainder 9 46 = 9x6 + remainder =

17 Hexadecimal sayılarda toplam Toplam 23A 6 + 8F 6 23A 6 + 8F 6 2C9 6 Bağıntılar (Relations) p X ve Y verilen iki küme olsun, bunların Kartezyen Çarpımı (Cartesian Product) XxY olup, (x,y) çiftlerinden oluşur, x X ve y Y XxY = {(x, y) x X and y Y} p R, XxY kartezyen çarpımının bir alt kümesi olup, X den Y ye, bir ikili bağıntı (binary relation) olarak verilmiş olsun Örnek: X = {, 2, 3} ve Y = {a, b} R = {(,a), (,b), (2,b), (3,a)} X ve Y arasında bir bağıntıdır 7

18 Tanım ve Değer Kümesi (Domain and Range) X den Y ye verilen bir R bağıntısında, p R nin tanım kümesi (domain) Dom(R) = { x X (x, y) R for some y Y} p R nin değer kümesi (range) Rng(R) = { y Y (x, y) R for some x X} p Örnek: X = {, 2, 3} ve Y = {a, b} R = {(,a), (,b), (2,b)} Dom(R)= {, 2}, Rng(R) = (a, b} Bağıntılara örnek p X = {, 2, 3} ve Y = {a, b, c, d} p R = {(,a), (,d), (2,a), (2,b), (2,c)} p Verilen bağıntıyı graf kullanarak çizersek: 8

19 Bağıntıların özellikleri R, X kümesi üzerinde bir bağıntı olsun Örnek:R, XxX kartezyen çarpımının bir alt kümesi p For every x X için, (x,x) R şartı sağlanıyorsa, R bağıntısında yansıma (reflexive) özelliği mevcuttur p For some x Xiçin, (x,x) R şartı sağlanıyorsa, R bağıntısında (nonreflexive) özelliği mevcuttur p For every x Xiçin, (x,x) R şartı sağlanıyorsa, R bağıntısında (irreflexive) özelliği mevcuttur p x, y Xiçin, [(x,y) R ve (y,x) R] veya [(x,y) R ve (y,x) R] veya (x=y) şartı sağlanıyorsa R bağıntısında simetrik (symmetric) özelliği mevcuttur p x,y X için, eğer (x y) ise [((x,y) R ve (y,x) R) veya ((x,y) R ve (y,x) R) ] ise R bağıntısında (antisymmetric) özelliği mevcuttur 9

20 p (x,y,z) X için, [(x,y) R ve (y,z) R ]iken (x,z) R mevcut ise R bağıntısında geçişkenlik (transitive) özelliği mevcuttur p (x,y,z) X için, [(x,y) R ve (y,z) R ve (x,z) R] ise R bağıntısında (non transitive) özelliği mevcuttur X bir küme, R de X üzerinde bir bağıntı olsun. x,y X p If (x,y) or (y,x) are in R, then x and y are comparable p If (x,y) R and (y,x) R then x and y are incomparable X kümesindeki herbir eleman çifti comparable özelliğini sağlıyorsa, X üzerindeki R bağıntsı total order adını alır 2

21 Bağıntının tersi X den Y ye bir R bağıntısı verilmiş olsun, bu bağıntının tersi (inversi) Y den X e olup R - ile gösterilir R - = { (y,x) (x,y) R } q Örnek: eğer R = {(,a), (,d), (2,a), (2,b), (2,c)} ise R - = {(a,), (d,), (a,2), (b,2), (c,2)} Bağıntının Bileşkesi(Composition) q Tanım R = R R 2 = R R R 3 = R 2 R... R n = R n- R Örnek: R={(,) (2,)(3,2)(4,3)} için R 2 ve R 3 bulunuz. R 2 = R R = {(,)(2,)(3,)(4,2)} R 3 = R 2 R = {(,)(2,)(3,)(4,)} 2

22 Denklik Bağıntısı (Equivalence Relation) X bir küme, R de X üzerindeki bir bağıntı olsun p R bağıntısı üzerinde reflexive, symmetric ve transitive özellikleri mevcut ise bu bir denklik bağıntısı (equivalence relation) olup X R şeklinde gösterilir Örnek: X = {integers} ve X kümesi üzerinde tanımlı olan R bağıntısı da xry x - y = 5 olarak verilsin. R nin equivalence relation olup olmadığını gösteriniz. Sıralama Bağıntısı (Partial Order Relation) X bir küme, R de X üzerindeki bir bağıntı olsun p R bağıntısı üzerinde reflexive, antisymmetric ve transitive özellikleri mevcut ise bu bir sıralama bağıntısı (partial order relation) dır p Hasse Diyagramları (partial order öz.) 22

23 Poset q Partial Ordering bir R bağıntısı ile verilen bir S kümesi poset olarak adlandırılır ve (S,R) olarak gösterilir. Hasse diyagramı Maximal ve Minimal elemanlar Kapalılık (Closure) q Verilmiş olan bağıntı üzerinde reflexive, symmetric ve transitive özellikleri mevcut değilse bağıntının bu özelliklere sahip olabilmesini sağlama işlemidir Transitive closure Warshall algoritması (by Stephen Warshall) 23

24 Warshall algoritması procedure warshall W=M R for k=,n for i=,n for j=,n W ij = W ij V (W ik Λ W kj ) end end end Matris Bağıntıları p X ve Y bir küme, R de X den Y ye bir bağıntı olsun. Aşağıdaki bağıntılardan matris A = (a ij ) yazılır X kümesinin elemanları, A matrisinin satırlarını oluşturur Y kümesinin elemanları, A matrisinin kolonlarını oluşturur i. satırdaki X in elemanları ile j. kolondaki Y nin elemanları birbirleriyle ilişkili değilse, a i,j = dır i. satırdaki X in elemanları ile j. kolondaki Y nin elemanları birbirleriyle ilişkili ise, a i,j = dir 24

25 Matris bağıntıları () Örnek: X = {, 2, 3}, Y = {a, b, c, d} R = {(,a), (,d), (2,a), (2,b), (2,c)} R bağıntısının matrisi: A = a b c d 2 3 Matris Bağıntıları (2) p Eğer R bağıntısı, X kümesinden X kümesine ise bu bağıntının matrisi bir kare matristir Örnek: X = {a, b, c, d} ve R = {(a,a), (b,b), (c,c), (d,d)} A = a b c d a b c d 25

26 Fonksiyonlar (Functions) p Fonksiyon (function) bağıntının özel bir şeklidir. p Bir f fonksiyonunun, X den Y ye bir bağıntısı olsun (f : X Y) For every a X için (a,b) f e olacak şekilde bir tek, b Y bulunabiliyorsa, f ye X den Y ye bir fonksiyondur denir. p X e f nin tanım kümesi (domain) Dom(f) = X p Y e f nin değer kümesi (range) Rng(f) = Y Örnek: Dom(f) = X = {a, b, c, d}, Rng(f) = {, 3, 5} f(a) = f(b) = 3, f(c) = 5, f(d) = Mod alma operatörü p x değeri y ye bölündüğünde elde edilen kalan r = x mod y Örnekler: = 3 mod 3 6 = 234 mod 9 4 = 22 mod p mod, modulus operator olarak adlandırılır 26

27 Bire-Bir Fonksiyonlar (One-to-one functions-injective) p Bir fonksiyon f : X Y bire-bir (one-to-one) her y Y sadece bir x X değerine karşılık gelir. p Alternatif tanım: f : X Y, one-to-one X kümesindeki her x değeri x, x 2 X, Y kümesindeki y, y 2 Y gibi farklı iki değere karşılık gelir. f(x ) = y vef(x 2 ) = y 2 gibi Örnekler:. f(x) = 2 x (from the set of real numbers to itself) one-to-one 2. f : R R defined by f(x) = x 2 not one-to-one çünkü for every real number x, f(x) = f(-x). Örten Fonksiyonlar (Onto functions-surjective) Bir fonksiyon f : X Y örten (onto) Her y Y için en az bir tane x X mevcuttur 27

28 Bijective Fonksiyonlar Bir fonksiyon f : X Y bijective f fonksiyonu one-to-one ve onto dur Örnekler: p. Lineer bir fonksiyon f(x) = ax + b bijective fonksiyondur (from the set of real numbers to itself) p 2. Bir f(x) = x 3 bijective fonksiyondur (from the set of real numbers to itself) Ters Fonksiyon (Inverse function) p y = f(x) fonksiyonunun tersi(inverse) f - olup {(y, x) y = f(x)} olarak sembolize edilir. p f - in bir fonksiyon olması gerekmez Örnek: if f(x) = x 2, then f - (4) = 4 = ± 2, tek bir değer olmadığından tersi bir fonksiyon değildir p Eğer bir fonksiyon bijective ise tersi de bir fonksiyondur 28

29 Fonksiyonların Bileşkesi p Verilen iki fonksiyon g : X Y ve f : Y Z, olup, bileşkesi f g aşağıdaki gibi tanımlanır f g (x) = f(g(x)) for every x X. q Örnek: g(x) = x 2 -, f(x) = 3x + 5. Then f g(x) = f(g(x)) = 3(x 2 -)+5 = (3x 2 + 2) q Fonksiyon bileşkesinde birleşim öz.: f (g h) = (f g) h, q Fakat değişme özelliği yoktur: f g g f. Üstel ve Logaritmik Fonksiyonlar (Exponential and Logarithmic Functions) p f(x) = 2 x veg(x) = log 2 x = lg x f g(x) = f(g(x)) = f(lg x) = 2 lgx = x g f(x) = g(f(x)) = g(2 x ) = lg 2 x = x p Üstel ve Logaritmik fonksiyonlar birbirinin tersidir 29

30 String in tersi (inverse) X herhangi bir küme olsun X üzerindeki tüm string lerin kümesi de X* olsun Eğer α = x x 2 x n X* f(α) = α - = x n x n- x 2 x String in inversi alınırken ters sırada yazılır αα - = α - α = λ 3

Bölüm 2 Matematik Dili. Kümeler

Bölüm 2 Matematik Dili. Kümeler Bölüm 2 Matematik Dili Kümeler Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir Kümenin elemanları element olarak adlandırılır Kümeler nasıl gösterilir Liste şeklinde Örnek: A = {1,3,5,7} Tanım

Detaylı

BM312 Ders Notları 2014

BM312 Ders Notları 2014 Kümeler ve Bağıntılar Bir küme nesnelerden oluşur L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir c L, k L şeklinde ifade edilir. Elemanların sırası ve tekrarı önemli değildir {üzüm, kiraz,

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

Kafes Yapıları. Hatırlatma

Kafes Yapıları. Hatırlatma Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

1. KÜMELER TEORİSİ 1. Giriş. Modern matematiğin en önemli kullanım araçlarından birisi kümeler teorisidir. Kümeler teorisi çalışmaları matematiğin temelinde kullanılışı 20. yüzyılın başlangıcında Frege,

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. 2. BÖLÜM Boole Cebri ve Mantık

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir.

SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon denir. SOYUT CEBİR Tanım 1: Uzunluğu 2 olan dairesel permütasyona transpozisyon Tanım 2: Bir grubun kendi üzerine izomorfizmine otomorfizm, grubun kendi üzerine homomorfizmine endomorfizm Sadece birebir olan

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN,

İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN, YAYIN KURULU Hazırlayanlar İlter TÜRKMEN, Tolga TANIŞ, Simay AYDIN, YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK & Ezgi

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar

HESAP. (kesiklik var; süreklilik örnekleniyor) Hesap sürecinin zaman ekseninde geçtiği durumlar HESAP Hesap soyut bir süreçtir. Bu çarpıcı ifade üzerine bazıları, hesaplayıcı dediğimiz somut makinelerde cereyan eden somut süreçlerin nasıl olup da hesap sayılmayacağını sorgulayabilirler. Bunun basit

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

TESİ. indeks. söylenebilir?? bir ilişkidir d) Hiçbiri. veya somutlaştırılmış. düzeyidir? sağlayabilir? sına. d) Hepsi. olabilir? c) Verilerin d) Hepsi

TESİ. indeks. söylenebilir?? bir ilişkidir d) Hiçbiri. veya somutlaştırılmış. düzeyidir? sağlayabilir? sına. d) Hepsi. olabilir? c) Verilerin d) Hepsi 1. 2. 3. 4. 5. 6. Görünüm (view) için özellikle aşağıdakilerden hangisi söylenebilir?? a) Veritabanındaki kayıtlı verileri düzenlemek, yönetmek ve elde etmek için kullanılan bir dildir b) Bir ilişkinin

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

BM312 Ders Notları - 3 2014

BM312 Ders Notları - 3 2014 DETERMİNİSTİK SONLU OTOMATLAR (DETERMINISTIC FINITE AUTOMATA) Bir Sonlu Otomat (FA) sabit ve sonlu kapasitede bir merkezi işlem ünitesine sahiptir. Giriş bilgisini input tape üzerinden string olarak alır.

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez.

KÜMELER. Kümeler YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 MATEMATĐK ĐM /LYS. UYARI: {φ} ifadesi boş kümeyi göstermez. MTEMTĐK ĐM YILLR 00 00 004 005 006 007 008 009 010 011 ÖSS-YGS - 1 - - - - - 1 1 1/1 /LYS KÜMELER TNIM: in tam bir tanımı yoksa da matematikçiler kümeyi; iyi tanımlanmış nesneler topluluğu olarak kabul

Detaylı

(Boolean Algebra and Logic Simplification) Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak

(Boolean Algebra and Logic Simplification) Amaçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak Boolean Kuralları ve Lojik İfadelerin Sadeleştirilmesi BÖLÜM 4 (Boolean lgebra and Logic Simplification) maçlar Lojik sistemlerin temeli olarak Booleron Matematiğini tanıtmak Başlıklar Booleron Kurallarını

Detaylı

9. SINIF MATEMATİK KONU ÖZETİ

9. SINIF MATEMATİK KONU ÖZETİ 2012 9. SINIF MATEMATİK KONU ÖZETİ TOLGA YAVAN Matematik Öğretmeni 1. ÜNİTE: MANTIK İnsan diğer canlılardan ayıran en önemli özelliklerden biri düşünebilme yeteneğidir. Bireyler karşılaştıkları günlük

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

Bulanık Mantık Denetleyicileri

Bulanık Mantık Denetleyicileri Bulanık Mantık Denetleyicileri Bulanık Çıkarım BULANIK ÇIKARIM İki-değerli mantık Çok-değerli mantık Bulanık mantık Bulanık kurallar Bulanık çıkarım Bulanık anlamlandırma Bulanık Çıkarım İki-değerli mantık

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Önsöz Değerli Öğrenciler, u fasikül ortaöğretimde başarınızı yükseltmeye, üniversite giriş sınavlarında yüksek puan almanıza yardımcı olmak için özenle hazırlanmıştır. Konular anlamlı bir bütün oluşturacak

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Kümeler kuramı. David Pierce. Matematik Bölümü Mimar Sinan Güzel Sanatlar Üniversitesi İstanbul dpierce@msgsu.edu.tr http://mat.msgsu.edu.

Kümeler kuramı. David Pierce. Matematik Bölümü Mimar Sinan Güzel Sanatlar Üniversitesi İstanbul dpierce@msgsu.edu.tr http://mat.msgsu.edu. Kümeler kuramı David Pierce 13 Mart 2013, saat 8:35 Matematik Bölümü Mimar Sinan Güzel Sanatlar Üniversitesi İstanbul dpierce@msgsu.edu.tr http://mat.msgsu.edu.tr/~dpierce/ Bu ȩser Creative Commons Attribution

Detaylı

KÜMELER. Küme nesneler topluluğudur. Bu bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız.

KÜMELER. Küme nesneler topluluğudur. Bu bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız. KÜMELER Küme nesneler topluluğudur. u bölümde kümelerle kurulan matematiksel yapıyı tanıtacağız. Küme kavramı matematiğe girmeden önce matematik denilince akla sayılar ve şekiller gelirdi. Kümeler kuramının

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

tipleri. alacak. b)eğer Ferit (x 1)(x 2)= 0 r(x): x<0 8) Tanim ve x+y=z dir. 7)Q(x,y,z) : olmak üzeree Graf dir

tipleri. alacak. b)eğer Ferit (x 1)(x 2)= 0 r(x): x<0 8) Tanim ve x+y=z dir. 7)Q(x,y,z) : olmak üzeree Graf dir Soyut Yapiar: Ornek Soru tipleri. 1) a)aşağidaki cümlelerin değillerini yazin. Tolga ödevlerini yaparsaa ve Tayfun piyano çalişirsa ikisi beraber tatile gitmeye hak kazanacaklar. b)eğer Ferit liner cebirden

Detaylı

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden

6. 3x2-8x - 3 = O denkleminin negatif kökü asagidakilerden. 7. mx2 - (2m2 + i) x + 2m = O denkleminin köklerinden ikinci Dereceden Denklemler, tçözüm Kümesi, Köklerin Varligi. (m - 9) x + x - 6 = o denkleminin ikinci dereceden bir bilinmeyenli denklem olmasi için, m degeri asagidakilerden hangisi olamaz? A) - B) -

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

KÜMELER. A = {x : (x in özelliği)} Burada x : ifadesi öyle x lerden oluşur ki diye okunur. Küme oluşturur. Çünkü Kilis in üç tane ilçesi.

KÜMELER. A = {x : (x in özelliği)} Burada x : ifadesi öyle x lerden oluşur ki diye okunur. Küme oluşturur. Çünkü Kilis in üç tane ilçesi. KÜMELER Canlı yada cansız varlıkların oluşturduğu iyi A = {a, b, {a, b, c}} ise, s(a) = 3 tür. tanımlanmış nesneler topluluğuna küme denir. 2. Ortak Özellik Yöntemi Kümenin elemanlarını, daha somut ya

Detaylı

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4

KÜMELER Test -1. 5. A a,b,c, 1,2, 5. 1. A a,b,c,d 2. A,1,2,3, 1. 7. s(a) = 10 ve s(b) = 7. 4. B x:0 x 40 ve x 5k, k. 8. s(a) = 9 ve s(b) = 4 KÜMELER Test -1 1. A a,b,c,d kümesi için aşağıdakilerden hangisi yanlıştır? A) A B) a A C) d A D) {a, c} A E) {a} A 5. A a,b,c, 1,2, 5 kümesi için aşağıdakilerden hangisi doğrudur? A) s(a) = 6 B) b A C)

Detaylı

4- ALGORİTMA (ALGORITHM)

4- ALGORİTMA (ALGORITHM) (ALGORITHM) Algoritma: Bir Problemin çözümünün, günlük konuşma diliyle adım adım yazılmasıdır. Algoritma sözcüğü Ebu Abdullah Muhammed İbn Musa el Harezmi adındaki Türkistan'lı alimden kaynaklanır. Bu

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. Dijital Devre Tasarımı EEE122 A Ref. Morris MANO & Michael D. CILETTI DIGITAL DESIGN 4 th edition Fatih University- Faculty of Engineering- Electric and Electronic Dept. Chapter 3 Boole Fonksiyon Sadeleştirmesi

Detaylı

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni.

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni. iii T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜNE AYDIN Matematik Anabilim Dalı Yüksek Lisans Programı öğrencisi Koray KARATAŞ tarafından hazırlanan Genel Lineer Grupların Sylow

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Önermelerin Eşdeğerlikleri Section 1.3 Totoloji, Çelişkiler, ve Tesadüf Bir totoloji her zaman doğru olan bir önermedir. Örnek: p p Bir çelişki

Detaylı

Sonlu Durum ve Turing Makineleri

Sonlu Durum ve Turing Makineleri Sonlu Durum ve Turing Makineleri Ders 12 Yrd.Doç.Dr. İbrahim TÜRKYILMAZ Sonlu Durum Makinesi Sonlu durum makinesi aşağıdakilerden oluşur: a) Bir σ başlangıç durumu, b) Sonlu sayıda duruma sahip olan sonlu

Detaylı

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere,

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere, 01 YGS MATEMATİK SORU VE ÇÖZÜMLERİ 1. 10, 5,1 0,5 0, işleminin sonucu kaçtır? A) 5 B) 5,5 C) 6 D) 6,5 E) 7. a 1 8 b 7 18 olduğuna göre a b çarpımı kaçtır? A) 4 B) C) 4 D) 5 E) 6 10, 5,1 105 1 41 1 5 0,

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir.

Bu ders materyali 06.09.2015 23:17:19 tarihinde matematik öğretmeni Ömer SENCAR tarafından hazırlanmıştır. Unutmayın bilgi paylaştıkça değerlidir. -- Bu ders materyali 06.09.05 :7:9 tarihinde matematik öğretmeni Ömer SENCAR tarafından UYGULAMA-00 Cevap: x- -x- x- =0 denklemini sağlayan x değeri kaçtır? UYGULAMA-00 Cevap: x x x 5 + = + denklemini

Detaylı

Veritabanı Dersi. Teoriden Pratiğe. Çağıltay N.E., Tokdemir G.

Veritabanı Dersi. Teoriden Pratiğe. Çağıltay N.E., Tokdemir G. Veritabanı Dersi Teoriden Pratiğe Çağıltay N.E., Tokdemir G. Veritabanı Sistemleri Dersi -Bölüm: II. Aşama: Kavramsal Model-Devamı Çağıltay, N., Tokdemir, G. BÖLÜM 7 II. Aşama (Devamı): Kavramsal Model

Detaylı

,$( -./(,$( 0$0$ 1 2 134(,$(

,$( -./(,$( 0$0$ 1 2 134(,$( !"#$ %& '()*' ' + -./( 0$0$ 1 2 134( 5(/ 4 2 " $#56L = {a n b n c n : n 0}222 #.(.)", #22(# 7# 2", #6,489: 7", #24$62.. ' # #2(; 7 #", #2, #2.24$;7" $.7 2# < #44 )" -2 # 22)#( #4# 7 #7= 8"- 2 " >"",.'#

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır?

Ö.S.S. 1994. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ = 43. olduğuna göre a kaçtır? Ö.S.S. 1994 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ 4.10 1. 4 10 +.10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 4 4 (40+ ).10 10 4 4 4 (98² 98²) 00.9.

Detaylı

3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6

3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6 10,25 3,1 1. 0,5 0,2 işleminin sonuu kaçtır? ) 5 B) 5,5 C) 6 D) 6,5 E) 7 3. a 12 8 b 27 18 olduğuna göre, a b çarpımı kaçtır? ) 4 2 B) 3 3 C) 4 D) 5 E) 6 2. 2 3 6 4.6 2 3 3 2.3 işleminin sonuu kaçtır?

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI SORULARI EGE BÖLGESİ 5. OKULLAR ARASI MATEMATİK YARIŞMASI. [( p q) q] [(p q) q ] bileşik önermesinin en sade şekli A) p B) p C) D) 0 E) q 4. A kümesinin eleman sayısı fazla; B kümesinin eleman sayısı eksik olsaydı

Detaylı

Kablosuz Kanallarda Kodlama. İrfan Köprücü

Kablosuz Kanallarda Kodlama. İrfan Köprücü Kablosuz Kanallarda Kodlama İrfan Köprücü Ana Başlıklar Giriş Linear Block Codes Cyclic Codes BHC Codes Giriş Hata düzeltme kodları: Gürültülü kanallarda mesajlar iletilirken Belli bir yerde tutulan veri

Detaylı

Birden Çok Tabloda Sorgulama (Join)

Birden Çok Tabloda Sorgulama (Join) Birden Çok Tabloda Sorgulama (Join) Join(Birleştirici), iki ya da daha fazla tabloyu aynı anda sorgulayarak bir sonuç tablosu (result table) oluşturmaya yarar. Örneğin: İki tabloyu birleştirici ile birleştirerek

Detaylı

ŞEKİL DEĞİŞTİRME HALİ

ŞEKİL DEĞİŞTİRME HALİ ŞEKİL DEĞİŞTİRME HALİ GİRİŞ Önceki bölümde cisme etkiyen kuvvetlerin dengesi incelenerek gerilme kavramı geliştirildi. Bu bölümde ise şekil değiştiren cisim mekaniğinin en önemli kavramlarından biri olan

Detaylı

Kümeler kuramı. David Pierce. Matematik Bölümü Mimar Sinan Güzel Sanatlar Üniversitesi İstanbul dpierce@msgsu.edu.tr http://mat.msgsu.edu.

Kümeler kuramı. David Pierce. Matematik Bölümü Mimar Sinan Güzel Sanatlar Üniversitesi İstanbul dpierce@msgsu.edu.tr http://mat.msgsu.edu. Kümeler kuramı David Pierce 6 Mayıs 2013, saat 16:14 Matematik Bölümü Mimar Sinan Güzel Sanatlar Üniversitesi İstanbul dpierce@msgsu.edu.tr http://mat.msgsu.edu.tr/~dpierce/ Bu eser Creative Commons Attribution

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES)

BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES) BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES) Context-free dillerin üretilmesi için context-free gramer ler kullanılmaktadır. Context-free dillerin

Detaylı

ANALİZ III. Mert Çağlar

ANALİZ III. Mert Çağlar ANALİZ III Mert Çağlar Bu notlar Örgün Öğretimde Uzaktan Öğretim Desteği (UDES) lisansı altındadır. Ders notlarına erişim için: http://udes.iku.edu.tr CC $\ BY: Mert Çağlar C Matematik-Bilgisayar Bölümü

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar

mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar Algoritma ve Programlamaya Giriş mustafacosar@hitit.edu.tr http://web.hitit.edu.tr/mustafacosar İçerik Algoritma Akış Diyagramları Programlamada İşlemler o o o Matematiksel Karşılaştırma Mantıksal Programlama

Detaylı

FONKSİYONLAR Bu materyal, mevcut proje için geliştirilen örnek sayfalardan oluşmaktadır.

FONKSİYONLAR Bu materyal, mevcut proje için geliştirilen örnek sayfalardan oluşmaktadır. FONKSİYONLAR Bu materyal, mevcut proje için geliştirilen örnek sayfalardan oluşmaktadır. İster oku, ister dinle, ister izle. Dilediğince öğren... NELER ÖĞRENECEĞİZ? 1. Fonksiyon kavramı 2. Fonksiyonların

Detaylı

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN

Frekans domain inde İşlemler. BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Frekans domain inde İşlemler BMÜ-357 Sayısal Görüntü İşleme Yrd. Doç. Dr. İlhan AYDIN Domain Dönüşümü Dönüşüm, bir sinyalin, başka parametrelerle ifade edilmesi şeklinde düşünülebilir. Ters dönüşüm ise,

Detaylı

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 3 Veri Yapıları Veri yapısı, bilginin anlamlı sırada bellekte veya disk, çubuk bellek gibi saklama birimlerinde tutulması veya saklanması şeklini gösterir. Bilgisayar

Detaylı