Đçten Yanmalı Motor Tasarımı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Đçten Yanmalı Motor Tasarımı"

Transkript

1 1-Tasarımda kıyas yapılacak motor seçimi 2- Sayfa 86 dan 99 a kadar ısıl analiz yapılacak Uygulama-1 Motor hacmi 1298 cc 1000 rpm Sıkıstırma oranı (ε) rpm Ne 64 kw/6000 rpm Uygulanacak Motor 3000 rpm Mt 90 Nm/4200 rpm Devirleri 4200 rpm Silindir Çapı 72.0 mm 6000rpm Strok 79.7 mm 7000 rpm α (alfa): sayfa 88 deki şekil 4.1 den devir sayısına bağlı okunacak. K (sabit sayı): sayfa 16 da anlatılıyor. K = Tr : art gaz sıcaklığı sayfa 88 deki şekil 4.1 den devir sayısına bağlı okunacak. Pr N = ( )P o sayfa 50 de Nominal ( maksimum güç) devir için T N :giriş havası sıcaklık artışı sayfa 51 de 0 20 o C ω in : akış hızı m/s (Yüksek devirde yüksek değer alır, düşük devirde düşük değer alır- ortak değerde alınabilir.) Nominal : maksimum güç devri için β 2 +ξ in : Emme manifoldu kayıp katsayısı ( ) arası değer alır. p a : basınç kaybı sayfa 52 de limitleri var ( )Po, Po = 0.1 Mpa ϕ ch : Doldurma katsayısı sayfa 88 de şekil 4.1 den devir sayısına bağlı okunacak. ϕ s : süpürme katsayısı, doğal emişli motorlarda ϕ s =1 n 1 : sıkıştırma politropik üssü, n 1 = (k ) (k ) sayfa 57de k 1 : sayfa 56 da şekil 3.4 den okunacak. Nominal : maksimum güç devri için Sıkıştırma oranından yukarı bir dikme çık, sıcaklık çizgisi ile çakıştır ve k 1 eksenine birleştir, o nokta k 1 değeri k 1 ε :sıkıştırma oranı

2 P c = arası değer alır, sayfa 57 de yer alır. ξ z : yanma sonucu kayıp katsayısı sayfa 88 den şekil 4.1 den devir sayısına bağlı okunacak. t z : hesaplanacak P za = 0.85 P z Kayıp katsayısı λ : Basınç oranı sayfa 62. n 2 : genişleme politropik üssü, n 2 = sayfa 67de k 2 : sayfa 65 da şekil 3.8 den okunacak. α Sıkıştırma oranından yukarı bir dikme çık, sıcaklık çizgisine doğru dik çiz, sıcaklık eğrisi boyunca ilerle α ile çakıştır ve k 2 eksenine birleştir, o nokta k 2 değeri k 2 ε :sıkıştırma oranı T r ( art gaz sıcaklığı) sayfa 97 de formül ile bulunacak, ilk kabul edilen değer ile karşılaştırılacak ve formül ile bulunan değer ile hata oranı % 1.7 den küçük olmacak. Aksi durumda kabul edilen değerlerde oynama yapılarak bu hata oranına yaklaşılacak. ϕ r : 0.96 (diagram yuvarlatma kayıp katsayısı ) kabul edilecek Toplam silindir hacmi hesaplanacak ve örnek motor hacmi ile karşılaştırılacak. Nominal (maksimum güç devri) devir için motor gücü hesaplanacak.

3 Uygulama-2 2- Max güç devir için Đndikatör diagramı çizimi sayfa kişi çizecek 3- Max güç devir için piston yolu, piston hızı ve piston ivmesi grafikleri sayfa a. 1 kişi max devir için piston yolunun, 1 kişi max devir için piston hızının, 1 kişi max devir için piston ivmesinin grafigini çizecek. (w = π.n / 30, R = H/2 ( strok boyu/ 2), λ = R/ Lcr) λ= R/Lcr R: Krank yarıcapı ( Strok/2, H/2) Lcr: Biyel kucuk başı merkezi ile büyük başı merkezi arası uzaklık r : Emme supapı açılma avansı o KrmA üst ölü noktadan önce. P ÜÖN z AÖN a : Emme supapı kapanma gecikmesi o KrmA alt ölü noktadan sonra. a : Egzoz supapı kapanma gecikmesi 10- Pz a = 0.85 Pz 50 o KrmA üst ölü noktadan sonra. z a φ 8-12 o b : Egzoz supapı açılma avansı o KrmA alt ölü noktadan önce. c : Ateşleme avansı o KrmA üst ölü noktadan önce. (normal şart) ƒ : Yanmanın başladığı an. ƒ= c + φ 1 o KrmA üst ölü noktadan önce φ 1 : Ateşleme gecikmesi 5-18 o KrmA ƒ b c a O a A V h Strok boyu kadar olacak V c r B AB: Strok boyu kadar olacak M s : 1mm =1mm skala (V ekseni) M p : 1mm = 0.05 Mpa skala ( P ekseni) P i = F.M p /AB (sayfa 101) indike basınç V F: Diagram içinde kalan alan (sayılacak) V a Toplam hacmi

4 Uygulama-3 4- Tüm devirler için ısıl denge hesapları yapılacak. Sayfa kişi kendi devri için değerleri hesaplayacak, 1 kişi toplu grafiği oluşturacak. 5- Tüm devirler için hız karakteristik egrileri çizilecek. Sayfa ( 4 eğri aynı şekil üstünde ) 5 kişi kendi devri için değerleri hesaplayacak, 1 kişi toplu grafiği oluşturacak. 6- Krank mekanizmasının kinematik dinamik analizi yapılacak. Sayfa Açılmış indikatör diagramı çizilecek. Krank mekanizmasının parçalarının ağırlıkları m p : Piston malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m p : Piston kütlesi ağırlığı (kg) m p = m p x F p, F p : piston kesit alanı. m cr : Biyel malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m cr : Biyel kütlesi ağırlığı (kg) m cr = m cr x F p m c : Dengelenmemiş kütle malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m c : : Dengelenmemiş kütle ağırlığı (kg) m c = m c x F p m crp : Biyel kolunun piston tarafında kalan kısmının ağırlığı m crp = ( ) m cr, syf 139 m crc : Biyel kolunun krank tarafında kalan kısmının ağırlığı m crc = ( ) m cr, syf Krank milin etkiyen kuvvetlerin hesabı yapılacak ve grafikler çizilecek. Atalet kuvvetleri hesaplanacak Pj P: toplam kuvvet hesaplanacak grafiği çizilecek P = P g +P j kn ( kuvvet olarak), P g = (p g -p o ).F p, p g = (p g -p o ) Mpa p= p g + p j MPa (basınç olarak), p j =P j /F p Normal kuvvet N hesaplanacak grafiği çizilecek. Biyel kolu boyunca kuvvet S hesaplanacak grafiği çizilecek. S kuvvetinin krank milinde olusturduğu kuvvetler hesaplanacak. K kuvveti hesaplanacak grafiği çizilecek.

5 T kuvveti hesaplanacak grafiği çizilecek. T m ortalama kuvveti hesaplanacak. T m = ( Σƒ 1 -Σƒ 2 ) M p /OB Σƒ 1 : T eğrisinin x ekseni üstünde kalan alanı mm 2 Σƒ 2 : T eğrisinin x ekseni altında kalan alanı mm 2 M p : Kuvvet skalası MN/mm OB: Diagramın uzunluğu M tc : Bir silindirin torku = T.R ( MN m) ( arası tüm silindirler için ayrı ayrı) 1.silindir o 3.silindir o 4.silindir o 2.silindir o M tm : Ortalama tork : ( F 1 -F 2 )*M M / OA F 1 : tork eğrisinde x ekseni üzerinde kalan alan F 2 : tork eğrisinde x ekseni altında kalan alan M t : Tork skalası MN/mm OA: Diagramın uzunluğu

6 1-Tasarımda kıyas yapılacak motor seçimi 3- Sayfa 86 dan 99 a kadar ısıl analiz yapılacak Uygulama-1 Motor hacmi 1299 cc 1000 rpm Sıkıstırma oranı (ε) rpm Ne 63 kw/6000 rpm Uygulanacak Motor 3000 rpm Mt 122 Nm / 4000 rpm Devirleri 4000 rpm Silindir Çapı 75.0 mm 6000rpm Strok 73.5 mm 7000 rpm α (alfa): sayfa 88 deki şekil 4.1 den devir sayısına bağlı okunacak. K (sabit sayı): sayfa 16 da anlatılıyor. K = Tr : art gaz sıcaklığı sayfa 88 deki şekil 4.1 den devir sayısına bağlı okunacak. Pr N = ( )P o sayfa 50 de Nominal ( maksimum güç) devir için T N :giriş havası sıcaklık artışı sayfa 51 de 0 20 o C ω in : akış hızı m/s (Yüksek devirde yüksek değer alır, düşük devirde düşük değer alır- ortak değerde alınabilir.) Nominal : maksimum güç devri için β 2 +ξ in : Emme manifoldu kayıp katsayısı ( ) arası değer alır. p a : basınç kaybı sayfa 52 de limitleri var ( )Po, Po = 0.1 Mpa ϕ ch : Doldurma katsayısı sayfa 88 de şekil 4.1 den devir sayısına bağlı okunacak. ϕ s : süpürme katsayısı, doğal emişli motorlarda ϕ s =1 n 1 : sıkıştırma politropik üssü, n 1 = (k ) (k ) sayfa 57de k 1 : sayfa 56 da şekil 3.4 den okunacak. Nominal : maksimum güç devri için Sıkıştırma oranından yukarı bir dikme çık, sıcaklık çizgisi ile çakıştır ve k 1 eksenine birleştir, o nokta k 1 değeri k 1 ε :sıkıştırma oranı

7 P c = arası değer alır, sayfa 57 de yer alır. ξ z : yanma sonucu kayıp katsayısı sayfa 88 den şekil 4.1 den devir sayısına bağlı okunacak. t z : hesaplanacak P za = 0.85 P z Kayıp katsayısı λ : Basınç oranı sayfa 62. n 2 : genişleme politropik üssü, n 2 = sayfa 67de k 2 : sayfa 65 da şekil 3.8 den okunacak. α Sıkıştırma oranından yukarı bir dikme çık, sıcaklık çizgisine doğru dik çiz, sıcaklık eğrisi boyunca ilerle α ile çakıştır ve k 2 eksenine birleştir, o nokta k 2 değeri k 2 ε :sıkıştırma oranı T r ( art gaz sıcaklığı) sayfa 97 de formül ile bulunacak, ilk kabul edilen değer ile karşılaştırılacak ve formül ile bulunan değer ile hata oranı % 1.7 den küçük olmacak. Aksi durumda kabul edilen değerlerde oynama yapılarak bu hata oranına yaklaşılacak. ϕ r : 0.96 (diagram yuvarlatma kayıp katsayısı ) kabul edilecek Toplam silindir hacmi hesaplanacak ve örnek motor hacmi ile karşılaştırılacak. Nominal (maksimum güç devri) devir için motor gücü hesaplanacak.

8 Uygulama-2 8- Max güç devir için Đndikatör diagramı çizimi sayfa kişi çizecek 9- Max güç devir için piston yolu, piston hızı ve piston ivmesi grafikleri sayfa a. 1 kişi max devir için piston yolunun, 1 kişi max devir için piston hızının, 1 kişi max devir için piston ivmesinin grafigini çizecek. (w = π.n / 30, R = H/2 ( strok boyu/ 2), λ = R/ Lcr) λ= R/Lcr R: Krank yarıcapı ( Strok/2, H/2) Lcr: Biyel kucuk başı merkezi ile büyük başı merkezi arası uzaklık r : Emme supapı açılma avansı o KrmA üst ölü noktadan önce. P ÜÖN z AÖN a : Emme supapı kapanma gecikmesi o KrmA alt ölü noktadan sonra. a : Egzoz supapı kapanma gecikmesi 10- Pz a = 0.85 Pz 50 o KrmA üst ölü noktadan sonra. z a φ 8-12 o b : Egzoz supapı açılma avansı o KrmA alt ölü noktadan önce. c : Ateşleme avansı o KrmA üst ölü noktadan önce. (normal şart) ƒ : Yanmanın başladığı an. ƒ= c + φ 1 o KrmA üst ölü noktadan önce φ 1 : Ateşleme gecikmesi 5-18 o KrmA ƒ b c a O a A V h Strok boyu kadar olacak V c r B AB: Strok boyu kadar olacak M s : 1mm =1mm skala (V ekseni) M p : 1mm = 0.05 Mpa skala ( P ekseni) P i = F.M p /AB (sayfa 101) indike basınç V F: Diagram içinde kalan alan (sayılacak) V a Toplam hacmi

9 Uygulama Tüm devirler için ısıl denge hesapları yapılacak. Sayfa kişi kendi devri için değerleri hesaplayacak, 1 kişi toplu grafiği oluşturacak. 11- Tüm devirler için hız karakteristik egrileri çizilecek. Sayfa ( 4 eğri aynı şekil üstünde ) 5 kişi kendi devri için değerleri hesaplayacak, 1 kişi toplu grafiği oluşturacak. 12- Krank mekanizmasının kinematik dinamik analizi yapılacak. Sayfa Açılmış indikatör diagramı çizilecek. Krank mekanizmasının parçalarının ağırlıkları m p : Piston malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m p : Piston kütlesi ağırlığı (kg) m p = m p x F p, F p : piston kesit alanı. m cr : Biyel malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m cr : Biyel kütlesi ağırlığı (kg) m cr = m cr x F p m c : Dengelenmemiş kütle malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m c : : Dengelenmemiş kütle ağırlığı (kg) m c = m c x F p m crp : Biyel kolunun piston tarafında kalan kısmının ağırlığı m crp = ( ) m cr, syf 139 m crc : Biyel kolunun krank tarafında kalan kısmının ağırlığı m crc = ( ) m cr, syf Krank milin etkiyen kuvvetlerin hesabı yapılacak ve grafikler çizilecek. Atalet kuvvetleri hesaplanacak Pj P: toplam kuvvet hesaplanacak grafiği çizilecek P = P g +P j kn ( kuvvet olarak), P g = (p g -p o ).F p, p g = (p g -p o ) Mpa p= p g + p j MPa (basınç olarak), p j =P j /F p Normal kuvvet N hesaplanacak grafiği çizilecek. Biyel kolu boyunca kuvvet S hesaplanacak grafiği çizilecek. S kuvvetinin krank milinde olusturduğu kuvvetler hesaplanacak. K kuvveti hesaplanacak grafiği çizilecek.

10 T kuvveti hesaplanacak grafiği çizilecek. T m ortalama kuvveti hesaplanacak. T m = ( Σƒ 1 -Σƒ 2 ) M p /OB Σƒ 1 : T eğrisinin x ekseni üstünde kalan alanı mm 2 Σƒ 2 : T eğrisinin x ekseni altında kalan alanı mm 2 M p : Kuvvet skalası MN/mm OB: Diagramın uzunluğu M tc : Bir silindirin torku = T.R ( MN m) ( arası tüm silindirler için ayrı ayrı) 1.silindir o 3.silindir o 4.silindir o 2.silindir o M tm : Ortalama tork : ( F 1 -F 2 )*M M / OA F 1 : tork eğrisinde x ekseni üzerinde kalan alan F 2 : tork eğrisinde x ekseni altında kalan alan M t : Tork skalası MN/mm OA: Diagramın uzunluğu

11 1-Tasarımda kıyas yapılacak motor seçimi 4- Sayfa 86 dan 99 a kadar ısıl analiz yapılacak Uygulama-1 Motor hacmi 1497 cc 1000 rpm Sıkıstırma oranı (ε) rpm Ne 80 kw/6000 rpm Uygulanacak Motor 3000 rpm Mt 142 Nm / 4200 rpm Devirleri 4200 rpm Silindir Çapı 75.0 mm 6000rpm Strok 84.7 mm 7000 rpm α (alfa): sayfa 88 deki şekil 4.1 den devir sayısına bağlı okunacak. K (sabit sayı): sayfa 16 da anlatılıyor. K = Tr : art gaz sıcaklığı sayfa 88 deki şekil 4.1 den devir sayısına bağlı okunacak. Pr N = ( )P o sayfa 50 de Nominal ( maksimum güç) devir için T N :giriş havası sıcaklık artışı sayfa 51 de 0 20 o C ω in : akış hızı m/s (Yüksek devirde yüksek değer alır, düşük devirde düşük değer alır- ortak değerde alınabilir.) Nominal : maksimum güç devri için β 2 +ξ in : Emme manifoldu kayıp katsayısı ( ) arası değer alır. p a : basınç kaybı sayfa 52 de limitleri var ( )Po, Po = 0.1 Mpa ϕ ch : Doldurma katsayısı sayfa 88 de şekil 4.1 den devir sayısına bağlı okunacak. ϕ s : süpürme katsayısı, doğal emişli motorlarda ϕ s =1 n 1 : sıkıştırma politropik üssü, n 1 = (k ) (k ) sayfa 57de k 1 : sayfa 56 da şekil 3.4 den okunacak. Nominal : maksimum güç devri için Sıkıştırma oranından yukarı bir dikme çık, sıcaklık çizgisi ile çakıştır ve k 1 eksenine birleştir, o nokta k 1 değeri k 1 ε :sıkıştırma oranı

12 P c = arası değer alır, sayfa 57 de yer alır. ξ z : yanma sonucu kayıp katsayısı sayfa 88 den şekil 4.1 den devir sayısına bağlı okunacak. t z : hesaplanacak P za = 0.85 P z Kayıp katsayısı λ : Basınç oranı sayfa 62. n 2 : genişleme politropik üssü, n 2 = sayfa 67de k 2 : sayfa 65 da şekil 3.8 den okunacak. α Sıkıştırma oranından yukarı bir dikme çık, sıcaklık çizgisine doğru dik çiz, sıcaklık eğrisi boyunca ilerle α ile çakıştır ve k 2 eksenine birleştir, o nokta k 2 değeri k 2 ε :sıkıştırma oranı T r ( art gaz sıcaklığı) sayfa 97 de formül ile bulunacak, ilk kabul edilen değer ile karşılaştırılacak ve formül ile bulunan değer ile hata oranı % 1.7 den küçük olmacak. Aksi durumda kabul edilen değerlerde oynama yapılarak bu hata oranına yaklaşılacak. ϕ r : 0.96 (diagram yuvarlatma kayıp katsayısı ) kabul edilecek Toplam silindir hacmi hesaplanacak ve örnek motor hacmi ile karşılaştırılacak. Nominal (maksimum güç devri) devir için motor gücü hesaplanacak.

13 Uygulama Max güç devir için Đndikatör diagramı çizimi sayfa kişi çizecek 15- Max güç devir için piston yolu, piston hızı ve piston ivmesi grafikleri sayfa a. 1 kişi max devir için piston yolunun, 1 kişi max devir için piston hızının, 1 kişi max devir için piston ivmesinin grafigini çizecek. (w = π.n / 30, R = H/2 ( strok boyu/ 2), λ = R/ Lcr) λ= R/Lcr R: Krank yarıcapı ( Strok/2, H/2) Lcr: Biyel kucuk başı merkezi ile büyük başı merkezi arası uzaklık r : Emme supapı açılma avansı o KrmA üst ölü noktadan önce. P ÜÖN z AÖN a : Emme supapı kapanma gecikmesi o KrmA alt ölü noktadan sonra. a : Egzoz supapı kapanma gecikmesi 10- Pz a = 0.85 Pz 50 o KrmA üst ölü noktadan sonra. z a φ 8-12 o b : Egzoz supapı açılma avansı o KrmA alt ölü noktadan önce. c : Ateşleme avansı o KrmA üst ölü noktadan önce. (normal şart) ƒ : Yanmanın başladığı an. ƒ= c + φ 1 o KrmA üst ölü noktadan önce φ 1 : Ateşleme gecikmesi 5-18 o KrmA ƒ b c a O a A V h Strok boyu kadar olacak V c r B AB: Strok boyu kadar olacak M s : 1mm =1mm skala (V ekseni) M p : 1mm = 0.05 Mpa skala ( P ekseni) P i = F.M p /AB (sayfa 101) indike basınç V F: Diagram içinde kalan alan (sayılacak) V a Toplam hacmi

14 Uygulama Tüm devirler için ısıl denge hesapları yapılacak. Sayfa kişi kendi devri için değerleri hesaplayacak, 1 kişi toplu grafiği oluşturacak. 17- Tüm devirler için hız karakteristik egrileri çizilecek. Sayfa ( 4 eğri aynı şekil üstünde ) 5 kişi kendi devri için değerleri hesaplayacak, 1 kişi toplu grafiği oluşturacak. 18- Krank mekanizmasının kinematik dinamik analizi yapılacak. Sayfa Açılmış indikatör diagramı çizilecek. Krank mekanizmasının parçalarının ağırlıkları m p : Piston malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m p : Piston kütlesi ağırlığı (kg) m p = m p x F p, F p : piston kesit alanı. m cr : Biyel malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m cr : Biyel kütlesi ağırlığı (kg) m cr = m cr x F p m c : Dengelenmemiş kütle malzemesi birim ağırlığı ( kg/m 2, g/cm 2 ), kg/m 2 aralığında bir değer kabul edilecek. Sayfa 140 tablo 7.1 m c : : Dengelenmemiş kütle ağırlığı (kg) m c = m c x F p m crp : Biyel kolunun piston tarafında kalan kısmının ağırlığı m crp = ( ) m cr, syf 139 m crc : Biyel kolunun krank tarafında kalan kısmının ağırlığı m crc = ( ) m cr, syf Krank milin etkiyen kuvvetlerin hesabı yapılacak ve grafikler çizilecek. Atalet kuvvetleri hesaplanacak Pj P: toplam kuvvet hesaplanacak grafiği çizilecek P = P g +P j kn ( kuvvet olarak), P g = (p g -p o ).F p, p g = (p g -p o ) Mpa p= p g + p j MPa (basınç olarak), p j =P j /F p Normal kuvvet N hesaplanacak grafiği çizilecek. Biyel kolu boyunca kuvvet S hesaplanacak grafiği çizilecek. S kuvvetinin krank milinde olusturduğu kuvvetler hesaplanacak.

15 K kuvveti hesaplanacak grafiği çizilecek. T kuvveti hesaplanacak grafiği çizilecek. T m ortalama kuvveti hesaplanacak. T m = ( Σƒ 1 -Σƒ 2 ) M p /OB Σƒ 1 : T eğrisinin x ekseni üstünde kalan alanı mm 2 Σƒ 2 : T eğrisinin x ekseni altında kalan alanı mm 2 M p : Kuvvet skalası MN/mm OB: Diagramın uzunluğu M tc : Bir silindirin torku = T.R ( MN m) ( arası tüm silindirler için ayrı ayrı) 1.silindir o 3.silindir o 4.silindir o 2.silindir o M tm : Ortalama tork : ( F 1 -F 2 )*M M / OA F 1 : tork eğrisinde x ekseni üzerinde kalan alan F 2 : tork eğrisinde x ekseni altında kalan alan M t : Tork skalası MN/mm OA: Diagramın uzunluğu

MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ

MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ MOTORLAR-5 HAFTA GERÇEK MOTOR ÇEVRİMİ Yrd.Doç.Dr. Alp Tekin ERGENÇ GERÇEK MOTOR ÇEVRİMİ Gerçek motor çevrimi standart hava (teorik) çevriminden farklı olarak emme, sıkıştırma,tutuşma ve yanma, genişleme

Detaylı

İÇTEN YANMALI MOTORLAR 2. BÖLÜM EK DERS NOTLARI

İÇTEN YANMALI MOTORLAR 2. BÖLÜM EK DERS NOTLARI İÇTEN YANMALI MOTORLAR 2. BÖLÜM EK DERS NOTLARI 1.Kısmi Gaz Konumunda Çalışan Benzin (OTTO) Motoru Şekil 1. Kısmi gaz konumunda çalışan bir benzin motorunun ideal Otto çevrimi (6-6a-1-2-3-4-5-6) Dört zamanlı

Detaylı

Dört stroklu diesel motor

Dört stroklu diesel motor Dört stroklu diesel motor İki stroklu diesel motor 4-s benzinli motor İndikatör diyagramı 4-s diesel motor İndikatör diyagramı Çift etkili bir diesel motor Karşıt pistonlu bir diesel motor - 1 Karşıt pistonlu

Detaylı

Temel Motor Teknolojisi

Temel Motor Teknolojisi Temel Motor Teknolojisi İçerik Otomotiv Tarihçesi Otto Motorlarda 4 Zaman Krank Mili Kam Mili Lambda Vuruntu Motor Yerleşim Tipleri Güç ve Tork 2 Otomotiv Tarihçesi İlk Buharlı otomobil 1769.(Fransız Joseph

Detaylı

Motor kullanıcısı açısından seçimi etkileyen faktörler:

Motor kullanıcısı açısından seçimi etkileyen faktörler: Motor kullanıcısı açısından seçimi etkileyen aktörler: motor perormansı yakıt tüketimi ve kullanılan yakıtın iyatı motor gürültüsü ve hava kirliliği yaratan emisyonları motor maliyeti ve donanım masraları

Detaylı

İçten yanmalı motorlarda temel kavramlarının açıklanması Benzinli ve dizel motorların çalışma prensiplerinin anlatılması

İçten yanmalı motorlarda temel kavramlarının açıklanması Benzinli ve dizel motorların çalışma prensiplerinin anlatılması Sakarya 2010 İçten yanmalı motorlarda temel kavramlarının açıklanması Benzinli ve dizel motorların çalışma prensiplerinin anlatılması Temel Kavramlar Basınç; Birim yüzeye etki eden kuvvettir. Birimi :bar,atm,kg/cm2

Detaylı

DEN 322. Diesel Motor Karakteristikleri

DEN 322. Diesel Motor Karakteristikleri DEN 322 Diesel Motor Karakteristikleri Diesel motorlar Motor kullanıcısı açısından seçimi etkileyen aktörler: motor perormansı yakıt tüketimi ve kullanılan yakıtın iyatı motor gürültüsü ve hava kirliliği

Detaylı

5. BORU HATLARI VE BORU BOYUTLARI

5. BORU HATLARI VE BORU BOYUTLARI h 1 h f h 2 1 5. BORU HATLARI VE BORU BOYUTLARI (Ref. e_makaleleri) Sıvılar Bernoulli teoremine göre, bir akışkanın bir borudan akabilmesi için, aşağıdaki şekilde şematik olarak gösterildiği gibi, 1 noktasındaki

Detaylı

4 SİLİNDİR BENZİNLİ MOTOR COK-G.ENRJ.005

4 SİLİNDİR BENZİNLİ MOTOR COK-G.ENRJ.005 4 SİLİNDİR BENZİNLİ MOTOR COK-G.ENRJ.005 Teknik Açıklama Komple bir motor test standı olarak denet seti amaçlı tasarlanmıştır. Burada kullanılan motor kontrollü bir katalitik konvertör ile dört silindirli

Detaylı

Soru 5) Pistonun, silindir içersinde iki ölü nokta arasında yaptığı tek bir harekete ne denir? a) Çevrim b) Vakum c) Basma d) Zaman

Soru 5) Pistonun, silindir içersinde iki ölü nokta arasında yaptığı tek bir harekete ne denir? a) Çevrim b) Vakum c) Basma d) Zaman Soru 1) Pistonun silindir içersinde yön değiştirmek üzere bir an durakladığı yere ne ad verilir? a) Silindir başı b) Silindir eteği c) Ölü nokta d) Piston durağı Soru 4) Silindir hacmi aşağıdakilerden

Detaylı

İÇTEN YANMALI MOTORLARIN ÇALIŞMA PRENSİPLERİ DİZEL MOTORLARI

İÇTEN YANMALI MOTORLARIN ÇALIŞMA PRENSİPLERİ DİZEL MOTORLARI İÇTEN YANMALI MOTORLARIN ÇALIŞMA PRENSİPLERİ DİZEL MOTORLARI DİZEL MOTORLARI (Tarihçesi) İLK DİZEL MOTORU DİZEL MOTORLARI DÖRT ZAMANLI ÇEVRİM Çalışma prensibi Dizel motor, benzinli motorlardan farklı olarak

Detaylı

MOTOR KONSTRÜKSİYONU-3.HAFTA

MOTOR KONSTRÜKSİYONU-3.HAFTA MOTOR KONSTRÜKSİYONU-3.HAFTA Yrd.Doç.Dr. Alp Tekin ERGENÇ İçten Yanmalı Motor Hareketli Elemanları 1- Piston 2- Perno 3- Segman 4- Krank mili 5- Biyel 6- Kam mili 7- Supaplar Piston A-Görevi: Yanma odası

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

Bölüm 3 Motor Çalışma Koşullarının Emisyonlara Etkisi

Bölüm 3 Motor Çalışma Koşullarının Emisyonlara Etkisi Egzoz Gazları Emisyonu Prof.Dr. Cem Soruşbay Bölüm 3 Motor Çalışma Koşullarının Emisyonlara Etkisi İstanbul Teknik Üniversitesi Otomotiv Laboratuvarı İşletme Koşullarının Etkisi 1 Hava Fazlalık Katsayısı

Detaylı

Prof. Dr. Selim ÇETİNKAYA

Prof. Dr. Selim ÇETİNKAYA Prof. Dr. Selim ÇETİNKAYA Performans nedir? Performans nedir?... Performans: İcraat, başarı 1. Birinin veya bir şeyin görev veya çalışma biçimi; Klimaların soğutma performansları karşılaştırıldı."; Jetin

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ

YILDIZ TEKNİK ÜNİVERSİTESİ YILDIZ TEKNİK ÜNİVERSİTESİ Makine Fakültesi Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Akışkanlar Mekaniği Genel Laboratuvar Föyü Güz Dönemi Öğrencinin Adı Soyadı : No : Grup

Detaylı

BENZİN MOTORLARINDA TÜRBÜLANSLI YANMANIN TERMODİNAMİK MODELLENMESİ

BENZİN MOTORLARINDA TÜRBÜLANSLI YANMANIN TERMODİNAMİK MODELLENMESİ I EGE ENERJİ SEMPOZYUMU VE SERGİSİ Pamukkale Üniversitesi Mühendislik Fakültesi Denizli, Mayıs 2003 BENZİN MOTORLARINDA TÜRBÜLANSLI YANMANIN TERMODİNAMİK MODELLENMESİ Rafig MEHDİYEV, Cem SORUŞBAY ve Feridun

Detaylı

MAK-LAB007 AKIŞKAN YATAĞINDA AKIŞKANLAŞTIRMA DENEYİ

MAK-LAB007 AKIŞKAN YATAĞINDA AKIŞKANLAŞTIRMA DENEYİ MAK-LAB007 AKIŞKAN YATAĞINDA AKIŞKANLAŞTIRMA DENEYİ 1.GİRİŞ Deney tesisatı; içerisine bir ısıtıcı,bir basınç prizi ve manometre borusu yerleştirilmiş cam bir silindirden oluşmuştur. Ayrıca bu hazneden

Detaylı

SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ

SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ 5. Soğutma Şekline Göre Hava soğutmalı motortar: Bu motorlarda, silindir yüzeylerindeki ince metal kanatçıklar vasıtasıyla ısı transferi yüzey alanı artırılır. Motor krank milinden hareket alan bir fan

Detaylı

BURSA TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ. Yakıt Püskürtme Sistemleri Deneyi

BURSA TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ. Yakıt Püskürtme Sistemleri Deneyi BURSA TEKNİK ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVAR DERSİ Yakıt Püskürtme Sistemleri Deneyi Laboratuvar Tarihi: Laboratuvarı Yöneten: Laboratuvar Yeri: Laboratuvar Adı: Öğrencinin Adı-Soyadı

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

7. Krank Mili 8. Biyel Kolu 9. Pistonlar 10. Segmanlar 11. Kam Mili 12. Subaplar

7. Krank Mili 8. Biyel Kolu 9. Pistonlar 10. Segmanlar 11. Kam Mili 12. Subaplar Deney-1 1/6 DENEY 1 TEK SĐLĐNDĐRLĐ DĐZEL MOTORUNUN PERFORMANS PARAMETRELERĐNĐN BELĐRLENMESĐ Amaç :Motor parçaları ve motor yapısının incelenmesi. Tek Silindirli bir dizel motorunun performans parametrelerinin

Detaylı

Motorlu Taşıtlar Temel Eğitimi, Uygulama Çalışması DEÜ Mühendislik Fakültesi, Makine Mühendisliği Bölümü

Motorlu Taşıtlar Temel Eğitimi, Uygulama Çalışması DEÜ Mühendislik Fakültesi, Makine Mühendisliği Bölümü Problem 9: Arka akstan tahrik edilen bir aracın aşağıdaki teknik değerleri bilinmektedir : Toplam ağırlık G=8700 N Hava direnci katsayısı C W =0,445 Araç enine kesit alanı A=1,83 m 2 Lastik dinamik yarıçapı

Detaylı

MOTOR LAB. Deney Föyleri

MOTOR LAB. Deney Föyleri T.C. ZONGULDAK KARAELMAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MOTOR LAB. Deney Föyleri Hazırlayan: Motor I ve Motor II Deneyleri Hakkında; Deneylere Föyü olmadan gelenler alınmayacaktır!

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI DENEY FÖYÜ DENEY ADI MOTORLAR DENEYİ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI DENEY FÖYÜ DENEY ADI MOTORLAR DENEYİ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI DENEY FÖYÜ DENEY ADI MOTORLAR DENEYİ DERSİN ÖĞRETİM ÜYESİ PROF. DR. İSMAİL HAKKI AKÇAY DENEYİ YAPTIRAN

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI DENEY FÖYÜ DENEY ADI İÇTEN YANMALI MOTOR TEST DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMANI

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

İÇTEN YANMALI MOTORLARDA MOMENT, GÜÇ ve YAKIT SARFİYATI KARAKTERİSTİKLERİNİN BELİRLENMESİ

İÇTEN YANMALI MOTORLARDA MOMENT, GÜÇ ve YAKIT SARFİYATI KARAKTERİSTİKLERİNİN BELİRLENMESİ İÇTEN YANMALI MOTORLARDA MOMENT, GÜÇ ve YAKIT SARFİYATI KARAKTERİSTİKLERİNİN BELİRLENMESİ 1. Deneyin Amacı İçten yanmalı motorlarda moment, güç ve yakıt sarfiyatı karakteristiklerinin belirlenmesi deneyi,

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu bölümde 1. Direnç a. Aerodinamik b. Dinamik, yuvarlanma c. Yokuş 2. Tekerlek tahrik

Detaylı

MOTOR PERFORMANSI. Prof Dr. Selim Çetinkaya

MOTOR PERFORMANSI. Prof Dr. Selim Çetinkaya MOTOR PERFORMANSI Prof Dr. Selim Çetinkaya 1 Geometrik özellikler ÜÖN daki silindir hacmi V c Herhangi bir krank açısında pistonun üstündeki hacim: 2 D Vs Vc s 4 2 2 s = r (1 - Cos q) + L (1 - ) l r/l

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler Endüstiryel uygulamalarda en çok rastlanan yükleme tiplerinden birisi dairsel kesitli millere gelen burulma momentleridir. Burulma

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

ÇALIŞMA SORULARI 1) Yukarıdaki şekilde AB ve BC silindirik çubukları B noktasında birbirleriyle birleştirilmişlerdir, AB çubuğunun çapı 30 mm ve BC çubuğunun çapı ise 50 mm dir. Sisteme A ucunda 60 kn

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3 Enerji Kaynakları MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3 Enerji kaynakları Yakıtlar Doğa kuvvetleri Özel doğa kuvvetleri Yrd. Doç. Dr. Yüksel HACIOĞLU Katı Sıvı Gaz Odun Petrol Doğal Gaz Hidrolik Güneş Rüzgar

Detaylı

Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik

Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik SAKARYA 2010 Buji ile ateşlemeli motorlar için teorik çevrimin (Hava Standart OTTO çevrimi) Sıkıştırma ile ateşlemeli motorlar için teorik çevrimin (Dizel Teorik çevrimi) açıklanması Çevrim Prosesin başladığı

Detaylı

Bu Bölüm için Sınav Süresi : 30 dakika. Başarılar Dilerim. Yrd. Doç. Dr. Müh. Şenol ŞAHİN

Bu Bölüm için Sınav Süresi : 30 dakika. Başarılar Dilerim. Yrd. Doç. Dr. Müh. Şenol ŞAHİN KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makine Mühendisliği Bölümü ( 2. Öğrt. / A.Şbs. ) / Dinamik Dersi - Yılsonu Sınavı Soruları Her türlü yazılı ve basılı Kaynaklar Kapalı Bölümü -----------------------------------------------------------------------------------------------------------------------------

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir püskürtücü dirsek, 30 kg/s debisindeki suyu yatay bir borudan θ=45 açıyla yukarı doğru hızlandırarak

Detaylı

900*9.81*0.025*61.91 19521.5 Watt 0.70

900*9.81*0.025*61.91 19521.5 Watt 0.70 INS 61 Hidrolik İnşaat Müendisliği ölümü Hidrolik nabilim alı Uygulama 5 Soru 1 : Şekildeki sistemle aznesinden aznesine Q = 5 l/s, özgül kütlesi = 900 kg/m, kinematik viskozitesi =10 - m /s olan yağ akmaktadır.

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Bütünleme Sınavı Soru ve Çözümleri 20.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TE-605 SERİ PARALEL HAVA KOMPRESÖR EĞİTİM SETİ

T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TE-605 SERİ PARALEL HAVA KOMPRESÖR EĞİTİM SETİ T.C. BALIKESİR ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TE-65 SERİ PARALEL HAVA KOMPRESÖR EĞİTİM SETİ HAZIRLAYAN: EFKAN ERDOĞAN KONTROL EDEN: DOÇ. DR. HÜSEYİN BULGURCU BALIKESİR-1

Detaylı

UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Giriş

UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Giriş UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Giriş Hazırlayan Prof. Dr. Mustafa CAVCAR Giriş Uçuş Mekaniği Nedir? Uçuş mekaniği uçağa etkiyen kuvvetleri ve uçağın bu kuvvetler etkisindeki davranışlarını inceleyen

Detaylı

KUBOTA SÜPER MİNİ EKSKAVATÖR

KUBOTA SÜPER MİNİ EKSKAVATÖR KUBOTA SÜPER MİNİ EKSKAVATÖR Süper kompakt. Yüksek güvenilirlikte. Çalıştırması kolay. 1 tonun altında dünya çapında en iyi satan modelimiz, inanılmaz derecede verimli süper mini ekskavatör olarak geliştirilmiştir

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

C - 941CX. Yeni Nesil, Yüksek Performanslı Motorlu Testereler

C - 941CX. Yeni Nesil, Yüksek Performanslı Motorlu Testereler Yeni Nesil, Yüksek Performanslı Motorlu Testereler Güç, Performans ve Konforun Eşsiz Birlikteliği ÜST DÜZEY PERFORMANS Kendi sınıfı ürünler arasında yüksek verimi ve sanat niteliğindeki eşsiz tasarım çözümleri

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

Akreditasyon Sertifikası Eki (Sayfa 1/9) Akreditasyon Kapsamı

Akreditasyon Sertifikası Eki (Sayfa 1/9) Akreditasyon Kapsamı Akreditasyon Sertifikası Eki (Sayfa 1/9) Kalibrasyon Laboratuvarı Adresi : ÇİLEK MAH. 63125 SOK. NO : 14 / A AKDENİZ / MERSİN 33020 MERSİN/TÜRKİYE Tel : 0324 361 07 05 Faks : 0324 361 07 65 E-Posta : info@kalmer.com.tr

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 11 ELEKTRİK MOTOR TORKUNUN BELİRLENMESİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 11 ELEKTRİK MOTOR TORKUNUN BELİRLENMESİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 11 ELEKTRİK MOTOR TORKUNUN BELİRLENMESİ TEORİK BİLGİ: BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK

Detaylı

KST 8080 - MODÜLLER ENDO. Genel Görünüş. Redüktörlü Çıkış Alternatifleri. Shrink Disk Çıkış. Sipariş Kodu : Örnek : 1 3 www.endo.com.

KST 8080 - MODÜLLER ENDO. Genel Görünüş. Redüktörlü Çıkış Alternatifleri. Shrink Disk Çıkış. Sipariş Kodu : Örnek : 1 3 www.endo.com. Lineer Modüller olay Montaj Sessiz Çalışma Yüksek Hız ve Hassasiyet Uzun Strok lternatifi Yüksek Taşıma apasitesi Uzun Çalışma Ömrü ST 8080 Lineer Modül (Eksen) Triger ayışlı ST Yataklama : Raylı ızak

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

ÜÇ ÇUBUK MEKANİZMASI

ÜÇ ÇUBUK MEKANİZMASI ÜÇ ÇUBUK MEKNİZMSI o l min l, lmaks B l,, B o Doç. Dr. Cihan DEMİR Yıldız Teknik Üniversitesi Dört çubuk mekanizmalarının uygulama alanı çok geniş olmasına rağmen bu uygulamalar üç değişik gurupta toplanabilir.

Detaylı

Bosch ME 9.0 Motor İşletim Sistemi, Enjeksiyon ve Ateşlemeyi kontrol ediyor, 2 MB flash kapasitesi, EURO 4/ULEV Egzoz atığı standardı

Bosch ME 9.0 Motor İşletim Sistemi, Enjeksiyon ve Ateşlemeyi kontrol ediyor, 2 MB flash kapasitesi, EURO 4/ULEV Egzoz atığı standardı NEWS RELEASE FOCUS ST TEKNİK BİLGİLER MOTOR BİLGİLERİ Motor Tipi 2.5L 20 V DOHC Motor hacmi (cc) 2522 cm 3 Çap (mm) 83.0 Strok (mm) 93.2 Yakıt türü, oktan Kurşunsuz benzin, 98 ya da 95 (RON) Maks. güç

Detaylı

İKİ ZAMANLI BENZİNLİ BİR MOTORUN PERFORMANSININ BİLGİSAYAR SİMÜLASYONU YARDIMI İLE ANALİZİ GÖKSEL KAYA YÜKSEK LİSANS TEZİ MAKİNE EĞİTİMİ

İKİ ZAMANLI BENZİNLİ BİR MOTORUN PERFORMANSININ BİLGİSAYAR SİMÜLASYONU YARDIMI İLE ANALİZİ GÖKSEL KAYA YÜKSEK LİSANS TEZİ MAKİNE EĞİTİMİ İKİ ZAMANLI BENZİNLİ BİR MOTORUN PERFORMANSININ BİLGİSAYAR SİMÜLASYONU YARDIMI İLE ANALİZİ GÖKSEL KAYA YÜKSEK LİSANS TEZİ MAKİNE EĞİTİMİ GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 2010 ANKARA Göksel

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

İçindekiler YMR-A. Güce Yön Veren Yenilikçi Çözümler

İçindekiler YMR-A. Güce Yön Veren Yenilikçi Çözümler İçindekiler MR- 2 Güce ön Veren enilikçi Çözümler Hakkımızda MR- Kalite 3 Güce ön Veren enilikçi Çözümler Semboller ISO 1219-1 : Çift etkili hidrolik silindir Tek etkili yay geri dönüşlü hidrolik silindir

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

ÇOKYÖNLÜ BURULMALI HISTERITIK ENERJI SÖNÜMLEYICI (MDHR) Bina ve köprüleri deprem etkisine karşı koruyan bir mekanik histeretik damper

ÇOKYÖNLÜ BURULMALI HISTERITIK ENERJI SÖNÜMLEYICI (MDHR) Bina ve köprüleri deprem etkisine karşı koruyan bir mekanik histeretik damper ÇOKYÖNLÜ BURULMALI HISTERITIK ENERJI SÖNÜMLEYICI (MDHR) Bina ve köprüleri deprem etkisine karşı koruyan bir mekanik histeretik damper MDHR ODTÜ Mühendislik Bilimleri bünyesinde deprem enerjisini sönümlemek

Detaylı

GEZER KREN KÖPRÜSÜ KONSTRÜKSİYONU VE HESABI

GEZER KREN KÖPRÜSÜ KONSTRÜKSİYONU VE HESABI GEZER KRE KÖPRÜSÜ KOSTRÜKSİYOU VE HESABI 1. GEZER KÖPRÜLÜ KRE Gezer köprülü krenler, yüksekte bulunan raylar üzerinde hareket eden arabalı köprülerdir. Araba yükleri kaldırır veya indirir ve köprü üzerindeki

Detaylı

600MG Model Mercedes-Benz OM 926 LA (FAZ III A) Tip 4 zamanlı, turbo şarjlı, direk enjeksiyonlu, intercooler su soğutmalı dizel motor Silindir sayısı 6 Sıra Piston Çapı ve Stroku 106 mm x 136 mm Motor

Detaylı

ASİSTAN ARŞ. GÖR. GÜL DAYAN

ASİSTAN ARŞ. GÖR. GÜL DAYAN ASİSTAN ARŞ. GÖR. GÜL DAYAN VİSKOZİTE ÖLÇÜMÜ Viskozite, bir sıvının iç sürtünmesi olarak tanımlanır. Viskoziteyi etkileyen en önemli faktör sıcaklıktır. Sıcaklık arttıkça sıvıların viskoziteleri azalır.

Detaylı

TÜRKÇE OBD KODLARI TEKNĐK BĐLGĐLER TEMEL KAVRAMLAR VE MOTOR TEKNOLOJĐSĐ

TÜRKÇE OBD KODLARI TEKNĐK BĐLGĐLER TEMEL KAVRAMLAR VE MOTOR TEKNOLOJĐSĐ www.ototest.net TÜRKÇE OBD KODLARI TEKNĐK BĐLGĐLER TEMEL KAVRAMLAR VE MOTOR TEKNOLOJĐSĐ BASINÇ (P) Birim yüzeye etki eden kuvvettir. Birimi :bar,atm,kg/cm2 dır. 1 bar = 1 atm = 1.033 Kg/cm2 1 bar = 15

Detaylı

CMK-202 / CMT204 Hidrolik - Pnömatik. Prof. Dr. Rıza GÜRBÜZ

CMK-202 / CMT204 Hidrolik - Pnömatik. Prof. Dr. Rıza GÜRBÜZ CMK-202 / CMT204 Hidrolik - Pnömatik Prof. Dr. Rıza GÜRBÜZ Hafta 1 Hidrostatik ve hidrodinamikle ilgili temel kanunları kavrayabilme Çankırı Karatekin Üniversitesi - 2016 2 Bu Derste İşlenecek Konular

Detaylı

Şekil 1.17. Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt

Şekil 1.17. Çekmeye veya basmaya çalışan kademeli milin teorik çentik faktörü kt Şekilde gösterilen eleman; 1) F = 188 kn; ) F = 36 96 kn; 3) F = (-5 +160) kn; 4) F=± 10 kn kuvvetlerle çekmeye zorlanmaktadır. Boyutları D = 40 mm, d = 35 mm, r = 7 mm; malzemesi C 45 ıslah çeliği olan

Detaylı

21 Hp Dizel Marin Motor

21 Hp Dizel Marin Motor 21 Hp Dizel Marin Motor 3M78 Su soğutmalı, 4 zamanlı (mm) 78 x 78,4 Toplam Silindir Hamcı (L) 1,123 Max. Güç (Hp) 21 Hp Max Devir (R.P.M) 3,000 Egzost Su Soğutmalı- Paslanmaz Yakıt Cinsi Dizel Ağırlık

Detaylı

Ek bilgi Internet:.../elgl

Ek bilgi Internet:.../elgl Hava yatakları sayesinde hassas pozisyonlama ve doğrusallık Hava yataklarınınmanyetiköngerilmesiylefrenkilitleme fonksiyonu Tek eksende birden çok tașıma mümkündür Karșıt ve senkron hareketler mümkündür

Detaylı

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi VANTİLATÖR DENEYİ Deneyin amacı Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi Deneyde vantilatör çalışma prensibi, vantilatör karakteristiklerinin

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

Pompalar: Temel Kavramlar

Pompalar: Temel Kavramlar Pompalar: Temel Kavramlar Sunum Akışı 1. Genel Tanımlar 2. Tesisat ve Sistem 3. Tasarım 4. Çok Pompalı Sistemler 5. Problemler Tarihçe Santrifüj pompanın esas mucidi Fransız fizikçi DENIS PAPIN (1647-1714).

Detaylı

BURULMA DENEYİ 2. TANIMLAMALAR:

BURULMA DENEYİ 2. TANIMLAMALAR: BURULMA DENEYİ 1. DENEYİN AMACI: Burulma deneyi, malzemelerin kayma modülü (G) ve kayma akma gerilmesi ( A ) gibi özelliklerinin belirlenmesi amacıyla uygulanır. 2. TANIMLAMALAR: Kayma modülü: Kayma gerilmesi-kayma

Detaylı

Akreditasyon Sertifikası Eki (Sayfa 1/10) Akreditasyon Kapsamı

Akreditasyon Sertifikası Eki (Sayfa 1/10) Akreditasyon Kapsamı Akreditasyon Sertifikası Eki (Sayfa 1/10) Kalibrasyon Laboratuvarı Akreditasyon No: Adresi : Alınteri Bulvarı Gül 86 Toplu İşyerleri Sitesi No:1/51 Ostim ANKARA / TÜRKİYE Tel : 0312 386 25 86 Faks : 0312

Detaylı

MAKİNE VE MOTOR DERS NOTLARI 9.HAFTA

MAKİNE VE MOTOR DERS NOTLARI 9.HAFTA MAKİNE VE MOTOR DERS NOTLARI 9.HAFTA Hazırlayan: Öğr. Gör. Tuğberk ÖNAL MALATYA 2016 SUPAP SİSTEMLERİ 1. KÜLBÜTOR MEKANİZMASI Eksantrik milinden aldığı hareketle silindirlerde emme ve egzoz zamanlarının

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

MAKİNA BİLGİSİ / 2. KISIM ÖRNEK PROBLEMLER

MAKİNA BİLGİSİ / 2. KISIM ÖRNEK PROBLEMLER 1 BUHAR KAZANLARI ÖRNEK PROBLEM (BUHAR KAZANI): Bir buar kazanında alt ısıl değeri 12.5 MJ olan 157 kg odun yakılarak 20 bar basınçta saatte 5 ton su buarı üretiliyor. Kazan besleme suyu sıcaklığı 60 olduğuna

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

Terfi Hesapları Nasıl Yapılır? 30.04.2013

Terfi Hesapları Nasıl Yapılır? 30.04.2013 Terfi Hesapları Nasıl Yapılır? 30.04.2013 1. Hm, Monometrik Yüksekliği Hesapla Hm = GBK X + JxL + GB dir. Burada; Hm : Monometrik yükseklik (terfi basma yüksekliği), (m). GBK : Hat sonundaki deponun giriş

Detaylı

937 Motorlu Testere. Yeni Nesil, Yüksek Performanslı Motorlu Testereler.

937 Motorlu Testere. Yeni Nesil, Yüksek Performanslı Motorlu Testereler. Yeni Nesil, Yüksek Performanslı Motorlu Testereler Güç, Performans ve Konforun E şsiz Birlikteliği ÜST DÜZEY PERFORMANS Kendi s n f ürünler aras nda yüksek verimi ve sanat niteli ğindeki e şsiz tasar m

Detaylı

RENKLİ LCD EKRAN, MANUAL GUIDE 0i DİYALOG PROGRAMLAMA İLE

RENKLİ LCD EKRAN, MANUAL GUIDE 0i DİYALOG PROGRAMLAMA İLE DİK İŞLEME MERKEZİ MCV-2418 2418 FANUC 0i-MC KONTROL ÜNİTESİ RENKLİ LCD EKRAN, MANUAL GUIDE 0i DİYALOG PROGRAMLAMA İLE KUTU KIZAK SİSTEMİ (DÖKÜM-DÖKÜME+TURCITE KAPLAMA) 760 x 360 İŞ MASASI X:610, Y:455,

Detaylı

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 1) Suyun ( H 2 O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 10 6 m 3 olduğuna göre, birbirine komşu su moleküllerinin arasındaki uzaklığı Avagadro sayısını kullanarak hesap ediniz. Moleküllerin

Detaylı

DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR

DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR Prof. Dr. İrfan KAYMAZ Prof. Dr. Akgün ALSARAN Arş. Gör. İlyas HACISALİHOĞLU Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Helisel Dişli Çarklar Bu bölüm

Detaylı

Material Handling Solution

Material Handling Solution Material Handling Solution Rseries 5.0/.0/7.0/8.0/10.0T /1/1500/00/ w w w. e p - e p. c o m www.epforklift.com R serisi 5.0-7.0t folklift özellikleri Genel NO. 1 Temel CPCD50 CPCD50 CPCD0 CPCD0 CPCD70

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SERİ-PARALEL BAĞLI POMPA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN

Detaylı

MA İNAL NA ARI A NDA ELE E K LE TRİK

MA İNAL NA ARI A NDA ELE E K LE TRİK 3.0.01 KALDIRMA MAKİNALARINDA ELEKTRİK DONANIMI VE ELEKTRİK MOTORU SEÇİMİ Günümüzde transport makinalarının bir çoğunda güç sistemi olarak elektrik tahrikli donanımlar kullanılmaktadır. 1 ELEKTRİK TAHRİKİNİN

Detaylı

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge Fizik 3 Ders 9 Döne, Tork Moent, Statik Denge Dr. Ali ÖVGÜN DAÜ Fizik Bölüü www.aovgun.co q θ Döne Kineatiği s ( π )r θ nın birii radyan (rad) dır. Bir radyan, yarçapla eşit uzunluktaki bir yay parasının

Detaylı

PRES ĐŞLERĐNDE HĐDROPNÖMATĐK OLARAK ÇALIŞAN YÜKSEK GÜÇ ARTIRICI ÜNĐTELER

PRES ĐŞLERĐNDE HĐDROPNÖMATĐK OLARAK ÇALIŞAN YÜKSEK GÜÇ ARTIRICI ÜNĐTELER atölyeden PRES ĐŞLERĐNDE HĐDROPNÖMATĐK OLARAK ÇALIŞAN YÜKSEK GÜÇ ARTIRICI ÜNĐTELER A. Turan GÜNEŞ Pres işlerinde zaman zaman yüksek güçlü ve kısa kurslu alt ve üst baskı düzenlerine ihtiyaç duyulur. Đki

Detaylı

KUBOTA SIFIR KUYRUK ÇIKINTILI MİNİ EKSKAVATÖR

KUBOTA SIFIR KUYRUK ÇIKINTILI MİNİ EKSKAVATÖR KUBOTA SIFIR KUYRUK ÇIKINTILI MİNİ EKSKAVATÖR Sıfır kuyruk çıkıntısı. Ultra kompakt. Çalıştırması kolay. Kubota U10-3, kuyruk çıkıntısı olmayan mini bir ekskavatörden beklediğiniz her şey ve daha fazlasıdır.

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR

DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR DİŞLİ ÇARKLAR III: HELİSEL DİŞLİ ÇARKLAR Prof. Dr. İrfan KAYMAZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Helisel Dişli Çarklar Bu bölüm sonunda öğreneceğiniz konular:

Detaylı

MS 12. D6-MSt/07.11. Subject to technical changes

MS 12. D6-MSt/07.11. Subject to technical changes 9 MS 12 D-MSt/07.11 10 3-fazlı motorlar - 3x230/400V-50Hz Çıkış hızı Çıkış torku Nm ** Aktarım oranı Motor hızı Motor çıkışı kw ** Kendiliğinden Azami Devre kesici aralığı n 2 rpm Iş hacminde n 1 rpm Iş

Detaylı

TARIM MAKİNELERİ KONULAR TARIMSAL ÜRETİM

TARIM MAKİNELERİ KONULAR TARIMSAL ÜRETİM TARIM MAKİNELERİ KONULAR 1. Giriş ve Ölçü Birimleri 2. Termik Motorlar 3. Tarım Traktörleri 4. Toprak İşleme Makineleri 5. Ekim Dikim Makineleri 6. Gübreleme Makineleri 7. Bitki Koruma Makineleri 8. Hasat

Detaylı

MEKANİZMA TEKNİĞİ (1. Hafta)

MEKANİZMA TEKNİĞİ (1. Hafta) Giriş MEKANİZMA TEKNİĞİ (1. Hafta) Günlük yaşantımızda çok sayıda makina kullanmaktayız. Bu makinalar birçok yönüyle hayatımızı kolaylaştırmakta, yaşam kalitemizi artırmaktadır. Zaman geçtikce makinalar

Detaylı

MAKİNE ELEMANLARI - II ÖRNEK SORULAR VE ÇÖZÜMLERİ

MAKİNE ELEMANLARI - II ÖRNEK SORULAR VE ÇÖZÜMLERİ MAKİNE ELEMANLARI - II ÖRNEK SORULAR VE ÇÖZÜMLERİ KAYMALI YATAKLAR ÖRNEK: Bir buhar türbininde kullanılan eksenel Michell yatağına gelen toplam yük F=38000 N, n=3540 dev/dk, d=210 mm, D=360 mm, lokma sayısı

Detaylı

42CCP09. Motor / Performans Değerleri. Değerlendirme 16FAF89B. Ortam Bilgileri

42CCP09. Motor / Performans Değerleri. Değerlendirme 16FAF89B. Ortam Bilgileri 6FAF89B WVWZZZ3BZ4P53685 Motor Hacmi/Gücü 896cc / 95 kw - 29 hp 24799 Ekspertiz Tarihi 20.05.205 4:05 Motor / Performans Değerleri Düzeltilmiş Güç Motor Gücü Tekerlek Gücü Kayıp Güç Maksimum Güç Tork Maksimum

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

www.muhendisiz.net Basınç Ayar Supabının Çalışması :

www.muhendisiz.net Basınç Ayar Supabının Çalışması : DPA TİP YAKIT POMPALARI Distiribitör yakıt pompalarının en büyük özeliği ;yakıtı bir Distiribitör gibi motor ateşleme sırasına göre ve eşit miktarlarda enjökterlere gönderilmesidir. Teknik avantajı da

Detaylı

GÜÇ MODU F (Hassas Mod) E (Ekonomik Mod) P (Güç modu) HP (Yüksek Güç Modu) Hassas haraket gerektiren hafif çalıșmalar içindir Düșük yakıt tüketimi istenen çalıșmalar içindir Genel kazı ve yükleme çalıșmaları

Detaylı