VECTOR MECHANICS FOR ENGINEERS: STATICS

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "VECTOR MECHANICS FOR ENGINEERS: STATICS"

Transkript

1 Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: / Web: 7. Kiriş ve Kablolardaki Kuvvetler The cgraw-hill Companies, Inc. All rights reserved.

2 Giriş Elemanlardaki iç kuvvetler Çeşitli tiplerde kiriş yükleri Kesme kuvveti ve eğilme momenti diyagramları Yük, kesme kuvveti ve eğilme momenti arasındaki bağıntılar Tekil yükler etkisinde kablolar Yayılı yük etkisinde kablolar Parabolik kablo Zincir eğrisi

3 Giriş Daha önceki bölümlerde a) bir yapıya etkiyen dış kuvvetlerin belirlenmesi b) bir yapının elemanlarını bir arada tutan kuvvetlerin belirlenmesi incelenmişti. Bu bölümde elemanı birarada tutan iç kuvvetler (çekme/basma, kesme kuvveti ve eğilme momenti) incelenecektir. ühendislikte kullanılan en önemli iki yapı dikkate alınacaktır: a) Kirişler genellikle uzun, dik ve prizmatik elemanlardır. Tekil ve yayılı yükleri desteklemek için tasarlanırlar. b) Kablolar esnek malzemelerdir. Sadece çekmeye karşı çalışırlar. Tekil veya yayılı yükleri taşımak için tasarlanırlar.

4 Elemanlardaki İç Kuvvetler Dik olan iki kuvvete sahip AB elemanında denge ancak F ve F kuvvetleri ile sağlanır. AC ve CB eleman parçalrının dengede olabilmesi için iç kuvvetler F ve F ye eşit olmalıdır. ABCD gibi çok kuvvete sahip elemanlarda kablo ve elemanlar arasındaki bağ kuvvetleri ile denge sağlanır. JD ve ABCJ eleman parçaları için denge kuvvet kuvvet çifti ile sağlanır. Dik olmayan ve iki kuvvete sahip elemanlarda denge kuvvet kuvvet çifti ile sağlanır.

5 Örnek 7.1 ÇÖZÜ: Şekildeki yükleme elemanında (a) ACF elemanında J noktasında, (b) BCD elemanında K da iç kuvvetleri bulunuz. esnet kuvvetleri ve her elemandaki bağ kuvvetleri hesaplanır. ACF elemanı J noktasından kesilir. J kesitindeki iç kuvvetler kuvvet kuvvet çifti ile gösterilir. Denge denklemleri ile iç kuvvetler hesaplanır. BCD elemanı K noktasından kesilir. K kesitindeki iç kuvvetler kuvvet kuvvet çifti ile gösterilir. Denge denklemleri ile iç kuvvetler hesaplanır.

6 ÇÖZÜ: esnet kuvvetleri hesaplanır. E : ( 4 N)( 3.6 m) + F( 4.8m) F 18 N F y : 4 N + 18 N + E E y 6 N y F : E

7 Her elemandaki bağ kuvvetleri hesaplanır. BCD elemanı SCD: B : ( 4 N)( 3.6 m) + C (.4 m) C : ( 4 N)( 1. m) + B (.4m) F : B + C y y C y B y 36 N 1 N ABE elemanı SCD: : B (.4 m) A B F : B A F : A + B + 6 N y BCD elemanından: y y A A y F : B + C C 18 N

8 ACF elemanı J noktasından kesilir. J kesitindeki iç kuvvetler kuvvet kuvvet çifti ile gösterilir. Denge denklemleri ile iç kuvvetler hesaplanır. AJ eleman parçası SCD: J : ( 18 N)( 1.m) + 16 N m F F : ( 18 N) cos 41.7 F 1344 N F y : V + ( 18 N) sin 41.7 V 1197 N

9 BCD elemanı K noktasından kesilir. K kesitindeki iç kuvvetler kuvvet kuvvet çifti ile gösterilir. Denge denklemleri ile iç kuvvetler hesaplanır. BK eleman parçası SCD: K : ( 1 N)( 1.5m) + 18 N m F : F F y : 1 N V V 1 N

10 Çeşitli Tiplerde Kiriş Yükleri Kiriş uzunluğu boyunca uygulanan yükleri taşımak için tasarlanırlar. (a) Tekil yükler Kirişler tekil yüklere veya yayılı yüklere veya her ikisine birden maruz kalabilir. Kiriş tasarımı iki basamaklıdır: 1) Yüklerin oluşturduğu kayma kuvvetleri ve eğilme momentleri hesaplanır. (b) Yayılı yükler ) Kayma kuvvetlerine ve eğilme momentine dayanacak en iyi kesit seçilir ve boyutlandırılır.

11 Statikçe Belirli Kirişler Kirişlerdeki kuvvetler (a) Basit destekli kiriş (b) Uzantılı kiriş (c) Ankastre kiriş Statikçe Belirsiz Kirişler (d) Sürekli kiriş (e) Bir tarafı ankastre kiriş diğer tarafı basit kiriş (d) Sabit kiriş Kirişler nasıl desteklendiklerine göre sınıflandırılırlar. Tepki kuvvetleri sadece 3 tane bilinmeyen içerirse belirlenebilirler. Yoksa statikçe belirsizdirler.

12 Kesme Kuvveti ve Eğilme omenti Diyagramları Tekil ve yayılı yük etkisi altındaki kirişte her hangi bir kesitte kesme kuvveti ve eğilme momentinin bilinmesi gerekiyorsa: Tüm kiriş için SCD oluşturulduktan sonra tepki kuvvetleri bulunur. Kiriş C gibi her hangi bir noktadan kesilir ve AC ve CB eleman parçaları için SCD oluşturulur: Kesitlerde iç kuvvet kuvvet çifti yerleştirilir. Denge denklemlerinden, V veya,v hesaplanır.

13 İlk olarak tepki kuvvetleri bulunur. Kiriş C noktasında kesilir ve AC eleman parçası için SCD çizilir. V + P + P V Kiriş E noktasında kesilir ve EB eleman parçası için SCD çizilir. P ( L ) + P Tekil yüke maruz kirişlerde yükleme noktaları arasında kesme kuvveti sabittir ve eğilme momenti mesafe ile lineer olarak değişir.

14 Örnek 7. ÇÖZÜ: Kiriş için SCD oluşturulur. B ve D noktalarındaki tepki kuvvetleri hesaplanır. Sırasıyla yüklemelerin önünden ve arkasından kesme işlemi yapılır. Diyagram çizilir. Şekilde verilen kiriş boyunca kesme kuvveti, eğilme momenti diyagramlarını çiziniz.

15 ÇÖZÜ: Kiriş için SCD oluşturulur. B ve D noktalarındaki tepki kuvvetleri hesaplanır. D : ( k N)( 7.5m) B( 5m) + (4kN)(m) B 46kN.5 m 3 m m : Fy kn + 46kN 4kN + D D 14kN Sırasıyla yüklemelerin önünden ve arkasından kesme işlemi yapılır. F : kn V 1 V 1 V kn y A : ( kn)( ) + 1 (kn) 1

16 : Fy kn + 46kN V3 V 3 V 4 6kN A A : ( kn)( ) (46 kn )(.5 m ) m 115kNm (6kN) F y : kn + 46kN 4kN V5 V 5 V 6 14kN.5 m 3 m A : ( kn)( ) (46 kn )(.5 m ) + (4 kn )( 5.5 m ) kNm (14kN) 5 6

17 Kesme kuvveti ve eğilme momenti diyagramları. V 1 V kn (kn) 1 V 3 V 4 6kN 115kNm (6kN) V 5 V 6 14kN 15kNm (14kN) 5 6

18 Örnek N/m ÇÖZÜ: Tüm kiriş için SCD diyagramı çizilir. A ve B noktasındaki tepki kuvvetleri bulunur. 1 m 6 m 4 m 4 N 1 m AC, CD, ve DB kısımları için kesme yapılır ve kesme kuvveti eğilme momenti hesaplanır. 3 m Diyagramlar çizilir. Şekildeki AB kirişi için kesme kuvveti ve eğilme momenti diyagramlarını çiziniz.

19 ÇÖZÜ: Tüm kiriş için SCD diyagramı çizilir. A ve B noktasındaki tepki kuvvetleri bulunur. 4 N/m 1 m 6 m 4 m 3 m 48 N 4 N 1 m B y A : ( 3 m) ( 48 N )( 6m) ( 4 N )( m) B : B y 365 ( 48 N )( 6m) + ( 4 N )( 1m) A( 3m) N A 515 N 4 N F : B 6 m 16 m 1 m Not: E noktasına etki eden 4 N luk kuvvet D noktasına 4 N kuvvet ve 16 Nm moment olarak taşınır.

20 AC, CD, ve DB kısımları için kesme yapılır ve kesme kuvveti eğilme momenti hesaplanır. 1 m 4 N/m 6 m 14 m 16 Nm A Carası: 515 N 4 N 365 N Fy : 515 N 4 V V N 515 N 48 N 1 4( ) + 1 : 515 C D arası: F : V y : 515 V 35 N ( 6) + ( 88 35) Nm +

21 1 m 6 m 14 m D Barası: 4 N/m 16 Nm F : V y V 365 N 515 N 4 N 365 N : 48 N ( 6) ( 18) Nm ( ) Nm 515 N 4 N

22 Kesme kuvveti ve eğilme momenti diyagramları. 515 N 6 m 1 m 14 m 4 N/m 4 N 16 Nm 515 N 35 N 18 m 3 m 1 m 351 Nm 511 Nm 33 Nm 365 N -365 N A Carası: V C Darası: V 35 N ( 88 35) Nm + D Barası: V 365 N ( ) Nm

23 Yük, Kesme Kuvveti ve Eğilme omenti Arasındaki Bağıntılar y Yükleme ile kesme kuvveti arasındaki bağıntı: dv d V F D y V lim V C V ( V + V ) w wd D C w C-D elemanı için: - (yük eğrisinin altında kalan alan) Kesme kuvveti ile eğilme momenti arasındaki bağıntı: ( + ) V + w d 1 lim lim( V w ) V d (Bu denklemler iki yükleme noktası arasında geçerlidir.) D C D C V d (kesme kuvveti eğrisinin altında kalan alan)

24 Desteklerdeki tepkiler, RA RB wl w Kesme kuvveti eğrisi, V V V V A A w wd w wl w w L oment eğrisi, ma w A wl 8 L d Vd w ( L ) d d V

25 Örnek 7.4 kn 1 kn 1.5 kn/m 6 m 8 m 1 m 8 m Şekildeki kirişin kesme kuvveti ve eğilme momenti yagramlarını çiziniz. ÇÖZÜ: Tüm kiriş için SCD ile tepki kuvvetleri bulunur. Tekil yüklerin uygulama noktaları arasında kesme kuvveti sabittir. dv d w D ve E noktaları arasında, sabit yayılı yük nedeniyle, kesme kuvveti lineer olarak değişir. Tekil yükler uygulama noktaları arasında eğilme momenti eğimi: d d V sabit. omentteki değişim kesme kuvveti dağılımında eğrinin altında kalan alana eşittir. D ve E noktaları arasındaki lineer kesme kuvveti nedeniyle parabolik eğilme momenti dağılımı olacaktır.

26 kn 1 kn 4 m 1 kn 8 m 1 m 8 m 6 m kn 1 kn 1.5 kn/m 18 kn 6 kn ÇÖZÜ: Tüm kiriş için SCD ile tepki kuvvetleri bulunur. : D A ( 4 m) ( kn)( 6 m) ( 1 kn)( 14 m) ( 1k N)( 8 m) D 6 kn Fy : A y kn 1 kn + 6 kn 1 kn A y 18 kn kn 18 kn V(N) Tekil yüklerin uygulama noktaları arasında kesme kuvveti sabittir. dv d w D ve E noktaları arasında, sabit yayılı yük nedeniyle, kesme kuvveti lineer olarak değişir.

27 kn 1 kn 1.5 kn/m Tekil yükler uygulama noktaları arasında eğilme momenti eğimi: d d V sabit. omentteki değişim kesme kuvveti dağılımında eğrinin altında kalan alana eşittir. 18 kn 6 kn V(kN) B C D E A B C D B C D E + 18 knm + 9 knm 48 knm (knm) D ve E noktaları arasında, sabit yayılı yük nedeniyle, kesme kuvveti lineer olarak değişir.

28 Örnek 7.6 ÇÖZÜ: A ve B noktaları arasındaki kesitler için kesme kuvveti, A ile kesme noktası arasındaki yayılı yük eğrisinin altında kalan alanın negatifine eşit olacaktır. Lineer yük eğrisi kesme kuvveti dağılımının parabolik olmasına neden olur. B ve C noktaları arasında yük olmadığı için kesme kuvvetinde bir değişme yoktur. Şekildeki ankastre kirişin kesme kuvveti ve eğilme momenti diyagramlarını çiziniz. A ve B noktaları arasında kesitteki moment değişimi noktalar arasındaki kesme kuvveti eğrisinin altındaki alana eşittir. Parabolik yük dağılımı moment eğrisinin mesafenin kübü ile değişmesine neden olur. B ve C noktaları arasındaki moment, noktalar arasında kesme kuvveti eğrisinin altında kalan alana eşittir. Sabit kesme kuvveti eğrisi lineer moment eğrisine neden olur.

29 ÇÖZÜ: A ve B noktaları arasındaki kesitler için kesme kuvveti, A ile kesme noktası arasındaki yayılı yük eğrisinin altında kalan alanın negatifine eşit olacaktır. Lineer yük eğrisi kesme kuvveti dağılımının parabolik olmasına neden olur. A noktasında V A dv, w w d V V 1 w B A a V B 1 w a B noktasında dv d w B ve C noktaları arasında yük olmadığı için kesme kuvvetinde bir değişme yoktur.

30 A ve B noktaları arasında kesitteki moment değişimi noktalar arasındaki kesme kuvveti eğrisinin altındaki alana eşittir. Parabolik yük dağılımı moment eğrisinin mesafenin kübü ile değişmesine neden olur. A noktasında A d, V d B C A B w w a a B w ( L a) 1 w a( 3L a) C a B ve C noktaları arasındaki moment, noktalar arasında kesme kuvveti eğrisinin altında kalan alana eşittir. Sabit kesme kuvveti eğrisi lineer moment eğrisine neden olur.

31 Tekil Yükler Etkisinde Kablolar Kablolar yapısal elemanlarda çekme yönünde çalışan taşıyıcılardır. Köprülerde, güç aktarımında, teleferiklerde ve yüksek direklerin desteklenmesinde kullanılır. Analiz sırasında yapılan kabuller: a) düşey çizgi doğrultusunda etkiyen düşey tekil yükler içerir, b) kablonun ağırlığı ihmal edilir, c) kablo esnektir, eğilmeye karşı direnci çok küçüktür, d) yükler arasında kalan kablo parçaları iki kuvvetli elemanlar olarak düşünülür, Yükleme altında kablonun hangi şekli alacağı araştırılır: Her yükleme noktasının A noktasına göre düşey mesafesi bulunur.

32 Tüm kablo SCD kullanılarak mesnetlerdeki tepki kuvvetleri bulunur, Bu durumda dört bilinmeyen üç denge denklemi vardır. Bu nedenle tepki kuvvetleri bu şekilde bulunamaz. İlave denklem için, koordinatları bilinen bir nokta için (şekilde D noktası) moment denge denklemi kullanılır. D Kablo üzerinde diğer noktalar için: C y bulunur F, F y T T cosθ A sabit T y T, bulunur

33 Yayılı Yükler Etkisinde Kablolar Yayılı yük taşıyan bir kablo için: a) Kablo yükleme şekline göre şekil değiştirir b) İç kuvvet çekme yönünde çalışır ve yönü eğriye teğet olacaktır Kablonun en alt noktası C den verilen D noktasına kadar olan parçanın SCD oluşturulur. Kuvvetler, C noktasında yatay doğrultuda T ve D noktasında teğet kuvvet T olacaktır T cosθ T T sinθ W Kuvvet üçgeninden: T T + W tanθ Kablo boyunca T kuvvetinin yatay bileşeni uniformdur T kuvvetinin düşey bileşeni, en alçak noktaya göre ölçülen W nin şiddetine eşit olacakır. Kuvvetin düşey bileşeni en alçak noktada minimumdur ve A ve B noktalarında maksimumdur: W T

34 Parabolik Kablo Yayılı yük taşıyan bir kablo olsun. En alçak nokta C den D noktasına kadar parça için SCD oluşturulur. W w, T T + w tanθ D noktasına göre momentlerin toplamı: D : w T y veya w y T Kablo parabolik eğri şeklini alır. w T

35 Örnek 7.8 ÇÖZÜ: 5 m 4 kn m Tüm kablo için SCD oluşturulup E noktasına göre moment dengesi ve ABC kablo parçası için SCD oluşturulup C noktasına göre moment dengesi kullanılarak A noktasındaki iki bileşenli tepki kuvveti bulunur. AE kablosu şekilde görüldüğü gibi üç tekil kuvvet taşımaktadır. C noktası A noktasına göre 5 m aşağıda ise (a) B ve D noktalarının mesafelerini, (b) Kablodaki maksimum eğimi ve maksimum gerilmeyi bulunuz. 6 kn m 1 m 1 kn 15 m 15 m AB kablo parçası için SCD çizilir ve B noktasına göre moment denge denklemi ile B noktasının A noktasına göre mesafesi bulunur. Benzer şekilde ABCD kablo parçası için D noktasına göre moment denge denklemi ile D noktasının A noktasına göre düşey mesafesi hesaplanır. aksimum eğim ve maksimum gerilme DE kablosunda olmaktadır ve bu kablo için SCD ile bu değerler hesaplanır.

36 ÇÖZÜ: Tüm kablo için SCD oluşturulup E noktasına göre moment dengesi 5 m 4 kn m A A E : 6A 6A y y + 4 ( 6) + 3( 1) + 15( 4) kn 1 kn m 1 m 15 m 15 m ve ABC kablo parçası için SCD oluşturulup C noktasına göre moment dengesi kullanılarak 6 kn 1 kn m 1 m m 5A C : 3A y + 1 ( 6) A noktasındaki iki bileşenli tepki kuvveti bulunur. A 18 kn A y 5 kn

37 5 m 4 kn m AB kablo parçası için SCD çizilir ve B noktasına göre moment denge denklemi ile B noktasının A noktasına göre düşey mesafesi bulunur 6 kn 1 kn ( 18) 5( ) B : y B m 1 m 15 m 15 m y B 5.56 m 18 kn 5 kn 6 kn m Benzer şekilde ABCD kablo parçası için SCD çizilir ve D noktasına göre moment denge denklemi ile D noktasının A noktasına göre düşey mesafesi bulunur 18 kn 5 kn 6 kn 4 kn 1 kn y D : ( 18) 45( 5) + 5( 6) + 15( 1) m 1 m 15 m y D m

38 aksimum eğim ve maksimum gerilme DE kablosunda olmaktadır ve bu kablo için SCD ile bu değerler hesaplanır. m 1 m 15 m 18 kn m 18 kn 5 kn 5.83 m 4 kn 6 kn 1 kn 15 m tanθ θ Tma 18 kn cosθ T 4.8 ma kn

39 Zincir Eğrisi En alçak nokta C den D noktasına kadar parça için SCD oluşturulur. Kablonun ağırlığı: Kendi ekseni boyunca uniform olarak yayılı yüklemeye maruz kalan bir kablo düşünülsün. (kendi ağırlığını taşıyan kablolar) T T T + w s w c + s c Kablo uzunluğu ile yatay mesafe arasındaki ilişki: W ws d İç kuvvetin şiddeti: s ds cosθ ds 1+ s c T T ds w c sinh 1 wcds c s c + s ve s ds 1+ s c c sinh tanım c w

40 ve y koordinatlarının ilişkisi: dy y c d y c tanθ cosh sinh c c W T d d c s c d cosh c sinh c c d Bu düşey eksenli bir zincir eğrisi denklemidir.

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi

İÇ KUVVETLER. Amaçlar: Bir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi İÇ KUVVELER maçlar: ir elemanda kesit yöntemiyle iç kuvvetlerin bulunması Kesme kuvveti ve moment diyagramlarının çizilmesi Yapısal elemanlarda oluşan iç kuvvetler ir yapısal veya mekanik elemanın tasarımı,

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS erdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 285 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi 8. Sürtünme Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

Yapı Sistemlerinde Elverişsiz Yüklemeler:

Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapı Sistemlerinde Elverişsiz Yüklemeler: Yapılara etkiyen yükler ile ilgili çeşitli sınıflama tipleri vardır. Bu sınıflamalarda biri de yapı yükleri ve ilave yükler olarak yapılan sınıflamadır. Bu sınıflama;

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet II Final Sınavı (2A) KOCELİ ÜNİVERSİTESİ ühendislik ültesi ina ühendisliği ölümü ukavemet II inal Sınavı () dı Soyadı : 5 Haziran 01 Sınıfı : No : SORU 1: Şekilde sistemde boru anahtarına 00 N luk b ir kuvvet etki etmektedir.

Detaylı

Çerçeveler ve Basit Makinalar

Çerçeveler ve Basit Makinalar Çerçeveler ve Basit Makinalar Çeşitli elemanların birbirlerine bağlanması ile oluşan sistemlerdir. Kafes sistemlerden farklı olarak, elemanlar birbirlerine 2 den fazla noktadan bağlanabilir ve dış kuvvetler

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM

CS MÜHENDİSLİK PROJE YAZILIM HİZMETLERİ www.csproje.com. EUROCODE-2'ye GÖRE MOMENT YENİDEN DAĞILIM Moment CS MÜHENİSLİK PROJE YAZILIM HİZMETLERİ EUROCOE-2'ye GÖRE MOMENT YENİEN AĞILIM Bir yapıdaki kuvvetleri hesaplamak için elastik kuvvetler kullanılır. Yapının taşıma gücüne yakın elastik davranmadığı

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET. 6.Düzlem ve Uzay kafes Sistemler. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 6.Düzlem ve Uzay kafes Sistemler Doç. Dr. NURHAYAT DEĞİRMENCİ Birbirlerine bağlı birden fazla parçadan yapılmış sistemlerin dengesi için dıs kuvvetlere ilaveten iç kuvvetler de düşünülmelidir.

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (3. Hafta) TAŞIYICI SİSTEMLER VE MESNET TEPKİLERİ STATİK (3. Hafta) Taşıyıcı Sistemler Bir yapıya etki eden çeşitli kuvvetleri güvenlik sınırları içinde taşıyan ve bu kuvvetleri zemine aktaran sistemlere taşıyıcı

Detaylı

Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü

Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü Bileşik Eğilme-Eksenel Basınç ve Eğilme Altındaki Elemanların Taşıma Gücü GİRİŞ: Betonarme yapılar veya elemanlar servis ömürleri boyunca gerek kendi ağırlıklarından gerek dış yüklerden dolayı moment,

Detaylı

8. Hafta. Kirişlerin Kesme Kuvveti ve Eğilme E. Kiri. görece. beam) Nedir?; MUKAVEMET I : I : MUKAVEMET I MUKAVEMET I : 09/10 5.H. (kalınlıkxgenişlik)

8. Hafta. Kirişlerin Kesme Kuvveti ve Eğilme E. Kiri. görece. beam) Nedir?; MUKAVEMET I : I : MUKAVEMET I MUKAVEMET I : 09/10 5.H. (kalınlıkxgenişlik) : 09/10 5.H 11 8. Hafta Kirişlerin Kesme Kuvveti ve Eğilme E oment Diyagramlarının Çizimi : 09/10 5.H Kiriş (beam Kiri beam) Nedir?; uzunluk boyutunun diğer en kesit boyutlarından (kalınlıkxgenişlik) görece

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

STRAIN GAGE DENEY FÖYÜ

STRAIN GAGE DENEY FÖYÜ T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ STRAIN GAGE DENEY FÖYÜ HAZIRLAYAN Prof. Dr. Erdem KOÇ Yrd.Doç.Dr. İbrahim KELEŞ Yrd.Doç.Dr. Kemal YILDIZLI MAYIS 2011 SAMSUN

Detaylı

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU YAPISAL ANALİZ YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI YORULMA P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Aloha Havayolları Uçuş 243: Hilo dan Honolulu

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

Basit Kafes Sistemler

Basit Kafes Sistemler YAPISAL ANALİZ 1 Basit Kafes Sistemler Kafes sistemler uç noktalarından birleştirilmiş narin elemanlardan oluşan yapılardır. Bu narin elemanlar, yapısal sistemlerde sıklıkla kullanılan ahşap gergi elemanları

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri

Girdi kuvvetleri ile makinaya değişik biçimlerde uygulanan dış kuvvetler kastedilmektedir (input forces). Çıktı kuvvetleri ise elde edilen kuvvetleri ÇERÇEVELER Çerçeveler kafesler gibi genellikle sabit duran taşıyıcı sistemlerdir. Bir çerçeveyi kafesten ayıran en belirgin özellik, en az bir elemanının çok kuvvet elemanı (multi force member) oluşudur.

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

ZEMİNLERİN KAYMA DİRENCİ

ZEMİNLERİN KAYMA DİRENCİ ZEMİNLERİN KYM İRENİ Problem 1: 38.m çapında, 76.m yüksekliğindeki suya doygun kil zemin üzerinde serbest basınç deneyi yapılmış ve kırılma anında, düşey yük 129.6 N ve düşey eksenel kısalma 3.85 mm olarak

Detaylı

KAFES SİSTEMLER. Mühendislik Yapıları. birleştirilen doğrusal elemanlar) oluşurlar.

KAFES SİSTEMLER. Mühendislik Yapıları. birleştirilen doğrusal elemanlar) oluşurlar. KAFES SİSTEMLER Mühendislik Yapıları a) Kafesler: İki-kuvvet elemanlarından (uçlarından birleştirilen doğrusal elemanlar) oluşurlar. b) Çerçeveler: En az bir birçok kuvvetin etkisindeki eleman içerenler

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 5- Risk Tespit Uygulaması: Betonarme Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 5- Risk Tespit Uygulaması: Betonarme Bina İncelenen Bina Binanın Yeri Bina Taşıyıcı Sistemi Bina 5 katlı Betonarme çerçeve ve perde sistemden oluşmaktadır.

Detaylı

TRANSPORT SİSTEMLERİNDE BİLGİSAYAR UYGULAMALARI

TRANSPORT SİSTEMLERİNDE BİLGİSAYAR UYGULAMALARI BÖLÜM 14. TRANSPORT SİSTEMLERİNDE BİLGİSAYAR UYGULAMALARI 14. GİRİŞ Bilgisayar Destekli Tasarım (CAD), imalatın tasarım aşamasının ayrılmaz bir parçasıdır. Genel amaçlı bir CAD sisteminde oluşturulan bir

Detaylı

BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR)

BÖLÜM 4 YAPISAL ANALİZ (KAFESLER-ÇERÇEVELER-MAKİNALAR) BÖLÜM 4 YAPISAL ANALİZ (KAESLER-ÇERÇEVELER-MAKİNALAR) 4.1 Kafesler: Basit Kafes: İnce çubukların uçlarından birleştirilerek luşturulan apıdır. Bileştirme genelde 1. Barak levhalarına pimler ve kanak vasıtası

Detaylı

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

Temeller. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli Temeller Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Temel Nedir? Yapısal sistemlerin üzerindeki tüm yükleri, zemine güvenli bir şekilde aktaran yapısal elemanlara

Detaylı

Yararlanılabilecek Bazı Kaynaklar

Yararlanılabilecek Bazı Kaynaklar 2 Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği I-II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Çözümlü Örneklerle Yapı Statiği Hüsnü CAN 3. Taşıyıcı Sistemler ve Yapı Statiği İsmail İlhan SUNGUR 4. Yapı

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ GİRİŞ Mekanik tasarım yaparken öncelikli olarak tasarımda kullanılması düşünülen malzemelerin

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Doç.Dr.İrfan AY-Arş.Gör.T.Kerem DEMİRCİOĞLU MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Doç.Dr.İrfan AY-Arş.Gör.T.Kerem DEMİRCİOĞLU MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER MAKİNE PARÇALARINI ETKİLEYEN KUVVETLER VE GERİLMELER Dış Kuvvetler : Katı cisimlere uygulanan kuvvet cismi çekmeye, basmaya, burmaya, eğilmeye yada kesilmeye zorlar. Cisimde geçici ve kalıcı şekil değişikliği

Detaylı

ÖZHENDEKCİ BASINÇ ÇUBUKLARI

ÖZHENDEKCİ BASINÇ ÇUBUKLARI BASINÇ ÇUBUKLARI Kesit zoru olarak yalnızca eksenel doğrultuda basınca maruz kalan elemanlara basınç çubukları denir. Bu tip çubuklara örnek olarak pandül kolonları, kafes sistemlerin basınca çalışan dikme

Detaylı

KİRİŞ YÜKLERİ HESABI GİRİŞ

KİRİŞ YÜKLERİ HESABI GİRİŞ KİRİŞ YÜKLERİ HESABI 1 GİRİŞ Betonarme elemanlar üzerlerine gelen yükleri emniyetli bir şekilde diğer elemanlara veya zemine aktarmak için tasarlanırlar. Tasarımda boyutlandırma ve donatılandırma hesapları

Detaylı

TEST SORULARI Öğlen STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd

TEST SORULARI Öğlen STATİK-MUKAVEMET 1. YIL İÇİ SINAVI. Adı /Soyadı : No : İmza: Örnek Öğrenci No xaxxxxbcd STTİK-MUKVEMET 1. YI İÇİ SINVI dı /Soadı : No : İmza: 06-11-2013-Öğlen Örnek Öğrenci No 010030403 abcd Şekildeki kabloda minimum ve maksimum kablo kuvvetleri ile 1 ve 2 uzunluklarını bulunuz Kablo denklem

Detaylı

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ

BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ tasarım BĐSĐKLET FREN SĐSTEMĐNDE KABLO BAĞLANTI AÇISININ MEKANĐK VERĐME ETKĐSĐNĐN ĐNCELENMESĐ Nihat GEMALMAYAN Y. Doç. Dr., Gazi Üniversitesi, Makina Mühendisliği Bölümü Hüseyin ĐNCEÇAM Gazi Üniversitesi,

Detaylı

T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ T.C. TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEY FÖYÜ (TEK EKSENLİ EĞİLME DENEYİ) ÖĞRETİM ÜYESİ YRD.DOÇ.DR. AHMET TEMÜGAN DERS ASİSTANI ARŞ.GÖR. FATİH KAYA

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-2016 GÜZ YARIYILI Yrd. Doç. Dr. Uğur DAĞDEVİREN 2 3 Genel anlamda temel mühendisliği, yapısal yükleri zemine izin verilebilir

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: EĞİLME (BÜKÜLME) DAYANIMI TANIM: Eğilme dayanımı (bükülme dayanımı veya parçalanma modülü olarak da bilinir), bir malzemenin dış fiberinin çekme dayanımının ölçüsüdür. Bu özellik, silindirik

Detaylı

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ

MOMENT DAĞITMA HARDY CROSS YÖNTEMİ SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSİĞİ BÖÜMÜ Department of Civil Engineering İNM 208 YAPI STATIĞI II MOMENT DAĞITMA HARDY CROSS YÖNTEMİ Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı

Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı Öngerilmeli Beton Sürekli Kirişlerin Bilgisayarla Hesabı ÖZET Bu çalışmada öngerilmeli beton sürekli kirişlerin tasarımını Yük-Dengeleme yöntemiyle yapan bir bilgisayar programı geliştirilmiştir. Program

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ BÖLÜM II D ÖRNEK 1 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 1 İKİ KATLI YIĞMA OKUL BİNASININ DEĞERLENDİRMESİ VE GÜÇLENDİRİLMESİ 1.1. BİNANIN GENEL ÖZELLİKLERİ...II.1/

Detaylı

Uluslararası Yavuz Tüneli

Uluslararası Yavuz Tüneli Uluslararası Yavuz Tüneli (International Yavuz Tunnel) Tünele rüzgar kaynaklı etkiyen aerodinamik kuvvetler ve bu kuvvetlerin oluşturduğu kesme kuvveti ve moment diyagramları (Aerodinamic Forces Acting

Detaylı

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering

SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 212 YAPI STATİĞİ I STABİLİTE STATİKÇE BELİRSİZLİK KİNEMATİK BELİRSİZLİK Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr

Detaylı

MEKANİK ANABİLİMDALI MUKAVEMET-2 UYGULAMA PROBLEMLERİ SAYFA:1

MEKANİK ANABİLİMDALI MUKAVEMET-2 UYGULAMA PROBLEMLERİ SAYFA:1 SAYFA:1 1. Üç tane tahta plakanın birbirlerine yapıştırılmasıyla yapılmış olan bir AB kirişi; şekildeki yüklemelere maruzdur. Kirişe ait boyutlar şekilde verilmiştir. Kirişin n-n kesitindeki herbir birleşme

Detaylı

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ İMALAT DALI MAKİNE LABORATUVARI II DERSİ TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ DENEY RAPORU HAZIRLAYAN Osman OLUK 1030112411 1.Ö. 1.Grup DENEYİN AMACI Torna tezgahı ile işlemede, iş parçasına istenilen

Detaylı

1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler

1.1 Statik Aktif Durum için Coulomb Yönteminde Zemin Kamasına Etkiyen Kuvvetler TEORİ 1Yanal Toprak İtkisi 11 Aktif İtki Yöntemi 111 Coulomb Yöntemi 11 Rankine Yöntemi 1 Pasif İtki Yöntemi 11 Coulomb Yöntemi : 1 Rankine Yöntemi : 13 Sükunetteki İtki Danimarka Kodu 14 Dinamik Toprak

Detaylı

STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis

STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis STATİK DENGE VE KUVVET ANALİZİ Static Equilibrium and Force Analysis Bu bölümde durağan halde dengede olan rijit sistemlere etki eden kuvvetlerin hesaplanması görülecektir. In this chapter we learn the

Detaylı

Prof. Dr. İrfan KAYMAZ

Prof. Dr. İrfan KAYMAZ Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Kayış-kasnak mekanizmalarının türü Kayış türleri Meydana gelen kuvvetler Geometrik

Detaylı

BÖLÜM V. KİRİŞLERİN ve KOLONLARIN BETONARME HESABI. a-) 1.Normal katta 2-2 aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin. M x.

BÖLÜM V. KİRİŞLERİN ve KOLONLARIN BETONARME HESABI. a-) 1.Normal katta 2-2 aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin. M x. BÖLÜ V KİRİŞLERİN ve KOLONLARIN BETONARE HESABI a-) 1.Normal katta - aksı çerçevesinin betonarme hesabının yapılması ve çizimlerinin yapılması. Hesap yapılmayan x-x do rultusu için kolon momentleri: gy

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM MAK4061 BİLGİSAYAR DESTEKLİ TASARIM (Shell Mesh, Bearing Load,, Elastic Support, Tasarım Senaryosunda Link Value Kullanımı, Remote Load, Restraint/Reference Geometry) Shell Mesh ve Analiz: Kalınlığı az

Detaylı

TEMEL İNŞAATI TAŞIMA GÜCÜ

TEMEL İNŞAATI TAŞIMA GÜCÜ TEMEL İNŞAATI TAŞIMA GÜCÜ Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Tekil Temel tipleri Bir Tekil Temel Sistemi 3 Sığ Temeller 4 Sığ Temeller 5 Sığ Temeller 6 Sığ Temeller 7 Sığ

Detaylı

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir. ÇEKME DENEYİ Genel Bilgi Çekme deneyi, malzemelerin statik yük altındaki mekanik özelliklerini belirlemek ve malzemelerin özelliklerine göre sınıflandırılmasını sağlamak amacıyla uygulanan, mühendislik

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

GEZER KREN KÖPRÜSÜ KONSTRÜKSİYONU VE HESABI

GEZER KREN KÖPRÜSÜ KONSTRÜKSİYONU VE HESABI GEZER KRE KÖPRÜSÜ KOSTRÜKSİYOU VE HESABI 1. GEZER KÖPRÜLÜ KRE Gezer köprülü krenler, yüksekte bulunan raylar üzerinde hareket eden arabalı köprülerdir. Araba yükleri kaldırır veya indirir ve köprü üzerindeki

Detaylı

Yararlanılabilecek Bazı Kaynaklar

Yararlanılabilecek Bazı Kaynaklar 2 Yararlanılabilecek Bazı Kaynaklar 1. Yapı Statiği I-II Adnan ÇAKIROĞLU ve Enver ÇETMELİ 2. Çözümlü Örneklerle Yapı Statiği Hüsnü CAN 3. Taşıyıcı Sistemler ve Yapı Statiği İsmail İlhan SUNGUR 4. Yapı

Detaylı

Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması

Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması 1 Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması Arş. Gör. Murat Günaydın 1 Doç. Dr. Süleyman Adanur 2 Doç. Dr. Ahmet Can Altunışık 2 Doç. Dr. Mehmet Akköse 2 1-Gümüşhane

Detaylı

PERÇİN BAĞLANTILARI (Riveted Joints)

PERÇİN BAĞLANTILARI (Riveted Joints) PERÇİ BAĞLATILARI (Riveted Joints) ÖREK 9.1 Şeklide gösterildiği gibi, metal bir levhaya 16 k luk bir yük uygulanmaktadır. Levha adet cıvata ile destek plakasına bağlandığına göre, a)her bir cıvata üzerinde

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

ULUDAĞ ÜNĐVERSĐTESĐ MÜHENDĐSLĐK-MĐMARLIK FAKÜLTESĐ MAKĐNA MÜHENDĐSLĐĞĐ BÖLÜMÜ GENEL MAKĐNE LABORATUARI

ULUDAĞ ÜNĐVERSĐTESĐ MÜHENDĐSLĐK-MĐMARLIK FAKÜLTESĐ MAKĐNA MÜHENDĐSLĐĞĐ BÖLÜMÜ GENEL MAKĐNE LABORATUARI UUDAĞ ÜNĐVRSĐTSĐ MÜNDĐSĐK-MĐMARIK FAKÜTSĐ MAKĐNA MÜNDĐSĐĞĐ BÖÜMÜ GN MAKĐN ABORATUARI STRAĐN GAUG (UZAMA ÖÇR YARDIMI Đ GRĐM ÖÇÜMSĐ DNY GRUBU: ÖĞRNCĐ NO, AD -SOYAD: TSĐM TARĐĐ: DNYĐ YAPTIRAN ÖĞRTĐM MANI:

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

ÖRNEK 18 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ

ÖRNEK 18 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ 4 KATLI BETONARME PANSİYON BİNASININ GÜÇLENDİRİLMESİ ve DOĞRUSAL ELASTİK OLMAYAN YÖNTEM İLE DEĞERLENDİRİLMESİ 18.1. PERFORMANS DÜZEYİNİN BELİRLENMESİ... 18/1 18.2. GÜÇLENDİRİLEN BİNANIN ÖZELLİKLERİ VE

Detaylı

Şekil 1.17. Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt

Şekil 1.17. Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt Şekilde gösterilen eleman; 1) F = 188 kn; ) F = 36 96 kn; 3) F = (-5 +160) kn; 4) F=± 10 kn kuvvetlerle çekmeye zorlanmaktadır. Boyutları D = 40 mm, d = 35 mm, r = 7 mm; malzemesi C 45 ıslah çeliği olan

Detaylı

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Rasim Temür İstanbul Üniversitesi İnşaat Mühendisliği Anabilim Dalı Sunum Planı Giriş Rijit Döşeme

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAK 2029 Dersi Veren Birim: Makina Mühendisliği Dersin Türkçe Adı: MUKAVEMET Dersin Orjinal Adı: MUKAVEMET Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAK 09 Dersin Öğretim Dili:

Detaylı

Köprü Açıklığının Tanımı

Köprü Açıklığının Tanımı Alp Caner 1 Köprü Açıklığının Tanımı Tasarım açıklığı Kiriş uzunluğu Köprü döşeme genişliği = 30 metre (basit açıklık) = 31 metre = 12 metre Tablo 2.5.2.6.3-1 e göre öngerilmeli hazır I-kirişli üst yapının

Detaylı

ORTA GERİLİM ENERJİ NAKİL HATTI PROJE ÇİZİMLERİNİN BİLGİSAYAR PROGRAMI İLE GERÇEKLEŞTİRİLMESİ

ORTA GERİLİM ENERJİ NAKİL HATTI PROJE ÇİZİMLERİNİN BİLGİSAYAR PROGRAMI İLE GERÇEKLEŞTİRİLMESİ ORTA GERİLİM ENERJİ NAKİL HATTI PROJE ÇİZİMLERİNİN BİLGİSAYAR PROGRAMI İLE GERÇEKLEŞTİRİLMESİ Musa AYDIN 1 Hüseyin TURHAN 1 e-posta: aydin@seluk.edu.tr 1, Elektrik Elektronik Mühendisliği Bölümü Mühendislik-Mimarlık

Detaylı

Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden erişebilirsiniz.

Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden erişebilirsiniz. Kitap Adı : Betonarme Çözümlü Örnekler Yazarı : Murat BİKÇE (Öğretim Üyesi) Baskı Yılı : 2010 Sayfa Sayısı : 256 Kitabın satışı yapılmamaktadır. Betonarme Çözümlü Örnekler adlı kitaba üniversite kütüphanesinden

Detaylı

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ (Bölüm-3) KÖPRÜLER

İNŞAAT MÜHENDİSLİĞİNE GİRİŞ (Bölüm-3) KÖPRÜLER İNŞAAT MÜHENDİSLİĞİNE GİRİŞ (Bölüm-3) KÖPRÜLER Yrd. Doç. Dr. Banu Yağcı Kaynaklar G. Kıymaz, İstanbul Kültür Üniversitesi İnşaat Mühendisliği Bölümü Ders Notları, 2009 http://web.sakarya.edu.tr/~cacur/ins/resim/kopruler.htm

Detaylı

Temel sistemi seçimi;

Temel sistemi seçimi; 1 2 Temel sistemi seçimi; Tekil temellerden ve tek yönlü sürekli temellerden olabildiğince uzak durulmalıdır. Zorunlu hallerde ise tekil temellerde her iki doğrultuda rijit ve aktif bağ kirişleri kullanılmalıdır.

Detaylı

ÇELİK YAPILARDA BİRLEŞİM ARAÇLARI

ÇELİK YAPILARDA BİRLEŞİM ARAÇLARI ÇELİK YAPILARDA BİRLEŞİM ARAÇLARI Çelik yapılarda kullanılan birleşim araçları; 1. Bulon ( cıvata) 2. Kaynak 3. Perçin Öğr. Gör. Mustafa EFİLOĞLU 1 KAYNAKLAR Aynı yada benzer alaşımlı metallerin yüksek

Detaylı

ihmal edilmeyecektir.

ihmal edilmeyecektir. q h q q h h q q q y z L 2 x L 1 L 1 L 2 Kolon Perde y x L 1 L 1 L 1 = 6.0 m L 2 = 4.0 m h= 3.0 m q= 50 kn (deprem) tüm kirişler üzerinde 8 kn/m lik düzgün yayılı yük (ölü), tüm döşemeler üzerinde 3 kn/m

Detaylı

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi

Fotoğraf Albümü. Zeliha Kuyumcu. Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi Mesnetlerinden Farklı Yer Hareketlerine Maruz Kablolu Köprülerin Stokastik Analizi Fotoğraf Albümü Araş. Gör. Zeliha TONYALI* Doç. Dr. Şevket ATEŞ Doç. Dr. Süleyman ADANUR Zeliha Kuyumcu Çalışmanın Amacı:

Detaylı

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd

DÜZLEM KAFES SİSTEMLER. Copyright 2010 Pearson Education South Asia Pte Ltd Copyright 2010 Pearson Education South Asia Pte Ltd Aynı düzlem içinde birbirlerine uç noktalarından bağlanarak bir rijid yapı oluşturan çubuklar topluluğuna düzlem kafes sistemi denir. Bir kafes sistemi,

Detaylı

ÖLÜM 3 DENGE, İR KUVVETİN MOMENTİ 3.1 ir Kuvvetin Momenti elirli bir doğrultu ve şiddete sahip bir kuvvetin, bir cisim üzerine etkisi, kuvvetin etki çizgisine bağlıdır. Şekil.3.1 de F 1 kuvveti cismi sağa

Detaylı

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

MATERIALS. Değiştirme Dönüşümleri. (Kitapta Bölüm 7) Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf 00 The McGraw-Hill Companies, Inc. All rights reserved. Third E CHAPTER BÖLÜM 8 Gerilme MECHANICS MUKAVEMET OF II MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt

Detaylı

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul Prefabrik Yapılar Uygulama-1 Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul 2010 Sunuma Genel Bir Bakış 1. Taşıyıcı Sistem Hakkında Kısa Bilgi 1.1 Sistem Şeması 1.2 Sistem Detayları ve Taşıyıcı Sistem

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 6- Risk Tespit Uygulaması: Yığma Bina

RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR. 6- Risk Tespit Uygulaması: Yığma Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR 6- Risk Tespit Uygulaması: Yığma Bina RİSKLİ YAPILARIN TESPİT EDİLMESİNE İLİŞKİN ESASLAR BİRİNCİ AŞAMA DEĞERLENDİRME YÖNTEMİ BİNANIN ÖZELLİKLERİ Binanın

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu bölümde 1. Direnç a. Aerodinamik b. Dinamik, yuvarlanma c. Yokuş 2. Tekerlek tahrik

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

Omurtag M.H. Statik 5. Baskı 1998, 2003, 2007, 2009, 2012 ISBN 978 975 511 477 4 Kod No. Y.0029

Omurtag M.H. Statik 5. Baskı 1998, 2003, 2007, 2009, 2012 ISBN 978 975 511 477 4 Kod No. Y.0029 Omurtag M.H. Statik 5. Baskı 1998, 2003, 2007, 2009, 2012 ISBN 978 975 511 477 4 Kod No. Y.0029 Bu kitabın her hakkı saklıdır ve Türkiye de tüm yayın hakları BİRSEN BASIM, YAYIN DAĞITIM ve SANAYİ LİMİTED

Detaylı

SAKARYA ÜNİVERSİTESİ. MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 208 YAPI STATİĞİ 2 TESİR ÇİZGİLERİ

SAKARYA ÜNİVERSİTESİ. MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 208 YAPI STATİĞİ 2 TESİR ÇİZGİLERİ SAKARYA ÜNİVERSİTESİ MF İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ Department of Civil Engineering İNM 208 YAPI STATİĞİ 2 TESİR ÇİZGİLERİ Y.DOÇ.DR. MUSTAFA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi, İnşaat Mühendisliği

Detaylı

INM 308 Zemin Mekaniği

INM 308 Zemin Mekaniği Hafta_3 INM 308 Zemin Mekaniği Zeminlerde Kayma Direnci Kavramı, Yenilme Teorileri Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com www.inankeskin.com ZEMİN MEKANİĞİ Haftalık Konular

Detaylı

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı Dersin Adı : Yapı Mühendisliğinde Bilgisayar Uygulamaları Koordinatörü : Doç.Dr.Bilge DORAN Öğretim Üyeleri/Elemanları: Dr. Sema NOYAN ALACALI,

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI STATİĞİ-I. M. Akköse, Ş. Ateş, S. Adanur

KARADENİZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI STATİĞİ-I. M. Akköse, Ş. Ateş, S. Adanur KARADENİZ TEKNİK ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI STATİĞİ-I M. Akköse, Ş. Ateş, S. Adanur 1 KAYNAKLAR 1- Çakıroğlu A., Çetmeli E., Yapı Statiği, Cilt I, Onuncu Baskı, Beta Basım Yayım Dağıtım

Detaylı

AERODİNAMİK KUVVETLER

AERODİNAMİK KUVVETLER AERODİNAMİK KUVVETLER Prof.Dr. Mustafa Cavcar Anadolu Üniversitesi, Sivil Havacılık Yüksekokulu, 26470 Eskişehir Bir uçak üzerinde meydana gelen aerodinamik kuvvetlerin bileşkesi ( ); uçağın etrafından

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı