BİYOİSTATİSTİK VE TIP BİLİŞİMİ ANABİLİM DALI YÜKSEK LİSANS Programın Yürütücüsü Programın Kadrolu Öğretim Üyeleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BİYOİSTATİSTİK VE TIP BİLİŞİMİ ANABİLİM DALI YÜKSEK LİSANS Programın Yürütücüsü Programın Kadrolu Öğretim Üyeleri"

Transkript

1 BİYOİSTATİSTİK VE TIP BİLİŞİMİ ANABİLİM DALI YÜKSEK LİSANS Programın Yürütücüsü Programın Kadrolu Öğretim Üyeleri : Prof.Dr. Saim YOLOĞLU : Doç.Dr.Cemil ÇOLAK Yrd.Doç.Dr. Harika Gözde GÖZÜKARA BAĞ Programa Kabul İçin Gerekli Ön Koşullar: Fen Fakültesi veya Fen Edebiyat Fakültesi İstatistik bölümü, Fen Fakültesi veya Fen Edebiyat Fakültesi İstatistik ve Bilgisayar Bilimleri bölümü ve Mühendislik Fakültesi Bilgisayar Mühendisliği bölümü mezunları kabul edilir. ZORUNLU DERSLER Dersin Kodu ve Adı T P Kr Akademik Kazanımlar Biyoistatistik Uzmanlık Alanı Tez Çalışması Seminer Olasılık ve Matrisler Kuramı Sağlık Bilimlerinde Araştırma Yöntemleri Sağlık Alanına Özel İstatistiksel Yöntemler SEÇMELİ DERSLER Dersin Kodu ve Adı T P Kr Yaşam Çözümlemesi(Sağ Kalım Analizi) Biyomedikal Deneylerde İstatistiksel Yöntemler Örnekleme Arş Değ. Bilgisayar ve İstatistiksel Yazılım Kul ZORUNLU DERSLER Uzmanlık Alanı Tez Çalışması Seminer Olasılık ve Matrisler Kuramı Dersin amacı: İstatistik bilimin temelini oluşturan olasılık kuramı ve tek ve çok değişkenli istatistikte matrislere dayalı işlemleri yapabilme becerisini kazandırmadır. Dersin İçeriği: Kümeler, permütasyon,, kombinasyon, raslantı değişkenleri, koşullu olasılık, dağılım fonksiyonu, olasılık fonksiyonu, bağımlı ve bağımsız olaylar, beklenen değer. Matris kavramı, matrislerde dört işlem, istatistiksel işlemlerde matris kullanımı. Sağlık Bilimlerinde Araştırma Yöntemleri Dersin Amacı: Araştırmacının çalışmasındaki amacı saptayabilme, istatistiksel hipotezleri belirleyebilme, hipotezlerine uygun istatistiksel yöntemleri seçebilme ve uygulayabilme, araştırma raporu yazabilme becerisi kazandırmadır. Dersin İçeriği: Araştırmanın planlanması, araştırma türleri, örnekleme,veri dizgeleme, verinin analizi, yorumu ve rapor yazımı.

2 Sağlık Alanına Özel İstatistiksel Yöntemler Dersin Amacı: Sağlık Alanına özel istatistiksel yöntemler hakkında teorik ve uygulamalı bilgilere sahip olma ve bölgeler/ülkeler arası karşılaştırma yapabilme ve yorumlayabilme becerisi kazandırmadır. Dersin İçeriği: Demografik İstatistikler, nüfus tahmin yöntemleri, yaşam tablosu, morbidite istatistikleri, hastalıkların uluslar arası sınıflandırılması, sağlık düzeyi göstergeleri ve sağlık kayıtları. SEÇMELİ DERSLER Yaşam Çözümlemesi (Sağ Kalım Analizi) Dersin Amacı: Sağ kalım çözümlemesi ve yöntemine karar verebilme, konu ile ilgili istatistiksel yöntemleri uygulayabilme becerisi kazandırmadır. Dersin İçeriği: Yaşam süresi ve bunları etkileyen yöntemlerin incelenmesinde kullanılan yöntemler, yaşam çözümlemesine giriş, başarısızlık süresi, hayat tablosu yöntemi, kaplan-meir yöntemi, cox regresyon yöntemi. Biyomedikal Deneylerde İstatistiksel Yöntemler Dersin Amacı: Biyolojik deneylerde kullanılan istatistiksel yöntemler hakkında bilgi sahibi olma. Dersin İçeriği. Nicel doz-cevap ilişkileri, tahmin yöntemleri, paralel doğrular deneyinde simetrik düzenler. Örnekleme: Dersin Amacı: Araştırmalarda kullanılacak örnekleme yöntemlerini öğrenme, örneklemeden kestirimler yapabilmeyi kazandırmadır. Dersin İçeriği: Tanımı, birimleri, olasılıklı ve olasılıklı olmayan örnekleme yöntemleri, basit rasgele örnekleme, küme örnekleme, tabakalı örnekleme, sistematik örnekleme, aşamalı örnekleme, büyüklüğe orantılı örnekleme, alan örneklemesi, kartopu örneklemesi. Araştırma Değerlendirmede Bilgisayar ve İstatistiksel Yazılım Kullanımı Dersin Amacı: Araştırma sonuçlarını değerlendirirken bilgisayar ortamında istatistiksel yazılımları kullanabilme becerisi kazandırmadır. Dersin İçeriği: Bilgisayar hakkında bilgi Windows işletim sistemi, SPSS for Windows istatistiksel yazılım programının kullanımı, microsta ve epi-info yazılım programlarının öğretilmesi, yazılımlara uygun veri tabanı oluşturma. BİLİMSEL HAZIRLIK PROGRAMI DERS MÜFREDATI KODU DERSİN ADI T P KR BTBHAZ01 İstatistiğe Giriş BTBHAZ02 Matematiksel İstatistik BTBHAZ03 Olasılık BTBHAZ04 Örnekleme BTBHAZ05 İstatistiksel Süreç Kontrol 3 0 3

3 1. İstatistiğe Giriş Tarihçe; Araştırma Kavramı ve İstatistik; Tanımlar; Veri Kavramı; Sıklık Çizelgeleri; Grafikler; Konum Ölçüleri; Değişim Ölçüleri; İki Değişkenli Veriler. 2. Matematiksel İstatistik Rastlantı Değişkenlerin Toplamları; Olasılıksal Eşitsizlikler ve Limit Yasaları; Örneklem Dağılımları; Sıralı İstatistikler; Nokta Tahmini; En İyi Yansız Tahmin; Yeterlilik; Aralık Tahmini; Sağlam İstatistiksel Yöntemler. 3.Olasılık Sıradüzen; Birleşim; Olasılığın Çeşitli Tanımları; Kuramsal Olasılık Kavramı; Koşullu Olasılık; Bağımsızlık; Bayes Teoremi; Olasılıksal Değişken Kavramı; Bir Boyutlu Olasılıksal Değişkenlerin Olasılıksal Dağılımları; Koşullu Dağılımlar; Dönüştürme. 4.Örnekleme Tanımlar; Basit Rasgele Örnekleme; Örneklem Büyüklüğünün Tahmini; Tabakalı Örnekleme; Tabakalı Rasgele Örnekleme; Oransal Tahminler; Doğrusal Regresyon Tahmini; Sistematik Örnekleme; Küme Örneklemesi; İki Aşamalı Örnekleme. 5.İstatistiksel Süreç Kontrol İstatistiksel Süreç Kontrol'ün (İPK) kalite kontrolündeki yeri ve önemi; temel istatistik teknikler; süreç yeterlilik analizi; Hata Türleri Etkileri Analizi (FMEA)

4 MERSİN ÜNİVERSİTESİ VE İNÖNÜ ÜNİVERSİTESİ BİYOİSTATİSTİK ve TIP BİLİŞİMİ ANABİLİM DALI ORTAK DOKTORA PROGRAMI Programın Öğretim Üyeleri: Prof. Dr. Saim YOLOĞLU Doç. Dr. Cemil ÇOLAK Yrd. Doç. Dr. Harika G.G. BAĞ Prof. Dr. Arzu KANIK Doç. Dr. Bahar TAŞDELEN Yrd. Doç. Dr. İlter HELVACI Programa Kabul İçin Gerekli Ön Koşullar: Biyoistatistik alanında yüksek lisans yapmış olmak ZORUNLU DERSLER Dersin Kodu ve Adı T P Kr Akademik Kazanımlar Biyoistatistik Uzmanlık Alanı Tez Çalışması Seminer I Seminer II Çok Değişkenli İstatistiksel Yöntemler I Çok Değişkenli İstatistiksel Yöntemler II İleri Biyoistatistik SEÇMELİ DERSLER Dersin Kodu ve Adı T P Kr Regresyon Çözümlemesi I Regresyon Çözümlemesi II Zaman Serileri Analizi Klinik Denemeler Uyum Analizi Geçerlik ve Güvenirlik Analizi Sağlık Bilimlerinde İleri Araştırma Yöntemleri Kategorik Veri Analizi Çok Boyutlu Ölçeklendirme Analizi Sağlıkla İlgili Araştırmalarda Biyoistatistik Danışmanlık Kavramı İstatistiksel Hesaplama I İstatistiksel Hesaplama II Örnek Genişliği ve Güç Genetik Araştırmalarda İstatistiksel Yöntemler Biyoinformatik Veri Madenciliği Bilgi Güvenliği ve Standardizasyonu Veritabanı Yönetim Sistemleri 2 2 3

5 ZORUNLU DERSLER Uzmanlık Alanı Tez Çalışması Seminer I Seminer II Biyoistatistik Frekans dağılımları ve tanımlayıcı istatistiksel ölçüler. Tablo ve grafikyöntemleri. Parametrik ve parametrik olmayan önemlilik testleri, Basit doğrusal regresyon ve korelasyon. Çok Değişkenli İstatistiksel Yöntemler I Temel matris bilgisi, çok değişkenli analizlerde veri matrisi ve tanımlayıcı ölçüler, çok değişkenli grafikler ve standartlaştırma, çok değişkenli normal dağılım ve aşırı gözlemler, eksik veriler ve incelenmesi, uzaklık ve benzerlik ölçüleri ve çok değişkenli hipotez testleri Çok Değişkenli İstatistiksel Yöntemler II Sınıflandırma analizleri (Diskriminant, kümeleme analizi), gruplama analizleri (temel bileşenler analizi ve faktör analizi), çoklu ilişki analizi, çoklu çapraz tablo analizi İleri Biyoistatistik Tekrarlı ölçümlerde varyans analizi modelleri; Kovaryans analizi modelleri; çoklu doğrusal regresyon modelleri; doğrusal olmayan regresyon modeller lojistik regresyon modelleri. SEÇMELİ DERSLER Regresyon Çözümlemesi I Çoklu doğrusal regresyon ve doğrusal olmayan regresyon yöntemleri Regresyon Çözümlemesi II Lojistik regresyon yöntemleri ve kanonik korelasyon analizi Zaman Serileri Analizi Zaman serisi tanımı ve genel özellikleri, zaman serisi çözümü ve aşamaları, trend analizi, hareketli ortalama yöntemi ve mevsimsel modeller Klinik Denemeler Tanımlar ve protokoller, deneme düzenleri ve çözümleme yöntemleri, yanlılık kaynakları ve önleme yöntemleri, randamizasyon, veri kalitesinin denetlenmesi, intent to treat, biyoyaralanım ve biyoeşdeğerlik Uyum Analizi Tanımlar, varsayım ve aşamaları, basit uyum analizinde profiller ağırlıklar ve uzaklıklar, inertia kavramı, Çoklu uyum analizi Geçerlik ve Güvenirlik Analizi Ölçme ve değerlendirme, geçerlik ve güvenirlik kavramları, testlerde geçerlik çeşitleri ve ölçüleri, güvenirlik ölçütleri ve kestirimi, kappa katsayısı, grup içi korelasyon katsayıları, item analizi, Sağlık Bilimlerinde İleri Araştırma Yöntemleri Sağlıkla ilgili araştırmalarda kullanılan yöntemlerin ön şartlara, örnek genişliğine ve değişken sayısına bağlı olarak etkinliğinde oluşacak değişimlerin simulasyon yöntemleriyle test edilmesindeki önemli

6 aşamalar. Yeni önerilecek yöntemler için teorik ve deneysel olarak dağılım belirleme ve tablo değerleri oluşturmada genel esaslar Kategorik Veri Analizi İki boyutlu tablolar için çıkarsamalar, iki sonuçlu bağımlı değişkenler için modeller, lojistik, logit ve probit modeller. İkiden çok sonuçlu bağımlı değişkenlerde kullanılan modeller ve log-dogrusal modeller Çok Boyutlu Ölçeklendirme Analizi Uzaklık ve yakınlık ölçütlerinin tanımlanması, Sadece grafiksel yolla çok değişkenli yapının özetlenmesi, değişkenler arası etkileşimlerin grafiksel olarak gösterilmesi, Faktör analiziyle olan farklılık ve benzerliklerinin incelenmesi Sağlıkla İlgili Araştırmalarda Biyoistatistik Danışmanlık Kavramı Sağlık alanında yapılan araştırmalarda profesyonel danışmanlık kavramı. Türkiye deki ve dünyadaki danışmanlık hizmetleri, Bilimsel bir araştırmada biyoistatistik danışmanlık süreci. İyi bir danışmanın özellikleri İstatistiksel Hesaplamalar I İstatistiksel hesaplama programlarından SPSS ve Minitab ın tanıtımı, özellikleri ve uygulamaları İstatistiksel Hesaplamalar II İstatistiksel hesaplama programlarından MATLAB ve STATISTICA nın tanımı, özellikleri ve uygulamaları Örnek Genişliği ve Güç Araştırmaların planlanması aşamasında, uygun sonuçlara ulaşabilmek için gerekli olan örnek genişliğinin belirlenmesi, bilinen ve yaygın kullanılan istatistik testlerinin prior (ön) ve posterior (son) güç hesapları Genetik Araştırmalarda İstatistiksel Yöntemler Genetik analiz yöntemlerine giriş ve genetik terminoloji, genetik veri tabanlarının kullanımı, Genetik verilerde ön analiz yöntemleri, micrroarray deney düzenlerine istatistiksel yaklaşım, microarray veri analiz yöntemleri Biyoinformatik Displinlerarası bir bilim dalı olan biyoinformatikte bilgi ve bilginin ölçülmesi, biyoinformatikte temel kavramlar, biyoinformatik araştırmalarda R ve MATLAB yazılımlarının kullanımı Veri Madenciliği Veri madenciliğine giriş, veri hazırlama yöntemleri, veri küpleri ve OLAP teknolojisine giriş, birliktelik kuralları, sınıflama teknikleri, yapay sinir ağları, destek vektör makineleri ve karar ağacı algoritmaları Bilgi Güvenliği ve Standardizasyonu Bilgi Güvenliği Kavramına Giriş; Bilgi Güvenliği Yönetimi ve Standartlar; TS ISO/IEC Bilgi Güvenliği Yönetim Sistemi Standardı; CIA yaklaşımı; Bilgi Güvenliği Tehditleri; Bilgi Güvenliği Programının Yapısı; Bilgi Güvenliği Politikaları; Varlık Sınıflaması ve Değerlendirme; Erişim Kontrolü; Fiziksel Güvenlik; Risk Analizi; Risk Yönetimi; İş Sürekliliği Planlama. Veritabanı Yönetim Sistemleri Veri Tabanı Kavramı; İlişkisel Veritabanı Modeli; Aşamalı Veritabanı Modeli; Veri Tabanlarının Mantıksal Tasarımı; İlişkisel Veritabanı Modelinin Fiziksel Tasarımı; Yapısal Sorgulama Dili (SQL); SQL ile İlişkisel Veri Tabanı Tasarımı; Dağıtık Veri Tabanları; Nesne Tabanlı Veritabanı Yönetim Sistemleri; Uzman Veritabanı Sistemleri; ORACLE PL/SQL ile Uygulama.

7 JOINT DOCTORAL PROGRAM OF INONU UNIVERSITY INSTITUDE OF HEALTH SCIENCES DEPARTMENT OF DEPARTMENT OF BIOSTATISTICS AND MEDICAL INFORMATICS AND MERSİN UNIVERSITY INSTITUDE OF HEALTH SCIENCES DEPARTMENT OF BIOSTATISTICS AND MEDICAL INFORMATICS Lecturers: Prof. Dr. Saim YOLOĞLU Prof. Dr. Arzu KANIK (Mersin University) Assoc. Prof. Dr. Cemil ÇOLAK Assoc. Prof. Dr. Bahar TAŞDELEN (Mersin University) Asst. Prof. Dr. İlter HELVACI (Mersin University) Asst. Prof. Dr. Harika G.G. BAĞ Prerequisites for Admission: To have a Master Degree in Biostatistics COMPULSORY COURSES Code and Title of Course T P Cr Academic Acquisitions Biostatistics Multivariate Statistical Methods I Multivariate Statistical Methods II Specialization Courses Thesis Seminar I Seminar II ELECTIVE COURSES Code and Title of Course T P Cr Regression Analysis I Regression Analysis II Time Series Analysis Clinical Trials Correspondence Analysis Validity and Reliability Analysis Advanced Research Methods in Health Sciences Categorical Data Analysis Multi Dimensional Scaling Analysis Statistical Consulting in Biostatistics Statistical Computing I Statistical Computing II Sample Size and Power Statistical Methods in Genetic Research Bioinformatics Data Mining Information Security and Standardization Database Management Systems 2 2 3

8 COMPULSORY COURSES Biostatistics Data organizing and summarizing, tables and graphs methods, parametric and non-parametric statistical methods, linear regression and correlation, Multivariate Statistical Methods I Basic matrix operations, Multivariate data matrices and descriptive statistics, Standardization, multivariate normal distribution and examining the normality, Missing values and examining missing values, Multivariate hypothesis tests Multivariate Statistical Methods II Classification analysis (Discriminant, cluster analysis ), grouping analysis (principle component analysis and factor analysis), multiple correlation analysis, multiple cross table analysis Specialization Courses Thesis Seminar I Seminar II ELECTIVE COURSES Regression Analysis I Multiple linear regression and nonlinear regression methods Regression Analysis II Logistic regression methods and canonical correlation analysis Time Series Analysis Definition and general properties of time series analysis, Time series analysis and stages of analysis, trend analysis, moving averages method and seasonal models Clinical Trials Introduction to clinical trials, basic definitions, Clinical trial designs and analysis, Bias in clinical trials: Blinding and Randomization, data quality monitoring, intent to treat, Bioavailability, Bioequivalence Correspondence Analysis Summarizing categorical data, determining relationship between categorical variables and categorical multivariate model analysis Validity and Reliability Analysis Measurement and evaluation, the validity and reliability concepts, types and measures of validity in tests, the estimation and measures of reliability, kappa coefficient, intraclass correlation coefficients, item analysis, Advanced Research Methods in Health Sciences Testing the changes in effectiveness of the current methods in biostatistics research depending on prerequisites, sample size and the number of variables with simulation methods, Determining theoretical and experimental distribution for new proposed methods and the general principles of creating a table of values

9 Categorical Data Analysis Inferences for two-way tables, Generalized linear models for binary variables and link functions: logistic regression, logit models and probit models, Models for ordinal and multinomial dependent variables, Log-linear models Multi Dimensional Scaling Dimensions of distance and proximity definitions, summarizing the structure of multi-dimensional scaling only with the graphical way, Summarizing interactions between variables with the graphical way, Examining the differences and similarities with factor analysis Statistical Consulting in Biostatistics The concept of professional consultancy in the field of health, Consulting services in Turkey and the world, the process of biostatistics consulting in scientific research, properties of a good consultant Statistical Computing I General properties, definitions and applications of SPSS and MİNİTAB statistical softwares Statistical Calculations II General properties, definitions and applications of MATLAB and STATISTICA statistical softwares Sample Size and Power Determination of sample size to achieve appropriate results at the planning stage of research, prior to known and widely used statistical tests prior and posterior power calculations Statistical Methods in Genetic Research Introduction to genetic analysis methods and genetic terminology, the use of genetic databases, preanalysis methods in the genetic data, statistical approach to microarray experimental schemes, microarray data analysis methods Bioinformatics Measurement of knowledge in bioinformatics, basic concepts of bioinformatics, the use of R and MATLAB softwares in bioinformatics research and applications Data Mining Introduction to Data Mining, data preparation methods, data cubes and introduction to OLAP technology, association rules, classification techniques, artificial neural networks, support vector machines and decision-tree algorithms Information Security and Standardization Introduction to information security concept; information security management and standards TS ISO/IEC Information Security Management System Standard; CIA approach; Information Security Threats; Information Security Program Structure; Information Security Policies; Asset Classification and Evaluation; access control; physical security; risk analysis; risk management; Business continuity planning Database Management System Database concept; Relational database model; Progressive database model; Logical design of databases; physical design of relational database model; Structured Query Language (SQL); SQL and relational database design; Distributed databases; Object oriented database management systems; Expert database systems; Application with ORACLE PL/SQL

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir.

UYGULAMA 1 SPSS E GİRİŞ. SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. 1 UYGULAMA 1 SPSS E GİRİŞ SPSS; File, Edit, View, Data, Transform, Analyze, Graphs, Utilities, Window, Help adlı 10 adet program menüsü içermektedir. Bu menülerin işlevleri ve alt menüleri ile komutları

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI Kırıkkale Üniversitesi Fen-Edebiyat Fakültesi İstatistik Bölümü Lisans Programı, Kırıkkale Üniversitesi Önlisans ve Lisans

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Yönetim Bilişim Sistemleri (Karma) - 1. yarıyıl. 380000000001101 Hukukun Temelleri Fundamentals of Law 2 0 0 2 2 5 TR

Yönetim Bilişim Sistemleri (Karma) - 1. yarıyıl. 380000000001101 Hukukun Temelleri Fundamentals of Law 2 0 0 2 2 5 TR - - - - - Bölüm Seçin - - - - - Gönder Yönetim Bilişim Sistemleri (Karma) - 1. yarıyıl 141000000001101 Akademik ve Sosyal Oryantasyon Academic and Social Orientation 1 0 0 1 0 1 TR 380000000001101 Hukukun

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

Endüstri Mühendisliği - 1. yarıyıl. Academic and Social Orientation. 441000000001101 Fizik I Physics I 3 0 1 4 4 6 TR

Endüstri Mühendisliği - 1. yarıyıl. Academic and Social Orientation. 441000000001101 Fizik I Physics I 3 0 1 4 4 6 TR - - - - - Bölüm Seçin - - - - - Gönder Endüstri Mühendisliği - 1. yarıyıl 141000000001101 Akademik ve Sosyal Oryantasyon Academic and Social Orientation 1 0 0 1 0 1 TR 441000000001101 Fizik I Physics I

Detaylı

YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ YENİ DERS MÜFREDATI (1) FAKÜLTESİ: İŞLETME FAKÜLTESİ / BUSINESS SCHOOL

YÖNETİM BİLİŞİM SİSTEMLERİ BÖLÜMÜ YENİ DERS MÜFREDATI (1) FAKÜLTESİ: İŞLETME FAKÜLTESİ / BUSINESS SCHOOL (3) SINIFI: 1. Yıl Güz Dönemi MIS101 BİLGİSAYAR PROGRAMLAMA 1 COMPUTER PROGRAMMING 1 Z 3-0 4 BUS101 BİLİM VE TEKNOLOJİ TARİHİ HISTORY OF SCIENCE AND TECHNOLOGY Z 3-0 4 BUS103 İŞLETMECİLER İÇİN MATEMATİK

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

(saat/hafta) (saat/hafta) Biyoistatistik SBF 118 6. Bahar 2 - - 3 Önkoşullar

(saat/hafta) (saat/hafta) Biyoistatistik SBF 118 6. Bahar 2 - - 3 Önkoşullar BİYOİSTATİSTİK Dersin Adı Kodu Yarıyıl Teori Laboratuar AKTS Biyoistatistik SBF 118 6. Bahar 2 - - 3 Önkoşullar Dersin dili Dersin Türü Yok Türkçe Seçmeli Dersin öğrenme ve öğretme Teorik Dersler teknikleri

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (08 19 Haziran 2015) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör

Detaylı

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507004832007 KALİTE KONTROLÜ Seçmeli 4 7 3 Dersin Amacı Günümüz sanayisinin rekabet ortamında kalite kontrol gittikçe önem kazanan alanlardan birisi

Detaylı

3.YIL/ 1.yarıyıl Güz

3.YIL/ 1.yarıyıl Güz BİYOİSTATİSTİK Dersin Adı Kodu Yarıyıl Teori Laboratuar AKTS Biyoistatistik SBF 118 3.YIL/ 1.yarıyıl Güz (saat/hafta) (saat/hafta) (saat/hafta) 2 - - 3 Önkoşullar Yok Dersin dili Türkçe Dersin Türü Seçmeli

Detaylı

Temel Biyoistatistik Kursu-I

Temel Biyoistatistik Kursu-I Düzenleyen: Çanakkale Onsekiz Mart Üniversitesi Tıp Fakültesi Biyoistatistik ve Tıp Bilişimi AD, Sürekli Eğitim Merkezi Temel Biyoistatistik Kursu-I ÇANAKKALE, 17-20 Şubat 2011 Bilgi ve Kayıt : sem.comu.edu.tr

Detaylı

Akdeniz Üniversitesi

Akdeniz Üniversitesi F. Ders Tanıtım Formu Dersin Adı Öğretim Dili Akdeniz Üniversitesi İSTATİSTİKSEL ANALİZ I Türkçe Dersin Verildiği Düzey Ön Lisans ( ) Lisans (*) Yüksek Lisans( ) Doktora ( ) Eğitim Öğretim Sistemi Örgün

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (2016) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör Yardımcısı:

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

ANKARA ÜNİVERSİTESİ ÖĞRENCİ İŞLERİ DAİRE BAŞKANLIĞI

ANKARA ÜNİVERSİTESİ ÖĞRENCİ İŞLERİ DAİRE BAŞKANLIĞI Sıra Numarası Dersin ön koşulu var mı? *** Dersin önceki eğitim programında eşdeğer bir dersi var mı? **** Kuramsal Uygulama ve Laboratuvar TOPLAM SAAT Ulusal kredi AKTS Kredisi ANKARA ÜNİVERSİTESİ ANADAL

Detaylı

Ders Programı Sağlık Yönetimi Bölümü

Ders Programı Sağlık Yönetimi Bölümü Ders Programı Sağlık Yönetimi Bölümü BİRİNCİ YIL 1. Dönem (Güz) 2. Dönem (Bahar) Dersin Adı T U Kredi Dersin Adı T U Kredi Akademik ve Sosyal Oryantasyon 1 0 1 Toplum ve Sağlık 0 Yönetim ve Organizasyon

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

T.C. AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÖNETİM KURULU KARARLARI

T.C. AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÖNETİM KURULU KARARLARI Toplantı Tarihi : 02.08.2013 Toplantı Sayısı : 019 T.C. AFYON KOCATEPE ÜNİVERSİTESİ YÖNETİM KURULU KARARLARI KARAR 2013/019-01: Enstitümüz disiplinler arası İş Güvenliği Tezsiz Yüksek Lisans İkinci Öğretim

Detaylı

SAP FORUM İSTANBUL Discover Simple Kararlarınızı ileri analitiklerle aydınlatın

SAP FORUM İSTANBUL Discover Simple Kararlarınızı ileri analitiklerle aydınlatın SAP FORUM İSTANBUL Discover Simple Kararlarınızı ileri analitiklerle aydınlatın Konuşmacı Adı : Beyhan BOYACIOGLU Firma Adı : METRIC Yazılım Use this title slide only with an image Gündem İleri Analiz

Detaylı

Öğrenciler analiz programları hakkında bilgi sahibi olurlar

Öğrenciler analiz programları hakkında bilgi sahibi olurlar Ders Öğretim Planı Dersin Kodu 0000 Dersin Seviyesi Lisans Dersin Adı Bilgisayar Destekli Tasarım ve İmalat Dersin Türü Yıl Yarıyıl AKTS Seçmeli Dersin Amacı İmalat amaçlı bir endüstriyel tasarımda, tasarım

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

Epi Info Kullanımı AMACI: Epi Info Programı ile veri tabanı hazırlayabilme ve veri girişi yapabilme becerisi kazanmak ÖĞRENİM HEDEFLERİ Epi Info bileşenlerini tanımlayabilmek Epi Info Make View programında

Detaylı

EĞİTİM BİLİMLERİ ANABİLİM DALI EĞİTİM PROGRAMLARI VE ÖĞRETİM BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI

EĞİTİM BİLİMLERİ ANABİLİM DALI EĞİTİM PROGRAMLARI VE ÖĞRETİM BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI EĞİTİM BİLİMLERİ ANABİLİM DALI EĞİTİM PROGRAMLARI VE ÖĞRETİM BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI BİLİMSEL HAZIRLIK GÜZ YARIYILI DERSLERİ EGB501 Program Geliştirmeye Giriş

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) YÖNEYLEM ARAŞTIRMA - 3 EN-422 4/II 2+1+0 2,5 3 Dersin Dili : İngilizce Dersin Seviyesi

Detaylı

I. YIL YY KODU Z/S DERSİN ADI DERSİN İNGİLİZCE ADI HAFTALIK DERS SAATI (T + U)-KREDISI

I. YIL YY KODU Z/S DERSİN ADI DERSİN İNGİLİZCE ADI HAFTALIK DERS SAATI (T + U)-KREDISI NEVġEHĠR ÜNĠVERSĠTESĠ ĠKTĠSADĠ VE ĠDARĠ BĠLĠMLER FAKÜLTESĠ ĠġLETME N.Ö. BÖLÜMÜ LĠSANS ÖĞRETĠM PLANI I. YIL YY KODU Z/S DERSİN ADI DERSİN İNGİLİZCE ADI HAFTALIK DERS SAATI İŞL-101 Z Davranış Bilimleri-I

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Toplum Tabanlı Bir Çalışmada Çoklu Uygunluk Analizi ve Kümeleme Analizi ile Sağlık Kurumu Seçimi

Toplum Tabanlı Bir Çalışmada Çoklu Uygunluk Analizi ve Kümeleme Analizi ile Sağlık Kurumu Seçimi Toplum Tabanlı Bir Çalışmada Çoklu Uygunluk Analizi ve Kümeleme Analizi ile Sağlık Kurumu Seçimi Aslı SUNER 1 Can Cengiz ÇELİKOĞLU 2 Özet Çoklu Uygunluk Analizi, kategorik değişkenlerin yorumlanmasını

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati Kredi AKTS (T+U+L) İSTATİSTİKSEL KALİTE KONTROL EN-412 4/I 3+0+0 3 5 Dersin Dili : Türkçe Dersin Seviyesi

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri Elementary Education Online, 12(1), k: 1 6, 2013. İlköğretim Online, 12(1), b:1 6, 2013. [Online]: http://ilkogretim online.org.tr KİTAP İNCELEMESİ SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

Detaylı

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010)

İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) İSTATİSTİK BÖLÜMÜ DERS İÇERİKLERİ (2009 2010) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) STAT 101 Temel İstatistik I (3 2 4) İstatistik bilimi. Verilerin görsel sunumu. Frekans tablosu oluşturma. Gövde yaprak

Detaylı

GEDİZ ÜNİVERSİTESİ PSİKOLOJİ YÜKSEK LİSANS PROGRAMI

GEDİZ ÜNİVERSİTESİ PSİKOLOJİ YÜKSEK LİSANS PROGRAMI GEDİZ ÜNİVERSİTESİ PSİKOLOJİ YÜKSEK LİSANS PROGRAMI I. YARIYIL PSI 501 İleri İstatistik Zorunlu 3 0 3 8 Seçmeli Seçmeli 3 0 3 8 II. YARIYIL Seçmeli Seçmeli 3 0 3 8 Seçmeli Seçmeli 3 0 3 8 III. YARIYIL

Detaylı

Veritabanı Tasarım ve Yönetimi (COMPE 341) Ders Detayları

Veritabanı Tasarım ve Yönetimi (COMPE 341) Ders Detayları Veritabanı Tasarım ve Yönetimi (COMPE 341) Ders Detayları Ders Adı Veritabanı Tasarım ve Yönetimi Ders Kodu COMPE 341 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Güz 3 2 0 4 5 Ön Koşul

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

Araştırma Yöntemleri. SPSS Uygulamalı. IBU Publications

Araştırma Yöntemleri. SPSS Uygulamalı. IBU Publications Araştırma Yöntemleri SPSS Uygulamalı IBU Publications Araştırma Yöntemleri SPSS Uygulamalı Authors: Prof. Dr. Hüseyin PADEM Yrd. Doç. Dr. Ali GÖKSU Arş. Gör. Zafer KONAKLI hpadem@ibu.edu.ba agoksu@ibu.edu.ba

Detaylı

MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ Endüstri Mühendisliği Bölümü

MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ Endüstri Mühendisliği Bölümü MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ Endüstri Mühendisliği Bölümü Lisans Öğretim Planı (Türkçe) - 8 YARIYILLIK LİSANS MÜFREDATI I. SEMESTER MAT111 Matematik I Calculus I 4 0 4 5 FİZ101 Fizik I Physics I 3

Detaylı

Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS

Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS Ders Kodu Ders Adı İngilizce Ders Adı TE PR KR AKTS FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ABD YÜKSEK LİSANS ANABİLİM DALI KODU : 81109 01.Yarıyıl Dersleri Ders Kodu INS735* 02.Yarıyıl Dersleri Ders Adı İngilizce Ders Adı TE PR KR AKTS Ders Kodu Ders

Detaylı

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI

ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI ÇOK DEĞĐŞKENLĐ ĐSTATĐSTĐKLERĐN ARAŞTIRMALARDA KULLANIMI Araştırmalarda incelenen olaylar göstermektedir ki tek değişkenli istatistiklerin kullanılması problemi açıklamakta yetersiz ve eksik kalmaktadır.

Detaylı

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Çankırı Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 3(1): 191-198 Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Özet Bu çalışmanın amacı, üniversite

Detaylı

1.SINIF 1. DÖNEM DERS MÜFREDATI. (9) TEORİ/UYG. (SAAT) MATH 101 Matematik I Calculus I Zorunlu 4-6 PHYS 101 Fizik I Physics I Zorunlu 3 2 6 ECE 101

1.SINIF 1. DÖNEM DERS MÜFREDATI. (9) TEORİ/UYG. (SAAT) MATH 101 Matematik I Calculus I Zorunlu 4-6 PHYS 101 Fizik I Physics I Zorunlu 3 2 6 ECE 101 1.SINIF 1. DÖNEM MÜFREDATI (3)SINIFI : 1 MATH 101 Matematik I Calculus I Zorunlu 4-6 PHYS 101 Fizik I Physics I Zorunlu 3 2 6 ECE 101 Elektronik ve Haberleşme Introduction to Electronics and Mühendisliğine

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ DERS BİLDİRİM FORMU

T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ DERS BİLDİRİM FORMU T.C. ADANA BİLİM VE TEKNOLOJİ ÜNİVERSİTESİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ DERS BİLDİRİM FORMU 1.YARIYIL Dersin Adı HIS101 Atatürk İlkeleri ve İnkılap Tarihi-I Zorunlu 2 0 NC 2 Okt.Alper KÜÇÜKDURMAZ MAT101

Detaylı

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department

The Study of Relationship Between the Variables Influencing The Success of the Students of Music Educational Department 71 Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Yıl 9, Sayı 17, Haziran 2009, 71-76 Müzik Eğitimi Anabilim Dalı Öğrencilerinin Başarılarına Etki Eden Değişkenler Arasındaki İlişkinin İncelenmesi

Detaylı

Klinik Çalışmalarda Örneklem Genişliğinin Belirlenmesine Pratik Yaklaşımlar

Klinik Çalışmalarda Örneklem Genişliğinin Belirlenmesine Pratik Yaklaşımlar Kafkas Univ Vet Fak Derg 16 (2): 205-211, 2010 DOI:10.9775/kvfd.2009.527 RESEARCH ARTICLE Klinik Çalışmalarda Örneklem Genişliğinin Belirlenmesine Pratik Yaklaşımlar Neslihan DEMİREL * Selma GÜRLER * *

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

PSK 510 Research Methods and Advanced Statistics

PSK 510 Research Methods and Advanced Statistics PSK 510 Research Methods and Advanced Statistics Lecture 09: PCA and FA Doğan Kökdemir, PhD http://www.kokdemir.info dogan@kokdemir.info 1 İstatistik Las Meninas - Picasso 2 Gerçek Las Meninas - Diego

Detaylı

Öğrenim Bilgisi. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik

Öğrenim Bilgisi. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik Sema BEHDİOĞLU E-posta : sema.behdioglu@dpu.edu.tr Telefon : 0 (274) 265 20 31-2116 Öğrenim Bilgisi Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü (2000) Uygulamalı İstatistik Yüksek Anadolu

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI 1. YIL 1. DÖNEM BİL 103 Bilgisayar Bilimlerine Giriş 2 0 2 3 Z BİL 113 Bilgisayar

Detaylı

MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ Endüstri Mühendisliği Bölümü. Lisans Öğretim Planı (%30 İngilizce Ağırlıklı) - 8 YARIYILLIK LİSANS MÜFREDATI

MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ Endüstri Mühendisliği Bölümü. Lisans Öğretim Planı (%30 İngilizce Ağırlıklı) - 8 YARIYILLIK LİSANS MÜFREDATI MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ Endüstri Mühendisliği Bölümü Lisans Öğretim Planı (%30 İngilizce Ağırlıklı) - 8 YARIYILLIK LİSANS MÜFREDATI I. SEMESTER MATH111 Matematik I Calculus I 4 0 4 5 PHY101 Fizik

Detaylı

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü

Temel İstatistik 2012 Y. Doç. Dr. İbrahim Turan SPSS. Analiz Menüsü SPSS Analiz Menüsü 1- Reports: a) OLAP Cubes: Seçilen değişkenlerin istatistiksel işlemlerini yapar. b) Case summaries: Verilerin frekans ve çapraz tablolarının oluşturulması, belirtici istatistiklerin

Detaylı

CISSP HAZIRLIK EĞĠTĠMĠ

CISSP HAZIRLIK EĞĠTĠMĠ CISSP HAZIRLIK EĞĠTĠMĠ CISSP Sertifikasyonu Eğer bilgi güvenliği üzerine bir kariyer planlıyorsanız profesyoneller için günümüzün en gözde bilgi güvenliği sertifikası Certified Information Systems Security

Detaylı

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. BUHAR KAZANLARI Seçmeli 4 7 3

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. BUHAR KAZANLARI Seçmeli 4 7 3 Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507004472007 BUHAR KAZANLARI Seçmeli 4 7 3 Dersin Seviyesi Lisans Dersin Amacı Bu dersin amacı, öğrencilerin buhar kazanları ile ilgili

Detaylı

2012-2013 EĞİTİM ÖĞRETİM YILINDAN İTİBAREN GEÇERLİ OLACAK NEVŞEHİR ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME İ.Ö

2012-2013 EĞİTİM ÖĞRETİM YILINDAN İTİBAREN GEÇERLİ OLACAK NEVŞEHİR ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME İ.Ö NEVŞEHİR ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME İ.Ö. BÖLÜMÜ LİSANS ÖĞRETİM PLANI I. YIL YY KODU Z/S DERSİN ADI DERSİN İNGİLİZCE ADI HAFTALIK DERS SAATI İŞLİÖ-101 Z Davranış Bilimleri-I

Detaylı

AVRASYA ÜNİVERSİTESİ

AVRASYA ÜNİVERSİTESİ Ders Tanıtım Formu Dersin Adı Öğretim Dili ARAŞTIRMA YÖNTEMLERİ-II Türkçe Dersin Verildiği Düzey Ön Lisans () Lisans (X) Yüksek Lisans() Doktora ( ) Eğitim Öğretim Sistemi Örgün Öğretim (X) Uzaktan Öğretim(

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

NECMETTİN ERBAKAN ÜNİVERSİTESİ SAĞLIK BİLİMLERİ FAKÜLTESİ HEMŞİRELİK BÖLÜMÜ LİSANS PROGRAMI

NECMETTİN ERBAKAN ÜNİVERSİTESİ SAĞLIK BİLİMLERİ FAKÜLTESİ HEMŞİRELİK BÖLÜMÜ LİSANS PROGRAMI NECMETTİN ERBAKAN ÜNİVERSİTESİ SAĞLIK BİLİMLERİ FAKÜLTESİ HEMŞİRELİK BÖLÜMÜ LİSANS PROGRAMI HEMŞİRELİK BİRİNCİ SINIF Birinci Yarıyıl (Güz Dönemi) Mikrobiyoloji-Parazitoloji 2 2 4 Biyokimya 2 0 4 Anatomi

Detaylı

KLİNİK ARAŞTIRMALARDA İKİ ÖLÇÜM TEKNİĞİNİN UYUMUNU İNCELEMEDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER

KLİNİK ARAŞTIRMALARDA İKİ ÖLÇÜM TEKNİĞİNİN UYUMUNU İNCELEMEDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER ANKARA ÜNİVERSİTESİ TIP FAKÜLTESİ MECMUASI Cilt 56, Sayı 1, 2003 1-6 KLİNİK ARAŞTIRMALARDA İKİ ÖLÇÜM TEKNİĞİNİN UYUMUNU İNCELEMEDE KULLANILAN İSTATİSTİKSEL YÖNTEMLER Yasemin Genç* Durdu Sertkaya** Selda

Detaylı

SOSYAL BİLİMLER ENSTİTÜSÜ SINIF ÖĞRETMENLİĞİ YÜKSEK LİSANS PROGRAMI DERS KATALOĞU. 1. Yıl. Kodu Ders Adı AKTS Kredisi Z/S Dili

SOSYAL BİLİMLER ENSTİTÜSÜ SINIF ÖĞRETMENLİĞİ YÜKSEK LİSANS PROGRAMI DERS KATALOĞU. 1. Yıl. Kodu Ders Adı AKTS Kredisi Z/S Dili SOSYAL BİLİMLER ENSTİTÜSÜ SINIF ÖĞRETMENLİĞİ YÜKSEK LİSANS PROGRAMI DERS KATALOĞU 1. Yıl Kodu Ders Adı AKTS Kredisi Z/S Dili GÜZ DÖNEMİ ESN725 Eğitimde Araştırma Yöntem ve Teknikleri 6 3 0 3 Zorunlu Türkçe

Detaylı

T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI 2010-11 Güz Yarıyılı

T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI 2010-11 Güz Yarıyılı T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI 2010-11 Güz Yarıyılı VERĠ TABANI VE YÖNETĠMĠ BIL301 6 AKTS Kredisi 3. yıl 5. yarıyıl Lisans Zorunlu 4 saat/hafta

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

VERİ MADENCİLİĞİNE BAKIŞ

VERİ MADENCİLİĞİNE BAKIŞ VERİ MADENCİLİĞİNE BAKIŞ İçerik Veri Madenciliği Neden Veri Madenciliği? Veri ve Veri Madenciliğinin Önemi Günümüzde Kullanılan Veri Madenciliğinin Çeşitli İsimleri Veri Madenciliği Nedir? Neden Veri Madenciliği?

Detaylı

İzmit Meslek Yüksekokulu Muhasebe ve Vergi Uygulamaları Programı

İzmit Meslek Yüksekokulu Muhasebe ve Vergi Uygulamaları Programı İzmit Meslek Yüksekokulu Muhasebe ve ergi Uygulamaları Programı Listesi 1. YARIYIL Adı T L U 9905005 AIT105 Atatürk İlkeleri ve İnkılap Tarihi I Zorunlu Türkçe 2 0 0 2 2 9903309 YDB103 İngilizce I Zorunlu

Detaylı

BİLGİ VE BELGE YÖNETİMİ BÖLÜMÜ 2015-2016 EĞİTİM ÖĞRETİM ÖĞRETİM YILI GÜZ PROGRAMI

BİLGİ VE BELGE YÖNETİMİ BÖLÜMÜ 2015-2016 EĞİTİM ÖĞRETİM ÖĞRETİM YILI GÜZ PROGRAMI ANADAL EĞİTİM PROGRAMI ZORUNLU DERSLERİ.SINIF/. YARIYIL 2 3 YDİ0 YDF0 YDA0 ATA0 Temel Yabancı Dil (İngilizce) (Basic Foreign Language) (English) Temel Yabancı Dil (Fransızca) (Basic Foreign Language) (French)

Detaylı

TÜRKÇE ANABİLİM DALI TÜRKÇE EĞİTİMİ BİLİM DALI YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI

TÜRKÇE ANABİLİM DALI TÜRKÇE EĞİTİMİ BİLİM DALI YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI TÜRKÇE ANABİLİM DALI TÜRKÇE EĞİTİMİ BİLİM DALI YÜKSEK LİSANS PROGRAMI 2011 2012 EĞİTİM ÖĞRETİM PLANI GÜZ YARIYILI DERSLERİ Dersin Kodu Dersin Adı T U K Dersin Türü TEA 500* Seminer 020 Zorunlu TEA 501

Detaylı

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

MAKİNE MÜHENDİSLİĞİ MÜFREDATI

MAKİNE MÜHENDİSLİĞİ MÜFREDATI SINIF-DÖNEM : 1. Sınıf - Güz DERS KODU MATH 101 PHYS 101 CHEM 101 MCE 101 MCE 103 ENG 101 TDL 101 Matematik I Calculus I Z 4 0 6 Fizik I Physics I Z 3 2 6 Genel Kimya General Chemistry Z 3 0 5 Makina Mühendisliğine

Detaylı

15.10.2015 tarih ve 1009 sayılı Eğitim Komisyonu Kararı Eki

15.10.2015 tarih ve 1009 sayılı Eğitim Komisyonu Kararı Eki 5.0.205 tarih ve 009 sayılı Eğitim Komisyonu Kararı Eki Tablo ÖĞRETİM PROGRAMI TABLOSU Fen Fakültesi Aktüerya Bilimleri Bölümü Lisans Programı * GÜZ BAHAR. YARIYIL 2. YARIYIL ING 27 - İngilizce I 2 2 ING

Detaylı

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

DERS TANITIM BİLGİLERİ

DERS TANITIM BİLGİLERİ DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Kalite Planlama ve Kontrol ES4136 4/ Bahar (3+0+0) 3 4 Dersin Dili : Türkçe Dersin Seviyesi : Lisans, Zorunlu Dersin Önkoşulu

Detaylı

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL: IST101 BİLGİSAYAR PROGRAMLAMA I (223) Bilgisayar Donanımı, İşletim Sistemleri, Windows Kullanımı, Microsoft Word,

Detaylı

Türkçe Eğitimi Anabilim Dalı- Tezli Yüksek Lisans Programı Ders İçerikleri

Türkçe Eğitimi Anabilim Dalı- Tezli Yüksek Lisans Programı Ders İçerikleri Türkçe Eğitimi Anabilim Dalı- Tezli Yüksek Lisans Programı Ders İçerikleri 1. Yıl Ders Planı 1. Yarıyıl Türkçe Öğretiminde Çağdaş Yaklaşımlar ETO701 1 2 + 1 7 Türkçe öğretiminde geleneksel uygulamalardan

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ Adı Soyadı E-posta İletişim Adresileri : Özge CAĞCAĞ YOLCU : ozge.cagcag_yolcu@kcl.ac.uk ozgecagcag@yahoo.com : Giresun Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği

Detaylı

İstatistiksel Analizlerinizde ve Veri Madenciliği Çalışmalarınızda SPSS Kullanımı

İstatistiksel Analizlerinizde ve Veri Madenciliği Çalışmalarınızda SPSS Kullanımı İstatistiksel Analizlerinizde ve Veri Madenciliği Çalışmalarınızda SPSS Kullanımı Gündemimiz AIMS Hakkında IBM SPSS Analitik Çözüm Platformu IBM SPSS Statistics Uygulamaları IBM SPSS Modeler Uygulamaları

Detaylı

T.C. İZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF CIVIL ENGINEERING. Course Name T P L ECTS

T.C. İZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF CIVIL ENGINEERING. Course Name T P L ECTS FIRST YEAR 1st semesr T.C. İZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF CIVIL ENGINEERING MAT101 Calculus I Mamatik I PHY101 Physics I Fizik I 3 0 2 7 CHE101 Chemistry

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS YAPAY ZEKA BG-421 4/2 2+1+0 2+.5 4 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Kredisi. Dersin Sorumlusu (Course Code) (Credit)

Kredisi. Dersin Sorumlusu (Course Code) (Credit) MAKİNE MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI (Mechanical Engineering) ME 502 Advanced Numerical Methods for Engineers Yrd.Doç.Dr.Ender YILDIRIM ME 506 Advanced Heat Transfer Prof.Dr. Nevzat ONUR and Applications

Detaylı

BARTIN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ORMAN MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS PROGRAMI DERS TANITIM VE UYGULAMA BİLGİLERİ DERS BİLGİLERİ

BARTIN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ORMAN MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS PROGRAMI DERS TANITIM VE UYGULAMA BİLGİLERİ DERS BİLGİLERİ BARTIN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ORMAN MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS PROGRAMI DERS TANITIM VE UYGULAMA BİLGİLERİ DERS BİLGİLERİ Ders Adı Kodu Yarıyıl T+U Saat Kredi AKTS Fayda-Değer

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatistikciler.org İstatistikçiler Dergisi (28) 6-22 İstatistikçiler Dergisi COX REGRESYON MODELİ VE AKCİĞER KANSERİ VERİLERİ İLE BİR UYGULAMA Durdu KARASOY Hacettepe Üniversitesi Fen Fakültesi İstatistik

Detaylı

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste 3. sınıf 5. Yarıyıl (Güz Dönemi) Bilgi Kaynaklarının Tanımlanması ve Erişimi I (AKTS 5) 3 saat Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste Kütüphane Otomasyon

Detaylı

YILDIRIM BEYAZIT ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ SOSYAL POLİTİKA LİSANSÜSTÜ PROGRAMLARI

YILDIRIM BEYAZIT ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ SOSYAL POLİTİKA LİSANSÜSTÜ PROGRAMLARI YILDIRIM BEYAZIT ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ SOSYAL POLİTİKA LİSANSÜSTÜ PROGRAMLARI SOSYAL POLİTİKA Tezli Yüksek Lisans Programı Tezli yüksek lisans programında eğitim dili Türkçe dir. Programın

Detaylı

YILDIRIM BEYAZIT ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ MALİYE BÖLÜMÜ LİSANSÜSTÜ PROGRAMLARI

YILDIRIM BEYAZIT ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ MALİYE BÖLÜMÜ LİSANSÜSTÜ PROGRAMLARI YILDIRIM BEYAZIT ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ MALİYE BÖLÜMÜ LİSANSÜSTÜ PROGRAMLARI YÜKSEK LİSANS PROGRAMLARI MALİYE Tezli Yüksek Lisans Programı Maliye tezli yüksek lisans programının eğitim

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Matlab Programlama BIL449 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-16 GÜZ YARIYILI VE SONRASINDA UYGULANACAK LİSANS PROGRAMI (%100 İNGİLİZCE) BİRİNCİ YIL 1. DÖNEM Ön

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Olasılık ve Rastgele Değişkenler EEE214 4 3 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu /

Detaylı

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir.

Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. BİYOİSTATİSTİK Üretim Süreci: Girdi İşlem Ürün (Sonuç) Araştırma Süreci: Hangi alanda olursa olsun araştırma bir BİLGİ ye ulaşma sürecidir. Veri Analiz Bilgi El ile ya da birtakım bilgisayar programları

Detaylı

2012-2013 EĞİTİM ÖĞRETİM YILINDAN İTİBAREN GEÇERLİ OLACAK NEVŞEHİR ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT-İ.Ö

2012-2013 EĞİTİM ÖĞRETİM YILINDAN İTİBAREN GEÇERLİ OLACAK NEVŞEHİR ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İKTİSAT-İ.Ö I. YIL YY KODU Z/S DERSİN ADI DERSİN İNGİLİZCE ADI HAFTALIK DERS SAATI ECTS KREDİSİ İKTİÖ-101 Z Davranış Bilimleri Introduction to Behavioral Sciences 3+0-3 3 İKTİÖ-103 Z Genel Muhasebe-I Financial Accounting

Detaylı

ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ

ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ ÖĞRENCİLERİNİN SINAV NOTLARI DAĞILIMININ DEĞERLENDİRİLMESİ: İNŞAAT MÜHENDİSLİĞİ ÖĞRENCİLERİ ÖRNEĞİ Barış Yılmaz Celal Bayar Üniversitesi, Manisa baris.yilmaz@bayar.edu.tr Tamer Yılmaz, Celal Bayar Üniversitesi,

Detaylı

2013-2014 ACADEMIC YEAR CURRICULUM OF DEPARTMENT OF LOGISTICS MANAGEMENT FIRST SEMESTER

2013-2014 ACADEMIC YEAR CURRICULUM OF DEPARTMENT OF LOGISTICS MANAGEMENT FIRST SEMESTER 2013-2014 ACADEMIC YEAR CURRICULUM OF DEPARTMENT OF LOGISTICS MANAGEMENT FIRST SEMESTER ENG 102 Akademik Sunum Becerileri Academic Presentation Skills 2 2 3 6 HVI 101 Sivil Havacılığa Giriş Introduction

Detaylı