ÇOK ÖLÇÜTLÜ KARAR VERME PROF. DR. İBRAHİM ÇİL

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÇOK ÖLÇÜTLÜ KARAR VERME PROF. DR. İBRAHİM ÇİL"

Transkript

1 ÇOK ÖLÇÜTLÜ KARAR VERME PROF. DR. İBRAHİM ÇİL 1

2 Bu bölümde; Çok ölçütlü karar verme yöntemlerini tanıyacağız. Özellikle anlatılacaktır. SMART ve ELECTRE yöntemleri üzerinde durulacaktır.

3 Çok ölçütlü karar verme Birden fazla amacın aynı anda eniyilenmesini gerektiren ölçütlerin gözönüne alındığı durumlar. KISIT (constraint): Uygun çözüm alanını belirleyen eşitsizlikler HEDEF (goal) : Kendisine ulaşmakla yetinebileceğimiz göstergeler AMAÇ (objective) : Son noktasına kadar eniyilemek istediğimiz çokluk Günde en az 6 saat çalışılsın Hedef Kar en az %10 olsun Hedef Kar olabildiğince çok olsun Amaç NİTELİK (attribute ) : Seçeneklerin belli özelliklerini gösteren sayısal veya sayısal olmayan değerler ÖLÇÜT (criterion) : Etkinliğin ölçüsüdür. Bazen amaç bazen nitelik anlamına gelir. Değerlendirme esası nitelik veya amaç şeklinde olabilir. Eğer nitelikler ölçütse Çok Nitelikli Karar Verme (ÇNKV) Eğer amaçlar ölçütse Çok Amaçlı Karar Verme (ÇAKV) Çoğu kaynakta ortak ad ÇÖKV

4 Çok Nitelikli Karar Verme (ÇNKV) Seçenekler belli ve az sayıda Kısıt yok Çok Amaçlı Karar Verme (ÇAKV) Seçenekler sonsuz (uygun çözüm içerisinde eniyisini bulma problemi) Kısıtlar açıkça belli Nitelikler belli değil ÖRNEK: Otomobili ele alalım. modelin belirlenmesi imalatçı açısından ÇAKV problemidir (bir tasarım problemi). satın alınması tüketici açısından ÇNKV problemidir (bir seçme problemi).

5 Çok ölçütlü karar verme (ÇÖKV) ve matematiksel programlama (MP) ÇÖKV Seçenek sayısı sınırlıdır ve bunlar önceden bellidir. MP Uygun çözüm alanı içerisinde sonsuz sayıdaki çözümden hangilerinin ele alınacağı önceden belli değildir. ÇÖKV Kısıt söz konusu değildir. Eldeki seçenekler zaten kısıtları sağlamış oldukları için seçenek olma niteliğini kazanmışlardır. MP Kısıtlar açıkça bellidir ve UÇA onlar sayesinde belirlenir. ÇÖKV Seçeneklerin niteliklerini sınayan birden fazla ölçüt vardır. MP Eniyilenecek tek amaç vardır.

6 İki çeşit seçeneğin değerlendirilmesi KOLAY Her yönüyle diğerlerinden daha kötü (hemen elenir, değerlendirmeye alınmaz) Her yönüyle diğerlerinden üstün (hemen benimsenir zaten problem YOK) Problem? Değerlendirilecek seçenekler hangileridir? Bu seçeneklerin değerlendirilmesi hangi ölçütlere dayanmalıdır? Ölçütlerin birbirlerine göre önem dereceleri nedir? Seçeneklerin nitelikleri nelerdir?

7 m: seçenek sayısı n: ölçüt sayısı PROBLEMİN YAPISI Ölçütler ve bunların önem derecelerini veren bir ağırlıklar vektörü: W (nx1) Wj: j. ölçütün ağırlığı (j = 1, 2,...n) Seçeneklerin niteliklerini gösteren bir karar matrisi: A (mxn) aij : i. seçeneğin j. ölçüte göre değeri (i=1,2,...,m ; j=1,2,...,n)

8 Çok Kriterli Karar Verme Nedir? Çok kriterli karar verme, Karar Bilimlerinin bir alt dalıdır. Karar sürecini kriterlere göre modelleme ve analiz etme sürecine dayanır. İnsanların çeşitli kaynaklardan gelen farklı ve çeşitli bilgileri yeterli bir şekilde değerlendirmediği gözlenmiş olduğu için geliştirilmiştir. Kullanılacak Örnekler Araba alımı: Amaç Kriterler Alternatifler Bir kurumun özelleştirmesi: Amaç Kriterler Alternatifler

9 Çok Ölçütlü Karar Analizi Seçimlerimizi tek bir kritere göre yapmamız hemen hemen imkansızdır. Kısıtlar hayli çoktur ve tüm alternatifleri tam anlamıyla değerlendirmemizi ve çok sayıda kriteri göz önüne almamızı zorunlu kılar. Bu şekilde verilen kararlar çok ölçütlü karar verme olarak ifade edilir. Bu yaklaşım karar vericiye seçenekleri kriterlere göre değerlendirip problemine en arzu ettiği çözümü ararken yardım eder ve yol gösterir. Çok sayıda kriter kullanılarak bir seçenek kümesinin değerlendirilmesi için genel tercih ilişkisi oluşturur. Çok Ölçütlü karar problemleri çok sayıda kriteri göz önüne almamızı gerektirir. Örneğin maliyet, güvenilirlik, emniyet, çevresel etkiler vb gibi.

10 Çok Ölçütlü Karar Verme Problemi Bu tür problemler çok sayıda kriteri göz önüne almamızı gerektirir. Örneğin maliyet, güvenilirlik, emniyet, çevresel etkiler vb gibi. Karar vericinin tercihleri formülasyonun önemli bir kısmını teşkil eder. Burada karar verici için uygun kabul edilebilir bir çözüm bulmaya çalışılır. Belirsizlik içerir, olasılıklar sözkonusudur, aralık değerleri ve bulanık durumlar vardır. Risk içermeleri de her zaman sözkonusudur. Çok ölçütlü karar verme problemi genellikle aşağıdaki şekilde görüldüğü gibi karar matrisi formunda formüle edilirler. Kriterler Seçenekler C 1 C 2... C m a 1 a 11 a a 1m a 2 a 21 a a 2m a 3 a 31 a a 3m a n a n1 a n2... a nm Satırlarda seçenekler ve sütunlarda kriterler temsil edilir yada tam tersi satırlarda kriterler ve sütunlarda seçenekler yer alır. Tablodaki a ij değerleri nitelikleri temsil eder ve karar vericinin tercihlerini yansıtan puanlardır.

11 Çok Ölçütlü Karar Verme Metodları Çeşitli çok kriterli karar verme metodları vardır: Analitik Hiyerarşi Süreci Çok kriterli yarar metodları Çok amaçlı optimizasyon metodları Üstünlük şağlama metodları Fuzzy (bulanık, belirsiz) değerlendirmeler

12 Çok Ölçütlü Karar Verme Teknikleri Günümüzde uzmanlar tarafından önerilen çok kriterli metotlar üç kategoride gruplanabilir: Amerikan okulu tarafından önerilen Çok nitelikli Fayda Teorisi (Multi Attribute Utility Theory MAUT) (Keeney and Raiffo, 1976) Fransız okulu tarafından önerilen Sıralama Teknikleri-(Outranking Relations) Etkileşimli Metodlar (Interactive Methods), Vincke, 1992) Amerikalılar Çok ölçütlü karar problemlerini çözmede en fazla fayda fonksiyonları esas alırlar. Önceliklerin belirlenmesine önem verirler. Avrupalılar araştırmacı bir yaklaşımla daha önce iyi sonuç veren veya eksik sonuç veren çözümleri gözden geçirirler. Avrupa veya Fransız Ekolü, Önceliklerin karar verici için önemli olmadığını, karar destek mekanizmasının kararları yapılandırmak ve farklı ağırlıktaki karar problemlerinin sonucunu anlamak için gerekli olduğunu savunur. Önemli olan nokta hedef limitlerinin farkında olmaktır. Bunun için araştırmacılar değer yargı modellerini oluşturmaya iş hipotezlerini araştırarak yardım etmelidir. ELECTRE, TOPSIS, PROMETHEE Metotları bu felsefeye uygun olarak en belirgin örneklerin arasındadır.

13 Çok ölçütlü problem çözüme yöntemleri dört ana grupta toplanır (Şekil 2). Birinci gruptaki yöntemler, Temel yöntemler olarak ifade edilen yöntemlerdir. Bunlar; Çoğunluk, Özelliklerine Göre Eleme, İyimserlik, Kötümserlik, Birleştiren, Ayıran, bilinen yöntemleridir. İkinci gruptaki yöntemler, değer/fayda temelli yöntemlerdir. Örnek olarak şu metodlar verilebilir; SMART, Ağırlıklı Ortalama, Ağırlıklı Çarpım, TOPSIS ve Analitik Hiyerarşi Süreci Üçüncü gruptaki yöntemler üstünlüğe dayanan yöntemlerdir. Bunaların yaygın örnekleri ELECTRE ve PROMETHEE ailesi içerisindeki metodlardır. Dördüncü gruptaki yöntemler Etkileşimli yöntemlerdir. Bunlara örnek olarak PRIAM, STEM ve Değişen Hedef Yöntemi verilebilir[evren Ülengin]. Bu yöntemlerden bazıları aşağıda uygulamalarıyla açıklanacaktır.

14 SMART Yöntemi (Simple Multi-Attribute Rating Technique) SMART, en yaygın çok ölçütlü karar analiz metodudur. Türkçede, Temel Çok ölçütlü Değerlendirme Tekniği olarak ifade edilebilir. Bu metodla çok sayıda seçenek birden çok performans kriterine göre değerlendirilir. Burada amaç, seçenekleri öznel olarak tercih sırasına göre sıralamaktır. Word Edwards ve diğer psikologlar, faydanın pratik ölçümü ve davranışsal karar verme teorisi ile ilgilendiler. Word Edwards problemlerin basitleştirilmesini savundu ve 1980 lerde SMART ı geliştirdi. Bu, insanların öncelikli kriterlere odaklanmasını sağlamakta ve seçeneklerin çok ölçütlü değerlendirilmesini içermektedir. Bu metod temel alınarak, metodun değişik türevleri geliştirilmektedir.

15 Puanlama Yöntemi : Puanlama yöntemi ağırlıklı puan sistemine dayanarak projeleri yada alternatifleri karşılaştırmak için kullanılır. Puanlama modelleri birçok ölçüt kullanan farklı seçenekleri yada görünmeyen kazançları sayısallaştırmak olanağı da sağlar. Toplam puanı bulmak için her bir ölçütün ağırlığı puanıyla çarpılır ve projedeki bütün ölçütlerin bulunan değerleri toplanır. Formül şu şekildedir : Wi = kriter ağırlığı Ci =kriter puanı 0 <= Wi <= 1

16 Seçenekleri Değerlendirme Kriterin Ağırlığı Seçenek A Seçenek B Seçenek C Beklentileri Uygulama Toplam karşılama Maliyet zorluğu %50 % 20 % = Kriteri karşılamıyor 5 = Kriteri çok etkili olarak karşılıyor

17 Aşağıdaki tabloda yukarıdaki sistem kullanılarak karşılaştırılan değişik proje seçenekleri gösterilmektedir : Proje Seçeneklerinin Karşılaştırılması

18 Puanlama modeli birçok önemli fikri vurgular: Puanlama modeli sayısal olan ve olmayan öğelerin birleştirilmesini sağlar. Kullanılan ağırlıklar ve puanlar özneldir. Parasal modeller kısa dönemde ön yargılı davranabilirler. Bazı ölçütler ters puanlanabilirler. Geçmiş deneyimler daha gerçekçi bir olurluk incelemesi yapılmasına yardımcı olurlar.

19 SMART Puanlama Yöntemi Aşağıda bir üretim firması için mevcut durumu ve yeni bir projesi için iki duruma ait bilgiler verilmektedir. Burada iki seçenek için parasal değer yanında diğer faktörlerde değerlendirme kriteri olarak göz önüne alınmaktadır. Değerlendirme Kriterleri Eski Makine Yeni Makina İş güvenliği şartları Riskli Çok güvenli Pazar payı üzerindeki etkisi Orta Çok yüksek Teçhizatın durumu Her an bozulabilir İyi durumda Maliyetlerin net şimdiki değeri TL 19

20 1.Adımda her bir seçenek değerlendirme kriteri için belirlenen bir ölçek üzerinden puan verilir. İfadelerin bir ölçek kullanılarak sayısal puanlara dönüştürülmesi Değerlendirme Kriterleri Eski Makina Yeni Makina İş güvenliği şartları 0,3 1,0 Pazar payı üzerindeki etkisi 0,5 1,0 Teçhizatın durumu 0,4 1,0 Maliyetlerin net şimdiki değeri 1,0 0,6 Burada en iyi puan için 1 ve en az istenen durum içinde 0 puanı gözönüne alınmıştır.

21 2.Adımda kriterin ağırlıkları belirlenir. 21 I. Karar Verici Puanlar Normalize Değerler Ortalama Kriter II. Karar Verici I. II. Ağırlıkları Pazar payı üzerindeki etkisi /90 = /200 = Maliyetlerin net şimdiki değeri /90 = /200 = İş güvenliği şartları /90 = /200 = Teçhizatın durumu /90 = /200 = İki farklı karar verici her bir kritere bir puan vererek bu puanlar normalize edilip daha sonrada ortalaması alınabilir.

22 3.Adımda seçeneklerin final puanları belirlenir. 22 Eski Makina Yeni Makina Ağırlıklar Puan X Ağırlık Puan X Ağırlık İş güvenliği şartları ,3*0.16= ,0*0.16=0.160 Pazar payı üzerindeki etkisi ,5*0.47= Teçhizatın durumu Maliyetlerin net şimdiki değeri Toplam Puan Kriter ağırlıkları ile her bir seçenek için verilen puanlar çarpıldıktan sonra ilgili seçenek için tüm çarpım değerlerinin toplanmasından oluşan final puanlar belirlenir. Bu sonuca göre Yeni Makine Alımı Projesi yüksek puana sahip olduğu için bu seçenek seçilmelidir.

23 SMART (Simple Multi-Attribute Rating Technique) SMART (Simple Multi-Attribute Rating Technique), en yaygın Çok ölçütlü karar analiz metodudur. Türkçede, Temel Çok ölçütlü Değerlendirme Tekniği [Von Winterfeldt and Edwards ] olarak ifade edilebilir. Bu metodla çok sayıda seçenek birden çok performans kriterine göre değerlendirilir. Burada amaç, seçenekleri öznel olarak tercih sırasına göre sıralamaktır. SMART tekniğinin uygulaması ile ilgili bir değerlendirme tablosu verilmektedir (Tablo 1). Tablodaki puanlar 10 üzerinden verilmiş değerlerdir. Hesaplama biçimi, her bir kriterin ağırlık değeri ile ilgili seçeneğin puanının çarpıldıktan sonra ilgili seçenek için tüm çarpım değerlerinin toplanmasından oluşan final puanlar belirlenir. Bu en son elde edilen ağırlıklı puanlara göre seçenekler sıralanır.

24 Örnek Herhangi bir yerleşim birimi ile şehir merkezi arasında bir ulaşım sistemi kurulacak. Bunun için en iyi seçeneğin hangisi olacağı belirlenmek isteniyor. Büyük değerler ilgili kriter açısından o seçeneğin oldukça verimli olduğunu ifade eder. Sonuçta ağırlıklı puan değerlerine göre seçenekler Raylı Sistem, Metrobüs ve Otobüs Hattı şeklinde sıralanır. Seçenekler Kriterler Ağırlık Metrobüs Otobüs hattı Raylı Sistem Maliyetler 0, ,0 5,5 Ulaşım zamanından sağlanan tasarruf 0,135 8,5 6,5 4,0 Kapasite 0,270 7,0 8,0 8,5 Çevre kirliliği 0,270 5,0 5,5 8,5 Yola ayrılan arazi kaybı 0,135 5,0 5,0 10 Ağırlıklar Toplamı 1,000 Final Skorlar 7,0 6,7 7,5

25 Basit Toplamlı Ağırlıklandırma Her seçeneğin, tek boyutlu değer fonksiyonu değerlerinin kullanılması yerine, farklı ölçütlere göre elde ettiği performans değerlerinin doğrudan kullanılıp ölçüt göreli önlemlerine göre ağırlıklandırılıp, toplam global puanın elde edilmesine dayanan bu yönteme Basit Toplamlı Ağırlıklandırma (Simple Additive Weighting) veya Ağırlıklı Ortalama Yöntemi adı verilir. Böylece karar matrisindeki nicel performans değerleri kullanılarak seçeneklerin puanını temsil eden bir vektör oluşturulur. Söz konusu vektördeki seçenek değerleri; w j, j ölçütün göreceli önemini (normalize edilmiş ağırlık) göstermek üzere aşağıdaki denklemle hesaplanır: V(a) = Vi = j 1 Değerlendirme Tablosu n w j r ij Kriterler Ağırlık Metrobüs Otobüs hattı Raylı Sistem İdeal Puanlar Maliyetler 0, ,0 5,5 10 Ulaşım zamanından sağlanan tasarruf 0,135 8,5 6,5 4,0 8,5 Kapasite 0,270 7,0 8,0 8,5 8,5 Çevre kirliliği 0,270 5,0 5,5 8,5 8,5 Yola ayrılan arazi kaybı 0,135 5,0 5,

26 Normalize edilmiş değerler Önce kriterlerin ideal puanları belirlenir. Değerlendirme tablosundaki değerler ideal değerlere bölünerek normalize edilmiş değerler elde edilir. Daha sonra normalize edilmiş değerler ağırlıklarla çarpılıp toplandıktan sonra her bir seçenek için ağırlıklandırılmış toplam değerler bulunur. Bunların içerisinde en büyük 0, olduğu için Raylı Sistem seçilir. Kriterler Ağırlık Metrobüs Otobüs hattı Raylı Sistem Maliyetler 0,19 1 0,8 0,55 Ulaşım zamanından sağlanan tasarruf 0, , , Kapasite 0,27 0, , Çevre kirliliği 0,27 0, , Yola ayrılan arazi kaybı 0,135 0,5 0,5 1 Ağırlıklandırılmış değerler 0, , ,843029

27 Ağırlıklı Çarpım Her ne kadar normalizasyon işlemi olmasa da üssel işlem yapıldığından bütün x ij değerlerinin birden büyük olması gerekir. Eğer herhangi bir ölçüt için birden küçük değerler varsa tüm değerler bu ihtiyacı karşılayacak şekilde 10m ile çarpılmalıdır. Göreli önemler; kar ölçütü için pozitif ve maliyet ölçütü için negatif işaretli üs olarak kullanılırlar. Aşağıdaki förmül kullanılarak işlemler yapılır. Vi = j (x ) ij w Tablo 6. Değerlendirme Tablosu j Kriterler Ağırlık Metrobüs Otobüs hattı Raylı Sistem Maliyetler 0,190 10,0 8,0 5,5 Ulaşım zamanından sağlanan tasarruf 0,135 8,5 6,5 4,0 Kapasite 0,270 7,0 8,0 8,5 Çevre kirliliği 0,270 5,0 5,5 8,5 Yola ayrılan arazi kaybı 0,135 5,0 5,0 10,0 Ağırlıklar Toplamı 1,000 Final Skorlar 7,0 6,7 7,5 Tablodaki değerlerin ağırlık değerlerine göre üs leri alınarak aşağıdaki tablo oluşturulur.

28 Tablo 7 Üs alınmış değerlendirme tablosu Kriterler Metrobüs Otobüs hattı Raylı Sistem İdeal l Maliyetler 1, , , , Ulaşım zamanından sağlanan tasarruf 1, , , ,33497 Kapasite 1, , , , Çevre kirliliği 1, , , , Yola ayrılan arazi kaybı 1, , , , Her bir seçenek için tüm değerler çarpılarak vi değerleri elde edilir. V i değerleri de ideal değere bölünerek r değerleri elde edilir. Buna göre en büyük değer 0, olduğu için Ağırlıklı Çarpım yöntemine göre Raylı Sistem seçilmelidir. Metrobüs Otobüs hattı Raylı Sistem İdeal Vi 6, , , , r 0, , ,

29 ELECTRE Bu yöntem ilk olarak Benayoun, Roy ve arkadaşları tarafından 1966 yılında geliştirilmiştir. Metot var olan karar verme metotlarına bir cevap olarak geliştirilmiştir. ELECTRE metodunun ana konsepti; her bir kriter için ayrı ayrı olmak üzere alternatiflerin aralarındaki ikili karşılaştırmaları kullanmaktır. İki alternatifin (A i ve A j ) tercih edilebilirliğinin üstünlük ilişkisi A i A j şeklinde gösterilir ve eğer i.nci alternatif j.inci alternatife niceliksel baskınlık kuramazsa karar verici A i nin A j ye göre daha iyi olduğunu riskini alabilmelidir. Alternatifler, eğer başka bir alternatif bir veya daha fazla kriterde üstün ve kalan diğer kriterlerde eşit olursa baskın olarak adlandırılabilirler.

30 ELECTRE ELECTRE metodu alternatiflerin tercih edilebilme üstünlük ilişkisinin ardışık yargıları arasından, A j alternatifi Ak alternatifine üstünlük sağlar veya daha önemlidir sonucunu destekleyen kanıt sayısı şeklinde tanımlanan uyumluluk indeksini ve uyumluluk indeksinin karşı tarafı olan uyumsuzluk indeksini çıkartmaktadır. ELECTRE metodu alternatifler arasından ikili tercih edilebilirliğinin üstünlük ilişkisi sistemini getirmektedir. Bunun nedeni, bu sistemin tamamlanması gerekmemektedir, ELECTRE metodu bazen pek çok tercih edilmiş alternatifi tanımlayamamaktadır. Metot sadece lider alternatiflerin merkezini üretmektedir. Bu metot alternatiflerin daha açık birer görüntüsünü daha az favori olanları eleyerek sağlamaktadır. Metot özellikle birçok kriter fakat çok sayıda alternatif içeren problemleri için uygundur.

31 ELECTRE Yöntemi Bu yöntem seçenekler arasından en iyi olanı seçmeyi amaçlar sıralamadan çok seçim üzerine odaklanır. ELECTRE yönteminde, her bir kriter için bir tane verimlilik, bir tane de önem ölçüsü tespit edilir. Verimlilik ölçüsü esas alınarak her bir seçeneğin verimliliği hesaplanır, diğer bir deyimle tayin edilen verimlilik ölçüleri üzerinden her bir seçeneğe puan verilir. Bu puanlar, verimlilik ölçüleri ve önem ölçüleri birlikte göz önüne alınarak verilir. İkili karşılaştırma esasına dayalı olarak önce uyum göstergeleri sonrada uyumsuzluk göstergeleri hesaplanır. Çizge teorisinden yararlanarak belirlenen eşik değerleri aşan uyum ve uyumsuzluk göstergelerinden çizge haritası çıkarılır. Daha sonra seçeneklerden en uygun olanı seçilir. Bu yöntemin uygulama adımları aşağıda sıralanmıştır; Adım 1: Seçeneklerin Oluşturulması Adım 2: Amaçların Belirlenmesi (veya ölçütlerin belirlenmesi) Adım 3: Amaçların Ağırlıklandırılması Adını 4: Verimlilik ölçüsünün belirlenmesi Adım 5: Seçeneklerin amaçlara göre değerlendirilmesi Adım 6: Uyum matrisinin oluşturulması Adım 7: Uyumsuzluk matrisinin oluşturulması Adım 8: Uygun seçeneklerin belirlenmesi

32 ELECTRE Yöntemi Yukarıda ilk beş adımdaki işlemler değerlendirme tablosu üzerinde görülmektedir. Tabloda f i,j, hi ölçeği üzerinden seçeneklere verilen puanları, ai kriterlerin önem derecesini göstermektedir. Burada hi için değişik ölçek değerleri kullanılabilir. Bunlar ( kötü, iyi, orta düşük) şeklinde olabilir, yada 10 üzerinden verilen puanlar olabilir. Tablo 23. Değerlendirme Tablosu Seçenekler Ölçütler 1 2 m Verimlilik ölçüsü Önem ölçüsü 1 p 1,1 p 1,2 p 1,m h 1 a 1 2 p i,1 p i,2 p i,m h i a i n p n,1 p n,2 p n,m h n a n Tablodaki değerlerden hareketle uygun seçeneği bulma işleminde yararlanılacak olan uyum ve uyumsuzluk göstergeleri hesaplanır.

33 Uyum Matrisi S 1 ve S 2 iki seçenek olsun. S 2 en azından S 1 kadar iyidir, varsayımı ölçütleri iki ayrık kümede toplama imkanı vermektedir. Bu C(S 1, S 2 ) kümesidir. Yukarıda gösterilen uyum göstergesi tüm seçeneklerin ikili ilişkileri için hesaplanarak uyum matrisi olarak isimlendirilen bir matriste toplanır. Her bir uyum göstergesi şöyle hesaplanır. C(1,2) = S2 seçeneği en azından S1 seçeneği kadar iyidir varsayımını gerçekleyen ölçütlerin önem ölçüleri toplamı Tüm ölçütlerin önem ölçütleri toplam

34 Uyumsuzluk Matrisi Uyum göstergesinde bire yakın olması istenir. Temel vurgu önem ölçüsü üzerinedir. Bunun yanında p i,j puanlarının da göz önüne alınması gerekir. Zira, p i, S1j> p i, S2 ifadesi gerçeklenirken bu değerler birbirlerine çok yakın olabilirler veya aksine her biri puanlandırmada esas alınan ölçeğin iki ayrı ucunda bulunabilirler. Bu durumda p i,s1 ve p i,s2 çiftlerinin uyumsuzluğun büyüklüğünü veya küçüklüğünü belirlemek için, bir h j ölçeğinden alınan rastgele bir puan çifti ile karşılaştırılmasını sağlayan bir ilişkinin varlığını aramak gerekir. Bu amaçla şöyle bir uyumsuzluk göstergesi kurulur. 0 D( S1, S2) 1 d( S1, S2) max pi, S 2 pi, S1 D( S1, S2) h i D( S1, S2) Burada h, ölçütler için tespit edilen verimlilik ölçülerinden en büyüğünü göstermektedir. Ancak değişik şekillerde de kullanılabilir. Örneğin kriterin en büyük ve en küçük puanı arasındaki farklarda h değerleri olarak kullanılabilir. Bu derste aksi belirtilmedikçe en büyük değer ile işlem yapılacaktır.

35 Uygun Seçeneklerin Belirlenmesi Uyum ve uyumsuzluk matrisleri oluşturulduktan sonra bunların elemanları belirli bir şekilde denetlenerek uygun olmayan seçenekler elenecektir. 0 ile 1 arasında kalan iki sayı p ve q olan bir eşik değer belirlenir. Bunlardan p daha çok 1 e, q ise 0 a yakın olsun. (n) tane ölçüt olması ve p, q nün göz önüne alınması durumunda S2 nin S1 i geçmesi için (S1, S2) çiftinin aşağıdaki özellikleri sağlaması gerekir: 1) Uyum göstergesi en azından p ye eşit olmalıdır. 2) Uyumsuzluk göstergesi en çok q ye eşit olmalıdır. Böyle tanımlanan ilişkiler bir P(p, q) çizgesiyle gösterilir. Bu çizgide okun yönü daha iyi puan alan seçenekten daha az puan alan seçeneğe doğrudur. Seçeneklerin eşit puanlı olması durumunda her iki seçeneğe karşılıklı ok gelişi ile gösterilir. Electre yönteminde KV nın subjektif (kişisel) tercihleri her zaman hatalara yol açabilir. Bu yöntem de verimlilik ölçütlerini belirlemek zordur. Amaç sayısının fazla olması durumunda tüm bunlar daha da güçleşecektir. Uyum ve uyumsuzluk matrislerinden uygun seçeneklerin belirlenmesi uzun hesaplamalar gerektirmektedir. Electre her şeyden önce bir seçim metodudur. Diğer ifadeyle seçenekler arasından en iyi olanı belirlemeyi amaçlar. Bunun yanında Electre II sıralama problemleri için kullanılır. Bu sıralama en iyiden en kötüye doğru tamamlanır. Electre II, birbirine yakın alternatifleri ve ilgisiz yani karşılaştırma yapılamayan alternatifleri ele alır.

36 ÖLÇÜTLER Değişik helikopterlerin 7 ayrı kritere göre etkinlikleri aşağıda verilmektedir Ölçüt 1 1,9 Ölçüt 2 2,4 Ölçüt 3 1,2 Ölçüt 4 6,4 Ölçüt 5 5,3 Ölçüt 6 3,2 Ölçüt 7 5,1 SEÇENEKLER System A System B System C Ölçek Ağırlığı 2,6 1, ,6 3, ,2 1, ,1 7, ,2 6, ,2 6,1 10 0,5 6,1 8,5 10 0,5 Uyum Göstergeleri C(A,B)= ( ,5+0,5)/10=7/10=0,7 C(A,C)= ( ,5+0,5)/10=9/10=0,9 C(B,A)= (2+3)=5/10=0,5 C(B,C)= ( ,5+0,5)=9/10=0,9 C(C,A)= (1)=1/10=0,1 C(C,B)= (1)=1/10=0,1 UYUM A B C A 0,7 0,9 B 0,5 0,9 C 0,1 0,1

37 Uyumsuzluk Göstergeleri: D(A,B)= 1/10max( 5,2-5,3 )=1/10(0,1)=0,01 D(A,C)= 1/10max( 1,8-1,9 )=1/10(0,1)=0,01 D(B,A)= 1/10max ( 1,9-2,6, 2,4-2,6, 6,4-7,1, 5,3-5,2, 3,2-4,2, 5,1-6,1 )=1/10=0,1 D(B,C)= 0,08 D(C,A)= 0,34 D(C,B)= 0,24 UYUMSUZLUK A B C A 0,01 0,01 B 0,1 0,08 C 0,34 0,24 UYUM A B C A 0,7 0,9 B 0,5 0,9 C 0,1 0,1 UYUMSUZLUK A B C A 0,01 0,01 B 0,1 0,08 C 0,34 0,24 Eşik değerler p>=0,7 q<=0,1 C(A,B) D(A,B) C(A,C) D(A,C) C(B,C) D(B,A) D(B,C) A.. C. B

38 Elektrik Güç İstasyonu Yerleşimi Problemi Bu problemde mümkün yerleşim merkezleri olarak 6 alternatif bulunmaktadır;: İtalya (A1), Belçika (A2), Almanya (A3), İsviçre (A4), Avusturya (A5), Fransa (A6). Bunların belirlenmesinde 6 kriter vardır ve bu kriterler eşit ağırlıktadır; F1(.): İşgücü (alanı oluşturmak için), F2(.):Güç, F3(.):Yapılandırma Maliyeti, F4(.):Bakım Maliyeti, F5(.):Boşaltılacak Köyler ve F6(.):Güvenlik Seviyesi Tablo 24 ELECTRE Yöntemi İle Çözüm için Performans Tablosu Kriterler Min/Max A1 A2 A3 A4 A5 A6 Ağırlık ölçüt f1(.) Min f2(.) Max f3(.) Min f4(.) Min 5,4 9,7 7,2 7,5 2 3, f5(.) Min f6(.) Max

39 Tablo 25 Uyum Matrisi Uyum matrisindeki hesaplamalar aşağıdaki şekilde hesaplanmaktadır. 2.ci Seçenek 1.ci Seçenek Kadar iyidir varsayımını gerçekleyen ölçütlerin önem ölçüleri toplamı C(1,2)= A1 A2 A3 A4 A5 A6 A1-0,5 0,5 0,5 0,833 0,666 A2 0,5-0,5 0,666 0,666 0,5 A3 0,5 0,5-0,5 0,833 0,833 A4 0,5 0,333 0,5-0,5 0,666 A5 0,333 0,333 0,166 0,5-0,166 A6 0,333 0,5 0,666 0,333 0,833 - Tüm ölçütlerin önem ölçütleri toplam Tabloda bulunan değerlerden bazıları aşağıdaki gibi hesaplanır. Kriterlerim maks ve min olmasına bağlı olarak seçenekler ikili olarak tüm kriterlere göre karşılaştırılarak aşağıdaki sonuçlar elde edilir. A 12 = ( ) / 6 = 0,5 A 16 = ( ) / 6 = 0,666 A 26 = ( ) / 6 = 0,5 A 35 = ( ) / 6 = 0,833 A 65 = ( ) / 6 = 0,833

40 A1 A2 A3 A4 A5 A6 A1-0,032 0,03 0,4 0,018 0,1 A2 0,4-0,2 0,8 0,4 0,2 A3 0,2 0,006-0,6 0,2 0,3 A4 0,04 0,025 0,045-0,012 0,054 A5 0,028 0,014 0,033 0,4-0,1 A6 0,006 0,038 0,036 0,3 0,024 - Uyumsuzluk matrisindeki hesaplamalar yukarıda verilen formülasyon kullanılarak hesaplanmaktadır. Tabloda bulunan bazı değerler aşağıdaki gibi hesaplanır. A 12 = 32 / 1000 = 0,032 A 13 = 30 / 1000 = 0,03 A 21 = 400 / 1000 = 0,4 A 26 = 500 / 1000 = 0,2 A 34 = 600 / 1000 = 0,6 A 42 = 25 / 1000 = 0,025 Uyum ve uyumsuzluk matrisleri hazırlandıktan sonra belirlenen p ve q eşik değerlerine göre çizgi oluşturulacak seçenek çiftleri aşağıdaki tablodaki gibi belirlenir. p ve q değerlerinin her iki listesinde de olan seçenekler aşağıdaki şekilde belirlenir. Okların yönüde puanı iyi seçenekten daha aza olana doğrudur. A 12, A 13, A 15, A 32, A 41, A 43, A 45, A 62, A 63, A 65

41 Bu seçenekler için oluşturulan çizge aşağıdaki şekilde olacaktır. Kendisine hiç ok gelmeyen A2 ve A5 seçeneklerinden biri seçilebilir (Şekil 8). Bunların içerisinde de A2 daha iyi bir seçenektir. Tablo 27 Eşik değerleri sağlayan seçenekler p 0,5 değerini sağlayan A 12 A 12 A 13 A 13 A 14 A 15 A 15 A 32 A 16 A 41 A 21 A 43 A 23 A 45 A 24 A 51 A 25 A 52 A 26 A 53 A 31 A 61 A 32 A 62 A 34 A 63 A 35 A 65 A 41 A 43 A 45 A 46 A 54 A 62 A 63 A 65 q 0,05 değerini sağlayan

42 Lexicographic (Ardışık Sırasal) Yöntem Bu yöntemde, amaçlar karar verici tarafından önem derecelerine göre sıralanır. Tercih edilen çözüm, amaçların en önemli olanlarından başlayarak, önem sırasına göre sırayla tümünü en büyükleyen çözümdür. Bu yöntemin uygulama adımları aşağıda sıralanmıştır. Adım 1: Önce en önemli amaç fonksiyonu en büyükleyen çözüm bulunur. Adım 2: İkinci önemli amaç fonksiyonu göz önüne alınarak ikinci alt problem çözülür. Adım 3:Benzer alt problemler, gözönüne alınan m amaçtan geriye kalanlar için çözülür Bu yöntemin gerçekçi tarafı, genellikle fertlerin bu şekilde karar vermeye meyilli olmalarıdır. Çözüm karar verici tarafından amaçların önem derecelerine göre sıralanması şekline karşı çok hassastır. Bu nedenle birbirine yakın öneme sahip iki amaçlı karar verme problemlerinde bu yöntem kullanılırken dikkatli olunmalıdır. En önemli ölçüte göre seçenekler sıralanır. Eğer bu ölçüte göre bazı seçeneklerin performans değerleri eşitse, kayıtsız kalınan bu seçenekler için ikinci önemli ölçüte göre sırlama yapılır. Aşağıda otomobil satın alma ile ilgili bir örnek göz önüne alınmaktadır. Bu örnekle ilgili değerlendirme tablosu şu şekildedir.

43 Aşağıda otomobil satın alma ile ilgili bir örnek göz önüne alınmaktadır. Bu örnekle ilgili değerlendirme tablosu şu şekildedir. Fiyat Konfor Hız Tasarım Ağırlık a M H Ü a M O Ü a O H Ü a O H O a O O Ü a Z H Ü a Z O O M: mükemmel; O: orta; Z: zayıf; H: hızlı; Ü: üstün Fiyat: a 7 (a 4, a 5, a 6 ) (a 2, a 3 ) a 1 Konfor: (a 4, a 5) a 6 ; a 2 a 3 Hız: a 4 a 5 Tasarım: a 5 a 4 Sonuç a 7 a 4, a 5 a 6 a 2 a 3 a 1

44 Nitelikler(Xj) F/M a1 a2 a3 a4 a5 a6 a7 Ağırlıklar(wj) Fiyat M /15 Konfor F /15 Hız F /15 Görünüş F /15

Çok Amaçlı Karar Verme

Çok Amaçlı Karar Verme Çok Amaçlı Karar Verme [multi criteria decision making] Erdem Kocamustafaoğulları The George Washington University erdemk@gwu.edu Çok Kriterli Karar Verme Semineri Amaçlar Neden Çok Kriterli Karar Verme

Detaylı

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/

Dr. Y. İlker TOPCU. Dr. Özgür KABAK web.itu.edu.tr/kabak/ Dr. Y. İlker TOPCU www.ilkertopcu.net www.ilkertopcu.org www.ilkertopcu.info facebook.com/yitopcu twitter.com/yitopcu instagram.com/yitopcu Dr. Özgür KABAK web.itu.edu.tr/kabak/ GİRİŞ Tek boyutlu (tek

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

GİRİŞİMCİLİK (HARİTA MÜHENDİSLİĞİ BÖLÜMÜ) DERS NOTLARI. Doç. Dr. Volkan YILDIRIM yvolkan@ktu.edu.tr Karadeniz Teknik Üniversitesi, GISLab Trabzon

GİRİŞİMCİLİK (HARİTA MÜHENDİSLİĞİ BÖLÜMÜ) DERS NOTLARI. Doç. Dr. Volkan YILDIRIM yvolkan@ktu.edu.tr Karadeniz Teknik Üniversitesi, GISLab Trabzon GİRİŞİMCİLİK (HARİTA MÜHENDİSLİĞİ BÖLÜMÜ) DERS NOTLARI Doç. Dr. Volkan YILDIRIM yvolkan@ktu.edu.tr Karadeniz Teknik Üniversitesi, GISLab Trabzon www.gislab.ktu.edu.tr GİRİŞİMCİLİK 1. İŞLETMELERİN KURULUŞ

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

Tutum ve Tutum Ölçekleri

Tutum ve Tutum Ölçekleri Tutum ve Tutum Ölçekleri tutum bireye atfedilen ve bireyin psikolojik bir obje ile ilgili düşünce, duygu ve davranışlarını düzenli bir biçimde oluşturan eğilim Smith ( 1968 ) psikolojik obje birey için

Detaylı

Karar Destek Sistemleri. Bölüm 1: Karar Destek Sistemleri-Genel Kavramlar. Karar Verme 20.10.2014

Karar Destek Sistemleri. Bölüm 1: Karar Destek Sistemleri-Genel Kavramlar. Karar Verme 20.10.2014 Karar Destek Sistemleri Bölüm 1: Karar Destek Sistemleri-Genel Kavramlar Bölüm 2: CBS Tabanlı Çok Ölçütlü Karar Analizi Bölüm 3: Karmaşık Problemler için Analitik Hiyerarşi Yönteminin Kullanılması Yrd.

Detaylı

NETWORK MODELİ İLE AĞ ANALİZİ İÇİN ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİYLE KARŞILAŞTIRMALI ÇÖZÜM

NETWORK MODELİ İLE AĞ ANALİZİ İÇİN ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİYLE KARŞILAŞTIRMALI ÇÖZÜM NETWORK MODELİ İLE AĞ ANALİZİ İÇİN ÇOK KRİTERLİ KARAR VERME YÖNTEMLERİYLE KARŞILAŞTIRMALI ÇÖZÜM Deniz Koçak Gazi Üniversitesi, İktisadi ve İdari Bilimler, Ekonometri Bölümü, Ankara denizkocak36@gmail.com

Detaylı

Excel de Pivot Tablolar Tasarım ve Kullanımı

Excel de Pivot Tablolar Tasarım ve Kullanımı FARUK ÇUBUKÇU EXCEL AKADEMİ Excel de Pivot Tablolar Tasarım ve Kullanımı Pivot tablolar; satışlar, siparişler gibi verileri gruplamayı, alt toplamlarını almayı ve filtreleme işlemleri yapmayı sağlayan

Detaylı

Araç Lojistiği Firma Seçiminde, Entropy ile Ağırlıklandırılmış Promethee Karar Modeli. Mustafa Anıl DÖNMEZ*, Zerrin ALADAĞ**, F.

Araç Lojistiği Firma Seçiminde, Entropy ile Ağırlıklandırılmış Promethee Karar Modeli. Mustafa Anıl DÖNMEZ*, Zerrin ALADAĞ**, F. Araç Lojistiği Firma Seçiminde, Entropy ile Ağırlıklandırılmış Promethee Karar Modeli Mustafa Anıl DÖNMEZ*, Zerrin ALADAĞ**, F. Cengiz DĐKMEN*** Hoşgeldiniz *Arş.Gör.Mustafa Anıl Dönmez, Kocaeli Üniversitesi

Detaylı

BULANIK TOPSİS YÖNTEMİYLE TELEFON OPERATÖRLERİNİN DEĞERLENDİRİLMESİ

BULANIK TOPSİS YÖNTEMİYLE TELEFON OPERATÖRLERİNİN DEĞERLENDİRİLMESİ BULANIK TOPSİS YÖNTEMİYLE TELEFON OPERATÖRLERİNİN DEĞERLENDİRİLMESİ 1 İpek Nur Erkmen ve 2 Özer Uygun 1 Karabük-Sakarya Ortak Program, Fen Bilimleri Enstitüsü Endüstri Mühendisliği ABD, 2 Sakarya Üniversitesi

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

FMEA. Hata Türleri ve Etkileri Analizi

FMEA. Hata Türleri ve Etkileri Analizi FMEA Hata Türleri ve Etkileri Analizi 2007 FMEA Tanımı FMEA (HTEA), bir ürün veya prosesin potansiyel hatalarını ve bunların sonucu olabilecek etkilerini tanımlama, değerlendirme, potansiyel hatanın ortaya

Detaylı

Etki Analizinin Aşamaları

Etki Analizinin Aşamaları Analitik Araçlar ve Veri Toplama Çalıştayı 15-16 Nisan 2009 EuropeAid/125317/D/SER/TR Roman Ladus Oturum 6 Etkilerin Ölçülmesi Etki Analizinin Aşamaları Etkilerin Değerlendiril-mesi ve Opsiyonların Karşılaştırılması

Detaylı

EĞİTİM KURUMLARINDA PERFORMANS YÖNETİMİ VE ÖLÇÜMÜ Kemal Pehlivanoğlu Genel Müdür - İNKA Eğitim ve Danışmanlık A.Ş kpehlivanoglu@inkadanismanlik.com.

EĞİTİM KURUMLARINDA PERFORMANS YÖNETİMİ VE ÖLÇÜMÜ Kemal Pehlivanoğlu Genel Müdür - İNKA Eğitim ve Danışmanlık A.Ş kpehlivanoglu@inkadanismanlik.com. EĞİTİM KURUMLARINDA PERFORMANS YÖNETİMİ VE ÖLÇÜMÜ Kemal Pehlivanoğlu Genel Müdür - İNKA Eğitim ve Danışmanlık A.Ş kpehlivanoglu@inkadanismanlik.com.tr Performans yönetim sistemi, gerçekleştirilmesi beklenen

Detaylı

Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş noktası analizi Oyun kuramı

Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş noktası analizi Oyun kuramı Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2013-2014 Güz Dönemi Toplam maliyete/gelire göre yer seçimi Faktör ağırlıklandırma Başabaş

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

KALİTE SİSTEM YÖNETİCİSİ EĞİTİMİ

KALİTE SİSTEM YÖNETİCİSİ EĞİTİMİ FMEA-HATA TÜRLERİ VE ETKİ ANALİZİ Tanımlama Mevcut veya olası hataları ortaya koyan, bu hataların yaratabileceği etkileri göz önünde bulunduran ve etkilerine göre hataları önceliklendirerek oluşmalarının

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

AHP (ANALYTIC HIERARCHY PROCESS) YÖNTEMİ VE HAZIR BETON TESİSİ ARAZİ SEÇİMİNDE UYGULAMASI

AHP (ANALYTIC HIERARCHY PROCESS) YÖNTEMİ VE HAZIR BETON TESİSİ ARAZİ SEÇİMİNDE UYGULAMASI AHP (ANALYTIC HIERARCHY PROCESS) YÖNTEMİ VE HAZIR BETON TESİSİ ARAZİ SEÇİMİNDE UYGULAMASI ANALYTIC HIERARCHY PROCESS METHOD AND APPLICATION IN AREA SELECTION OF READY MIXED CONCRETE PLANT ÖZET Ömür TEZCAN*

Detaylı

YAZILIM PROJE YÖNETİMİ. Yrd.Doç.Dr.Hacer KARACAN

YAZILIM PROJE YÖNETİMİ. Yrd.Doç.Dr.Hacer KARACAN YAZILIM PROJE YÖNETİMİ Yrd.Doç.Dr.Hacer KARACAN İçerik Proje Türleri Projenin Başlatılması Projenin Seçilmesi Fayda Ölçüm Metotları Paydaşların Belirlenmesi Proje Türleri Projeler ürün ve süreçte yaptıkları

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

GENEL İŞLETME. Yrd. Doç. Dr. Hasan ALKAN KURULUŞ YERİ SEÇİMİ

GENEL İŞLETME. Yrd. Doç. Dr. Hasan ALKAN KURULUŞ YERİ SEÇİMİ GENEL İŞLETME Yrd. Doç. Dr. Hasan ALKAN KURULUŞ YERİ SEÇİMİ KURULUŞ YERİ İşletmenin faaliyette bulunduğu yerdir. Çeşitli alternatifler arasında en uygun kuruluş yerine karar verme önemli ve zor bir karardır.

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

DERS SEÇİMİNDE ANALİTİK HİYERARŞİ PROSES UYGULAMASI APPLICATION OF ANALYTICAL HIERARCHY PROCESS IN COURSE SELECTION

DERS SEÇİMİNDE ANALİTİK HİYERARŞİ PROSES UYGULAMASI APPLICATION OF ANALYTICAL HIERARCHY PROCESS IN COURSE SELECTION Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Y.2008, C.13, S.2 s.217-226 Suleyman Demirel University The Journal of Faculty of Economics and Administrative Sciences Y.2008,

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ

BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ Amaç Madde 1- (1) Yönergenin amacı, ders başarı notunun saptanmasında bağıl değerlendirme sisteminin uygulanması ile ilgili esasları

Detaylı

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR

BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR İÇİNDEKİLER BÖLÜM 1 ÖLÇME VE DEĞERLENDİRMEDE TEMEL KAVRAMLAR I. Öğretimde Ölçme ve Değerlendirmenin Gerekliliği... 2 II. Ölçme Kavramı... 3 1. Tanımı ve Unsurları... 3 2. Aşamaları... 3 2.1. Ölçülecek

Detaylı

Veri Toplama Teknikleri

Veri Toplama Teknikleri A. Gözlem Yoluyla Veri Toplama Teknikleri B. Soruşturma Yoluyla Nicel Veri Toplama Teknikleri Yazılı Soruşturma Tekniği Anket, Başarı Testi Yapılandırılmış Gözlem Önceden hazırlanmış göstergeler ve semboller

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS ÇOK KRİTERLİ KARAR VERME ESYE562 2 3+0 3 7

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS ÇOK KRİTERLİ KARAR VERME ESYE562 2 3+0 3 7 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS ÇOK KRİTERLİ KARAR VERME ESYE562 2 3+0 3 7 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Yüksek Lisans Seçmeli Dersin Koordinatörü

Detaylı

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN

KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN KABA KÜME TEORİSİ (Rough Set Theory) Dr. Sedat TELÇEKEN Giriş Bilgi teknolojisindeki gelişmeler ve verilerin dijital ortamda saklanmaya başlanması ile yeryüzündeki bilgi miktarı her 20 ayda iki katına

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Numerik Analiz BIL222 4 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

EK : DIŞSAL TASARRUFLAR ( EKONOMİLER )

EK : DIŞSAL TASARRUFLAR ( EKONOMİLER ) EK : DIŞSAL TASARRUFLAR ( EKONOMİLER ) Genel denge teorisinin sonuçlarının yatırım kararlarında uygulanamamasının iki temel nedeni şunlardır: 1) Genel denge teorisinin tam bölünebilirlik varsayımı her

Detaylı

BAĞIL DEĞERLENDİRME SİSTEMİ

BAĞIL DEĞERLENDİRME SİSTEMİ 1.1. Bağıl Değerlendirme Sistemi (BDS) BAĞIL DEĞERLENDİRME SİSTEMİ Her bir öğrencinin, aynı dersi takip eden öğrencilerin oluşturduğu ana kütle içerisinde yer alan diğer öğrencilerin başarı düzeylerine

Detaylı

RİSK DEĞERLENDİRME TEKNİKLERİNİN KARŞILAŞTIRILMASI. Abidin Özler Makine Müh. İGU (A) Meditek Yazılım

RİSK DEĞERLENDİRME TEKNİKLERİNİN KARŞILAŞTIRILMASI. Abidin Özler Makine Müh. İGU (A) Meditek Yazılım RİSK DEĞERLENDİRME TEKNİKLERİNİN KARŞILAŞTIRILMASI Abidin Özler Makine Müh. İGU (A) Meditek Yazılım Tanımlar Risk Değerlendirme : Risk yönetiminin bir parçası olup, hedeflerin nasıl etkilenebileceğini

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

AHP VE VIKOR YÖNTEMLERİ İLE AVRUPA BİRLİĞİ NE ÜYE ÜLKELER VE TÜRKİYE NİN EKONOMİK PERFORMANSLARININ DEĞERLENDİRİLMESİ

AHP VE VIKOR YÖNTEMLERİ İLE AVRUPA BİRLİĞİ NE ÜYE ÜLKELER VE TÜRKİYE NİN EKONOMİK PERFORMANSLARININ DEĞERLENDİRİLMESİ İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi Yıl: Özel Sayı: Bahar 0/ s.- AHP VE VIKOR YÖNTEMLERİ İLE AVRUPA BİRLİĞİ NE ÜYE ÜLKELER VE TÜRKİYE NİN EKONOMİK PERFORMANSLARININ DEĞERLENDİRİLMESİ

Detaylı

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme Yöntemleri & EBE Z Eğitimde Araştırma Yöntemleri (Fraenkel & Wallen, 1990), araştırma sonuçlarının genelleneceği (geçerli olacağı) büyük grup. Hedef evren, araştırmacının ulaşmak istediği, ancak ulaşması

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

EGE ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ ve HARFLİ SİSTEM UYGULAMA KLAVUZU

EGE ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ ve HARFLİ SİSTEM UYGULAMA KLAVUZU EGE ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİ ve HARFLİ SİSTEM UYGULAMA KLAVUZU I. BÖLÜM: KAPSAM ve TANIMLAR 1- Kılavuzun Dayanağı İşbu kılavuz 30.03.2004 tarih ve 25418 sayı ile Resmi Gazetede yayınlanan

Detaylı

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ Yasemin ŞİŞMAN, Ülkü KIRICI Sunum Akış Şeması 1. GİRİŞ 2. MATERYAL VE METHOD 3. AFİN KOORDİNAT DÖNÜŞÜMÜ 4. KALİTE KONTROL 5. İRDELEME

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

İmalat Alt Sektörlerinin Finansal Performanslarının TOPSIS ve ELECTRE Yöntemleri İle Değerlendirilmesi

İmalat Alt Sektörlerinin Finansal Performanslarının TOPSIS ve ELECTRE Yöntemleri İle Değerlendirilmesi Çankırı Karatekin Üniversitesi Y.2014, Cilt 4, Sayı 1, ss.237266 Y.2014, Volume 4, Issue 1, pp.237266 İmalat Alt Sektörlerinin Finansal Performanslarının TOPSIS ve ELECTRE Yöntemleri İle Değerlendirilmesi

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

ÇOK KRİTERLİ KARAR YÖNTEMLERİNDEN ELECTRE YÖNTEMİYLE MALATYA DA BİR KARGO FİRMASI İÇİN YER SEÇİMİ

ÇOK KRİTERLİ KARAR YÖNTEMLERİNDEN ELECTRE YÖNTEMİYLE MALATYA DA BİR KARGO FİRMASI İÇİN YER SEÇİMİ ÇOK KRİTERLİ KARAR YÖNTEMLERİNDEN ELECTRE YÖNTEMİYLE MALATYA DA BİR KARGO FİRMASI İÇİN YER SEÇİMİ Mustafa YÜCEL * Alptekin ULUTAŞ ** Özet Çok kriterli karar verme yöntemlerinden biri olan Electre yöntemi,

Detaylı

Sera Gazı Emisyonlarının İzlenmesi, Raporlanması ve Doğrulanması Konusunda Kapasite Geliştirme Projesi Belirsizlik Değerlendirmesi

Sera Gazı Emisyonlarının İzlenmesi, Raporlanması ve Doğrulanması Konusunda Kapasite Geliştirme Projesi Belirsizlik Değerlendirmesi Belirsizlik Değerlendirmesi 1 Sunum İçeriği Belirsizliğin Tanımı ve Gerekliliği Hesaplama Temelli Yöntemde Belirsizlik Ölçüm Temelli Yöntemde Belirsizlik Asgari Yöntemde Belirsizlik Hata Yayılma Kanunu

Detaylı

İlk Bölüm: Proje hazırlarken izlenmesi gereken yöntem ve yaklaşımlar

İlk Bölüm: Proje hazırlarken izlenmesi gereken yöntem ve yaklaşımlar İlk Bölüm: Proje hazırlarken izlenmesi gereken yöntem ve yaklaşımlar İkinci Bölüm: Nitelikli Proje Teklifi hazırlayabilmek için kullanılması gereken belgeler ve dikkat edilmesi gereken hususlar Üçüncü

Detaylı

Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması

Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması Taşıma Probleminde Optimum (En Uygun) Çözüm Bulanması Tevfik GÜYAGÜLER {*) GİRİŞ Bu yazıda çeşitli üretim merkezlerinde üretilen malların birden fazla tüketim merkezlerine nakledilmesinde taşıma maliyetini

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

1 ÜRETİM VE ÜRETİM YÖNETİMİ

1 ÜRETİM VE ÜRETİM YÖNETİMİ İÇİNDEKİLER ÖNSÖZ III Bölüm 1 ÜRETİM VE ÜRETİM YÖNETİMİ 13 1.1. Üretim, Üretim Yönetimi Kavramları ve Önemi 14 1.2. Üretim Yönetiminin Tarihisel Gelişimi 18 1.3. Üretim Yönetiminin Amaçları ve Fonksiyonları

Detaylı

ALTERNATİFLERİN KARŞILAŞTIRILMASI

ALTERNATİFLERİN KARŞILAŞTIRILMASI ALTERNATİFLERİN KARŞILAŞTIRILMASI KONU-5 EMY 521 MÜHENDİSLİK EKONOMİSİ 1 ALTERNATİFLERİN KARŞILAŞTIRILMASI Bu dersin temel amacı ekonomik analiz ve farklı alternatifler arasında karşılaştırma yapılması

Detaylı

Reyting Metodolojisi. Fonmetre Metodoloji Dokümanı Temmuz, 2012. 2012 Milenyum Teknoloji Bilişim Ar-Ge San. Tic. Ltd. Şti.

Reyting Metodolojisi. Fonmetre Metodoloji Dokümanı Temmuz, 2012. 2012 Milenyum Teknoloji Bilişim Ar-Ge San. Tic. Ltd. Şti. Reyting Metodolojisi Fonmetre Metodoloji Dokümanı Temmuz, 2012 İçerik Giriş Tarihçe Kategori Bazında Gruplama Yatırımcı İçin Anlamı Nasıl Çalışır? Teori Beklenen Fayda Teorisi Portföy Performans Ölçümü

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

SİSTEMİK ÖNEMLİ BANKALAR HAKKINDA YÖNETMELİK TASLAĞI. BİRİNCİ BÖLÜM Amaç ve Kapsam, Dayanak ve Tanımlar

SİSTEMİK ÖNEMLİ BANKALAR HAKKINDA YÖNETMELİK TASLAĞI. BİRİNCİ BÖLÜM Amaç ve Kapsam, Dayanak ve Tanımlar Bankacılık Düzenleme ve Denetleme Kurumundan (Taslak): SİSTEMİK ÖNEMLİ BANKALAR HAKKINDA YÖNETMELİK TASLAĞI BİRİNCİ BÖLÜM Amaç ve Kapsam, Dayanak ve Tanımlar Amaç ve kapsam MADDE 1 (1) Bu Yönetmeliğin

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Bilgi Güvenliği Risk Değerlendirme Yaklaşımları www.sisbel.biz

Bilgi Güvenliği Risk Değerlendirme Yaklaşımları www.sisbel.biz ISO/IEC 20000-1 BİLGİ TEKNOLOJİSİ - HİZMET YÖNETİMİ BAŞ DENETÇİ EĞİTİMİ Bilgi Güvenliği Risk Değerlendirme Yaklaşımları E1-yüksek seviye bilgi güvenliği risk değerlendirmesi Yüksek seviye değerlendirme,

Detaylı

DR. SERHAN KARABULUT DOÇ.DR. EBRU V. ÖCALIR AKÜNAL LPG TAŞIMA TANKERLERİ İÇİN COĞRAFİ BİLGİ SİSTEMİ TABANLI RİSK ANALİZİ

DR. SERHAN KARABULUT DOÇ.DR. EBRU V. ÖCALIR AKÜNAL LPG TAŞIMA TANKERLERİ İÇİN COĞRAFİ BİLGİ SİSTEMİ TABANLI RİSK ANALİZİ DR. SERHAN KARABULUT DOÇ.DR. EBRU V. ÖCALIR AKÜNAL LPG TAŞIMA TANKERLERİ İÇİN COĞRAFİ BİLGİ SİSTEMİ TABANLI RİSK ANALİZİ Takdim Planı Çalışmanın Amacı Problemin Tanımlanması Tehlikeli Madde Taşımacılığında

Detaylı

Mehmet KARA Bozok Üniversitesi İİBF İşletme Bölümü E-posta: mehmetkara44@yahoo.com

Mehmet KARA Bozok Üniversitesi İİBF İşletme Bölümü E-posta: mehmetkara44@yahoo.com ÜNİVERSİTE ÖĞRENCİLERİN İŞLETME BÖLÜMÜNÜ SEÇMELERİNDE ETKİLİ OLAN ÖNCELİKLİ FAKTÖRLERİN ANALİTİK HİYERARŞİ PROSESİ METODU İLE ANALİZİ: BOZOK ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİNDE BİR UYGULAMA

Detaylı

Gürcan Banger 21 Mayıs 17 Haziran 2012

Gürcan Banger 21 Mayıs 17 Haziran 2012 Gürcan Banger 21 Mayıs 17 Haziran 2012 Üretim Yatırımı Girişim kapsamında hedeflenen ürün veya hizmetlerin üretilmesi için gerekli işletme faaliyetleri planlanmalıdır. Girişimcinin uzmanlığına da bağlı

Detaylı

Değeri $ ve bataryası 7 dakika yetiyor;) Manyetik alan prensibine göre çalıştığı için şimdilik demir ve bakır kaplama yüzeylerde

Değeri $ ve bataryası 7 dakika yetiyor;) Manyetik alan prensibine göre çalıştığı için şimdilik demir ve bakır kaplama yüzeylerde 3.HAFTA Değeri 10.000$ ve bataryası 7 dakika yetiyor;) Manyetik alan prensibine göre çalıştığı için şimdilik demir ve bakır kaplama yüzeylerde kullanılabiliyor. Sistematik bir yöntem kullanmak suretiyle,

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Kural Motoru. www.paperwork.com.tr

Kural Motoru. www.paperwork.com.tr Kural Motoru www.paperwork.com.tr İş Kuralı Örnekleri Aşağıda iş kurallarına çeşitli örnekler verilmiştir; : İş Kuralı Nedir? T üm işletmeler kural merkezli çalışırlar. Kurallar hangi fırsatların takip

Detaylı

OPSİYONLARDAN KAYNAKLANAN PİYASA RİSKİ İÇİN STANDART METODA GÖRE SERMAYE YÜKÜMLÜLÜĞÜ HESAPLANMASINA İLİŞKİN TEBLİĞ

OPSİYONLARDAN KAYNAKLANAN PİYASA RİSKİ İÇİN STANDART METODA GÖRE SERMAYE YÜKÜMLÜLÜĞÜ HESAPLANMASINA İLİŞKİN TEBLİĞ Resmi Gazete Tarihi: 28.06.2012 Resmi Gazete Sayısı: 28337 OPSİYONLARDAN KAYNAKLANAN PİYASA RİSKİ İÇİN STANDART METODA GÖRE SERMAYE YÜKÜMLÜLÜĞÜ HESAPLANMASINA İLİŞKİN TEBLİĞ BİRİNCİ BÖLÜM Amaç ve Kapsam,

Detaylı

11.10.2015. Faktör Donatımı Teorisi (Heckscher Ohlin) Karşılaştırmalı Üstünlüklere Eleştiri. Heckscher Ohlin Modelinden Çıkartılan Teoremler

11.10.2015. Faktör Donatımı Teorisi (Heckscher Ohlin) Karşılaştırmalı Üstünlüklere Eleştiri. Heckscher Ohlin Modelinden Çıkartılan Teoremler Faktör Donatımı Teorisi (Heckscher hlin) Karşılaştırmalı Üstünlüklere Eleştiri Karşılaştırmalı üstünlükler teorisi uluslararası emek verimliliğindeki farklılıkların nedeni üzerinde durmamaktadır. Bu açığı

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

İç denetim birimleri, risk değerlendirme çalışmalarına ilişkin hususları bu rehbere uygun olarak kendi iç denetim birim yönergelerinde düzenlerler.

İç denetim birimleri, risk değerlendirme çalışmalarına ilişkin hususları bu rehbere uygun olarak kendi iç denetim birim yönergelerinde düzenlerler. KAMU İÇ DENETİMİNDE RİSK DEĞERLENDİRME REHBERİ I. GİRİŞ Bu rehber, iç denetim birimlerince hazırlanacak risk değerlendirme çalışmalarının temel esaslarını belirlemek üzere, İç Denetçilerin Çalışma Usul

Detaylı

PET ŞİŞE TEDARİKÇİSİ SEÇİMİNDE BULANIK AHP VE BULANIK TOPSIS YAKLAŞIMI * FUZZY AHP AND FUZZY TOPSIS APPROACH TO PET BOTTLE SUPPLIER SELECTION

PET ŞİŞE TEDARİKÇİSİ SEÇİMİNDE BULANIK AHP VE BULANIK TOPSIS YAKLAŞIMI * FUZZY AHP AND FUZZY TOPSIS APPROACH TO PET BOTTLE SUPPLIER SELECTION Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Y.202, C.7, S.3, s.35-37. Suleyman Demirel University The Journal of Faculty of Economics and Administrative Sciences Y.202, Vol.7,

Detaylı

15.433 YATIRIM. Ders 5: Portföy Teorisi. Bölüm 3: Optimum Riskli Portföy

15.433 YATIRIM. Ders 5: Portföy Teorisi. Bölüm 3: Optimum Riskli Portföy 15.433 YATIRIM Ders 5: Portföy Teorisi Bölüm 3: Optimum Riskli Portföy Bahar 2003 Giriş Riske maruz kalmanın etkisine karar verdikten sonra, yatırımcının sonraki işi riskli portföyü, r p oluşturmaktır.

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

MİLLÎ EĞİTİM BAKANLIĞI ORTAÖĞRETİM KURUMLARINA GEÇİŞ YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar

MİLLÎ EĞİTİM BAKANLIĞI ORTAÖĞRETİM KURUMLARINA GEÇİŞ YÖNERGESİ. BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar MİLLÎ EĞİTİM BAKANLIĞI ORTAÖĞRETİM KURUMLARINA GEÇİŞ YÖNERGESİ BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar Amaç MADDE 1- (1) Bu Yönergenin amacı, Millî Eğitim Bakanlığına bağlı resmî ve özel ortaöğretim

Detaylı

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

ULAŞTIRMA SEKTÖRÜNDE FAALİYET GÖSTEREN LOJİSTİK FİRMALAR İÇİN ARAÇ SEÇİMİ

ULAŞTIRMA SEKTÖRÜNDE FAALİYET GÖSTEREN LOJİSTİK FİRMALAR İÇİN ARAÇ SEÇİMİ T.C. KARA HARP OKULU SAVUNMA BİLİMLERİ ENSTİTÜSÜ MALZEME TEDARİK VE LOJİSTİK YÖNETİMİ ANA BİLİM DALI ULAŞTIRMA SEKTÖRÜNDE FAALİYET GÖSTEREN LOJİSTİK FİRMALAR İÇİN ARAÇ SEÇİMİ YÜKSEK LİSANS TEZİ Hazırlayan

Detaylı

2 İlişkisel Veritabanı Tasarımı. Veritabanı 1

2 İlişkisel Veritabanı Tasarımı. Veritabanı 1 2 İlişkisel Veritabanı Tasarımı Veritabanı 1 Veritabanı Tasarımı Tasarım yapılırken izlenecek adımlar; Oluşturulacak sistemin nelerden oluşması gerektiği ve hangi işlemlerin hangi aşamalarda yapıldığı

Detaylı

Excel' de formüller yazılırken iki farklı uygulama kullanılır. Bunlardan;

Excel' de formüller yazılırken iki farklı uygulama kullanılır. Bunlardan; 7. FORMÜLLER SEKMESİ Excel in en çok kullanılan yönü hesaplama yönüdür. Hesaplamalar Formüller aracılığıyla yapılır. Formüller sekmesi anlatılırken sık kullanılan formüller ve formül yazımı da anlatılacaktır.

Detaylı

KAMU İÇ DENETİMİNDE RİSK DEĞERLENDİRME REHBERİ

KAMU İÇ DENETİMİNDE RİSK DEĞERLENDİRME REHBERİ KAMU İÇ DENETİMİNDE RİSK DEĞERLENDİRME REHBERİ I. GİRİŞ Bu rehber, iç denetim birimlerince hazırlanacak risk değerlendirme çalışmalarının temel esaslarını belirlemek üzere, İç Denetçilerin Çalışma Usul

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

Sihirbaz Kullanarak Sorgu Oluştur : Sihirbaz sorguyu hazırlayan kişiye sorular sorar ve yanıtlarına göre sorgu oluşturur.

Sihirbaz Kullanarak Sorgu Oluştur : Sihirbaz sorguyu hazırlayan kişiye sorular sorar ve yanıtlarına göre sorgu oluşturur. BÖLÜM17 3. SORGULAR Access Veritabanında sorgu; tablolara yazılan bilgilerin hepsinin veya istenilen (belirlenen) şarta uyanlarının bulunmasıdır. Örneğin Tıp Fakültesinde okuyan öğrenciler gibi. Sorguları

Detaylı

Vakıf Üniversitesi Tercihinin Analitik Hiyerarşi Süreci İle Belirlenmesi VAKIF ÜNİVERSİTESİ TERCİHİNİN ANALİTİK HİYERARŞİ SÜRECİ İLE BELİRLENMESİ

Vakıf Üniversitesi Tercihinin Analitik Hiyerarşi Süreci İle Belirlenmesi VAKIF ÜNİVERSİTESİ TERCİHİNİN ANALİTİK HİYERARŞİ SÜRECİ İLE BELİRLENMESİ VAKIF ÜNİVERSİTESİ TERCİHİNİN ANALİTİK HİYERARŞİ SÜRECİ İLE BELİRLENMESİ Nihan ÖZGÜVEN 1 Özet: Günümüzde, devlet üniversitelerinin sayısının artmasıyla beraber vakıf üniversitelerinin de sayısı artmıştır.

Detaylı

JTL JTL. Journal of Transportation and Logistics 1 (1), School of Transportation and Logistics at Istanbul University. All rights reserved.

JTL JTL. Journal of Transportation and Logistics 1 (1), School of Transportation and Logistics at Istanbul University. All rights reserved. 1 (1), 2016 2016 School of Transportation and Logistics at Istanbul University. All rights reserved. Comparing MCDM Methods of AHP, TOPSIS and PROMETHEE: A Study on the Selection of Ship Main Engine System

Detaylı

BİRİNCİ BÖLÜM. Amaç, Kapsam, Dayanak ve Tanımlar

BİRİNCİ BÖLÜM. Amaç, Kapsam, Dayanak ve Tanımlar MİLLÎ EĞİTİM BAKANLIĞI ORTAÖĞRETİM KURUMLARINA GEÇİŞ YÖNERGESİ Amaç BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak ve Tanımlar MADDE 1-(1) Bu Yönergenin amacı, Millî Eğitim Bakanlığına bağlı resmî ve özel örgün ortaöğretim

Detaylı

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 Algoritmalar Ders 9 Dinamik Programlama SMY 544, ALGORİTMALAR, Güz 2015 Ders#9 2 Dinamik Programlama Böl-ve-fethet

Detaylı

18. ESRI KULLANICILAR KONFERANSI

18. ESRI KULLANICILAR KONFERANSI 18. ESRI KULLANICILAR KONFERANSI SEL VE TAŞKINA DUYARLI ALANLARIN CBS İLE BELİRLENMESİ: İSTANBUL AVRUPA YAKASI ÖRNEĞİ Arş.Grv. Mustafa YALÇIN Afyon Kocatepe Üniversitesi İÇERİK Sel ve Taşkın Duyarlılık

Detaylı

İNSAN KAYNAKLARI PERFORMANS YÖNETİMİ NEDİR?

İNSAN KAYNAKLARI PERFORMANS YÖNETİMİ NEDİR? İNSAN KAYNAKLARI PERFORMANS YÖNETİMİ NEDİR? Sefa ESEN Kurumsal Finansman Yönetmeni 1 Stratejik hedeflere ulaşmada stratejik plan çevriminin performans gözlemleme ve raporlama unsurları kurum tarafından

Detaylı

Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar

Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar Oyun Teorisi IENG 456 Karar Vermede Analitik Yaklaşımlar Bu ders notlarının hazırlanmasında Doç. Dr. İbrahim Çil in ders notlarından faydalanılmıştır. Yrd. Doç. Dr. Hacer GÜNER GÖREN Pamukkale Üniversitesi

Detaylı

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/ Eşzamanlı (Senkron) Ardışıl Devrelerin Tasarlanması (Design) Bir ardışıl devrenin tasarlanması, çözülecek olan problemin sözle anlatımıyla (senaryo) başlar. Bundan sonra aşağıda açıklanan aşamalardan geçilerek

Detaylı

OLASI HATA TÜRÜ VE ETKİLERİ ANALİZİ (FMEA) Mehmet Enes İnce

OLASI HATA TÜRÜ VE ETKİLERİ ANALİZİ (FMEA) Mehmet Enes İnce 1.GİRİŞ Her sektörde arzın arttığı ve iletişim teknolojilerinin çok geliştiği günümüz ekonomisinde işletmeler, varlıklarını devam ettirebilmek için sadece ucuz mal ya da hizmet üretimini değil, hem ucuz

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

2 İlişkisel Veritabanı Tasarımı ve Normalizasyon. Veritabanı 1

2 İlişkisel Veritabanı Tasarımı ve Normalizasyon. Veritabanı 1 2 İlişkisel Veritabanı Tasarımı ve Normalizasyon Veritabanı 1 Veritabanı Tasarımı Tasarım yapılırken izlenecek adımlar; Oluşturulacak sistemin nelerden oluşması gerektiği ve hangi işlemlerin hangi aşamalarda

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ

Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Bölüm 9 KÖK-YER EĞRİLERİ YÖNTEMİ Kapalı-döngü denetim sisteminin geçici-durum davranışının temel özellikleri kapalı-döngü kutuplarından belirlenir. Dolayısıyla problemlerin çözümlenmesinde, kapalı-döngü

Detaylı