Konular. Formüller. Ünlü Geometriciler

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Konular. Formüller. Ünlü Geometriciler"

Transkript

1 Giriş

2

3 Konular Formüller Ünlü ciler

4 Pappus Descartes Pisagor Penrose Öklid Euler

5 Pisagor Teoremi Arı Peteklerinin Altıgen Olması Topoloji Fraktal Düzgün Çokyüzlüler Pick Teoremi Altın Oran Pi Sayısı

6 Popüler Ünlü çiler

7 Goldbach Sanısı Çokgen Sayılar Bölme Çıkarma Basamak Değeri Doğal Sayılar İrrasyonel Sayılar Rasyonel Sayılar Karmaşık Sayılar Asal Sayılar Dolu Tanesi Sayıları Pi Sayısı Napier in Kemikleri Çarpma Toplama Tam Sayılar Sayı Değeri Eratoshenes in Kalburu Fermat ın Son Teoremi Reel Sayılar Smith Sayıları Pascal Üçgeni Altın Oran Mükemmel Sayılar

8 Gauss Napier El Horezmi Eratoshones Ömer Hayyam Platon Fermat Fibonacci

9 340 yılı sıralarında İskenderiye'de doğmuş olan Pappus, bu okulun son büyük matematikçisidir. Almagest ve Elementler'e şerhler yazmış, ancak bunlar günümüze kadar ulaşamamıştır. Bugün büyük kısmı elimizde olan tek eseri ise Matematik Kolleksiyonu adını taşımaktadır. Bu yapıt, dönemin geometri bilginlerine en güç matematik çalışmalarının kısa bir analizini vermek ve açıklayıcı teoremlerle bunların incelenmesini kolaylaştırmak amacıyla yazılmış olmalıdır. Pappus bu kitapta, Pythagoras teoreminin genelleştirilmesi, bir açının üçe bölünmesi, spiral, konkoid, quadratrix, topolojik cisimler, involüt, mekanik, otomatlar, su saatleri, hareketli küreler gibi birçok konuyu ele alıp değerlendirmiştir. Matematik Kolleksiyonu, Aristaios, Eukleides, Apollonios, Eratosthenes gibi kalburüstü Yunan matematikçilerinin kayıp eserleri hakkında da zengin bilgiler vermektedir.

10 René Descartes (Röne Dekart okunur) (Fransız matematikçi, bilimada31 Mart Şubat 1650mı ve filozof. Batı düşüncesinin son yüzyıllardaki en önemli düşünürlerinden biri

11 Roger Penrose, İngiliz fizikçi, astrofizikçi, kozmolog ve matematikçidir. Doğumu 8 Ağustos 1931, Colchester, Essex, İngiltere. 1970'lerde Roger Penrose, o güne kadar imkansız olduğu düşünülen, "yüzeylerin beşli simetri ile kaplanması nı mümkün kılan ve Penrose Karoları olarak adlandırılan karo kümelerini bulmuştur. Anasayfa

12 Emanuel Handmann' nin çizimiyle Leonhard Euler Doğumu 15 Nisan 1707 İsviçre / Basel Ölümü 18 Eylül 1783 Rusya / St. Petersburg Leonhard Euler (d. 15 Nisan 1707, Basel, İsviçre - ö. 18 Eylül 1783, St. Petersburg, Rusya), İsviçreli matematikçi ve fizikçi. 18. yüzyıl'ın ın en önemli ve tüm zamanların önde gelen matematikçilerinden biri kabul edilmektedir. En üretken matematikçilerden biri olarak çalışmalarının bütünü 70 cildi aşmaktadır. Euler pek çok yeni kavram geliştirmiş, basit aritmetikten sayılar teorisi ve topolojiye kadar farklı alanlarda uzun süre kabul gören birçok teorem ispatlamıştır. Bu çalışmaları esnasında, günümüzde kullanılan modern matematik terminolojisinin yaratıcısı olmuş fonksiyon kavramı ve onun yazımını tanımlamıştır (yaptığı bu çalışma için verilebilecek örneklerden bazıları trigonometrik fonksiyonlar için yaptığı sin, cos ve tan tanımlamalarıdır).

13 Eflatun (d. M.Ö ö. M.Ö. 347) çok önemli bir Antik Yunan filozofu. Hayatını geçirdiği Atina daki ünlü akademiyi kurdu. Asıl adıaristokles'di. Geniş omuzları ve atletik yapısı nedeniyle, Yunanca Platon (geniş göğüslü) lakabı ile anıldı ve tanındı. Adı Eflatun temsili Eflatun veya Platon Doğumu M.Ö. 427 Ölümü M.Ö. 347 Okul/gelenek Eflatunculuk İlgilendikleri retorik, sanat, edebiyat, epist emoloji,adalet, erdem, politi ka, eğitim, ail e Önemli katkı ları,militarizm Platonik realizm Yirmi yaşından itibaren ölümüne kadar yanından ayrılmadığı Sokrates in öğrencisi ve Aristoteles in hocası olmuştur. Atina da Akademi nin kurucusudur. Eflatun un felsefi görüşlerinin üzerinde hala tartışılmaktadır. Eflatun, batı felsefesinin başlangıç noktası ve ilk önemli filozofudur. Antik çağ yunan felsefesinde, Sokrates öncesi filozoflar (ilk filozoflar veya doğa filozofları) daha ziyade materyalist (özdekçi) görüşler üretmişlerdir. Antik felsefenin maddeci öğretisi, atomcu Demokritos ile en yüksek seviyeye erişmiş, buna mukabil düşünceci (idealist) felsefe, Eflatun ile doruk noktasına ulaşmıştır. Eflatun bir sanatçı ve özellikle edebiyatçı olarak yetiştirilmiş olmasından büyük ölçüde istifade etmiş, kurguladığı düşünsel ürünleri, çok ustaca, ve şiirsel bir anlatımla süsleyerek, asırlar boyu insanları etkilemeyi başarmıştır. Modern filozoflardan Alfred North Whitehead e göre Eflatun dan sonraki bütün batı felsefesi onun eserine düşülmüş dipnotlardan başka bir şey değildir. Görüşleri İslam ve Hristiyan felsefesine derin etkide bulunmuştur. Eflatun, eserlerini diyaloglar biçiminde yazmıştır. Diyaloglardaki baş aktör çoğunlukla Sokrates tir. Sokrates insanlarla görüşlerini tartışır ve onların görüşlerindeki tutarsızlıkları ortaya koyar. Eflatun çoğunlukla görüşlerini Sokrates in ağzından açıklamıştır. Eflatun, algıladığımız dış dünyanın esas gerçek olan idealar ya da formlar dünyasının kusurlu kopyaları olduğunu, gerçeğe ancak düşünce ve tahayyül yoluyla ulaşılabileceğini savunmuş, insan ruhunun ölümden sonra beden dışında kalıcı olan idealar dünyasına ulaşacağını söylemiştir. Görüşleri ortaçağda İslam filozofları tarafından korunmuş ve İslam düşünce dünyasındaki Yeni Eflatunculuk akımına neden olmuştur. Rönesans sonrasında Batı Avrupa'da Antik Yunancadan çevirileri yapılmıştır.

14 Adı Doğumu Ölümü Okul/gelenek İlgilendikleri Pisagor büstü (Musei Capitolini, Roma) Sisamlı Pisagor M.Ö. 580 M.Ö. 572 Sisam M.Ö. 500 M.Ö. 490 Metapontum Pisagorculuk metafizik, müzik, matematik, etik,p olitika Önemli katkıları musica universalis, altın oran,pisagor teoremi, Pisagor akordu Pisagor ya da Pythagoras (Yunancada: Πσθαγόρας), M.Ö M.Ö. 500 tarihleri arasında yaşamış olan İyonlu filozof, matematikçi ve Pisagorculuk olarak bilinen akımın kurucusu. En iyi bilinen önermesi; adıyla anılan Pisagor önermesidir. "Sayıların babası" olarak bilinir. Pisagor ve öğrencileri her şeyin matematikle ilgili olduğuna; sayıların nihai gerçek olduğuna; matematik aracılığıyla her şeyin tahmin edilebileceğine ve ölçülebileceğine inanmışlardır. Kendisini filozof (υιλο-σουος), yani bilgeliğin dostu olarak adlandıran ilk kişiydi. Pisagor düşüncelerini yazıyla yaymadığı için onun hakkında bildiklerimiz öğrencilerinin yazılarında anlattıklarıyla sınırlıdır. Pisagor'a atfedilen birçok eser gerçekte onun öğrencilerinin olabilir.

15 Doğum M.Ö 330 İskenderiye, Mı sır Ölüm M.Ö 275 Milliyeti Dalı Önemli başarıl arı Yunan Matematik Öklid bağıntıları (ögeleri) Öklid geçmiş matematikçilerin içinde adı geometri ile en çok özleştirilen kişidir. dünyasında kapladığı bu seçkin yeri kendisinin büyük bir matematikçi olmasından çok, geometrinin başlangıcından kendi zamanına kadar bilinen ismi ile Öğeler adını taşıyan kitabında toplamıştır. Öklid derlemesinin tutarlı bir bütün olmasını sağlamak için, kanıt gerektirmeyen apaçık gerçekler olarak 5 aksiyom ortaya koyar. Diğer bütün önermeleri bu aksiyomlardan çıkarır. Öklid geometrisi 19. yüzyılın başına kadar rakipsiz kaldı. Hatta 20. yüzyılın ortalarına kadar bile orta öğretimde geometri, Öklid'in öğelerine bağlı olarak okutuldu. Öklid'in yaşamı konusunda hemen,hemen hiçbir şey bilinmiyor. Önceleri bir Yunan kenti olan Megara'da doğduğu sanıldıysa da, sonradan Megaralı Öklid'in, Öğeler'in yazarı İskenderiyeli Öklid'den yüzyıl kadar yaşamış olan bir felsefeci olduğu ortaya çıkmıştır. Öklid üzerinde çalıştığı proje hakkında diyor ki: "bir doğru istenildiği kadar uzatabilir." ve "İki noktadan bir ve yanlız bir doğru gecer."

16 Alman kökenli matematikçi ve bilim adamı. Katkıda bulunduğu alanlardan bazıları; sayılar kuramı, analiz, diferansiyel geometri, jeodezi, manyetizma, astronomi ve optiktir. "Matematikçilerin prensi" ve "antik çağlardan beri yaşamış en büyük matematikçi" olarak da bilinen Gauss, [ matematiğin ve bilimin pek çok alanına etkisini bırakmıştır ve tarihin en nüfuzlu matematikçilerinden biri olarak kabul edilir. Gauss'un çocukluk yıllarından beri dahi olduğunu gösteren pek çok hikâye vardır, nitekim pek çok matematiksel keşfini henüz 20 yaşına gelmeden yapmıştır. Sayılar kuramının önemli sonuçlarını derleyip kendi katkılarını da ekleyerek yazdığı büyük eseri Disquisitiones Arithmeticae'yi 21 yaşında (1798) bitirmişse de, eser ilk olarak 1801'de basılmıştır.

17 John Napier veya latinceleştirildi Neper, Merchiston-Edinburgh'da 1550 yılında doğdu, 3 Nisan 1617 in Merchiston Castle'de öldü. Merchiston Baronu ve İskoçya'lı bir matematikçi olan Napier, logaritmanın bulucusu olarak bilinir. Napier, Saint Andrews Üniversitesinde eğitim görmüş ve matematiği de içinden gelen bir merak olarak izlemiştir. Kendisi, amatör bir matematikçidir. Sayısal hesaplamaları kolaylaştıracak bir yol ararken, önce Napier cetvelleri diye bilinen, üzerinde rakamlar yazılmış küçük değnekler yardımıyla yapılan bir çarpma veya bölme yöntemi buldu. 1, 2, 3,... şeklindeki aritmetik dizi ile, buna karşılık gelen 10, 100, 1000,... biçimindeki geometrik dizi arasındaki, ilişkiyi gördü yılında yazdığı "Logaritma Kurallarının Tanımı" adlı eserinde, aritmetik dizi ile geometrik dizinin karşılaştırılmasından, matematiğe logaritma kavramını getirdi. Günümüzdekilerden farklı olarak kurulan bu diziler, logaritmayı, sayısının azalan bir fonksiyonu olarak tanımlıyordu. Buradaki aritmetik dizi, geometrik dizinin logaritmasıdır. Oxford Üniversitesi matematik profesörü Henri Briggs, Napier'in bu buluşunu benimsedi ve adi log cetvelinin hazırlanmasıyla ilgili düşüncelerini Napier'e açıklamak için Edinburgh'a gitti. Napier, 1618 ve 1624 yılları arasında kusursuz iki logaritma cetveli yayınladı. Bu eser onun tam yirmi yıllık bir çalışmasının ürünüdür. Napier'in bu konuda çok sayıda eseri vardır. Bazı hesap makinelerinin temellerini veren iki kitabı, 1617 yılında yayınlandı

18 Eratosthenes (Eratosten) (Yunanca Ἐρατοσθένης) (M.Ö M.Ö. 194 ) Yunanlı matematikçi, coğrafyacı ve astronom. Eratosthenes, Cyrene'de (günümüz Libya'sı) doğmuştur, ama ölene kadar tüm yaşamı Ptolemaios soyunun hüküm sürdüğü Mısır'ın başkenti Alexandria'da (İskenderiye) geçmiştir. Hiç evlenmemiştir. Eratosthenes Alexandria'da ve bir müddet Atina'da öğrenim görmüştür. İ.Ö.236'da Ptolemaios III Euergetes I tarafından Alexandria Kütüphanesi'ine, o koltuktaki ilk kütüphaneci Zenodotos'un ardından, kütüphaneci olarak atanmıştır. Matematik ve doğal bilimlere katkılarda bulunmuştur. İ.Ö.195 de kör olmuştur ve bir yıl sonra kasıtlı olarak kendini aç bırakarak ölmüştür. Meridyen yayının uzunluğunu ve ondan yararlanarak Dünya nın çevre uzunluğunu Ekvator'u hesaplamış, çalışmalarını Geopraphika adlı eserinde toplamıştır. Dünya üzerindeki yerleşik alanların sınırlarını, hazırladığı bir haritada da gösteren matematik coğrafyacıdır.

19 Pierre de Fermat (piyer dö ferma okunur) (d. 1601, Beaumont-de-Lomagne ö. 12 Ocak 1665, Castres), Bask kökenli Fransız hukukçu ve matematikçi. İlk öğrenimini doğduğu şehirde yapmıştır. Yargıç olmak için çalışmalarına Toulouse de devam etmiştir. Fermat, memurluğunun yoğun işlerinden geriye kalan zamanlarında matematikle uğraşmıştır. Arşimet'in eğildiği diferansiyel hesaba geometrik görünümle yaklaşmıştır. Sayılar teorisinde önemli sonuçlar bulmuş, olasılık ve analitik geometriye de katkılarda bulunmuştur.

20 Leonardo Fibonacci, (Pisalı Leonardo, Leonardo Pisano d. 1170, ö. 1250), yaygın olarak ismiyle Fibonacci diye anılan, orta çağın en yetenekli matematikçisi olarak kabul edilen İtalyan matematikçi. Fibonacci modern çağda en fazla Hint-Arap Sayılarını Avrupa'ya getirmesiyle ve 13. yüzyıl başlarında yayınlanan Liber Abaci isimli hesaplama yöntemleri kitabıyla tanınır. Liber Abaci'de bir örnek olarak yer alan modern sayılarla hesaplanmış kendi adıyla anılan sayı dizisi Fibonacci Dizisi olarak anılmaktadır. Sadece Fibonacci dizisi ve özellikleri ile ilgili kitaplar hatta haftalık düzenli yayınlanan matematik dergileri bile bulunmaktadır

21 Ebu Abdullah Muhammed bin Musa el- Harezmi (Arapça: Abū Abdullāh Muhammad ibn Mūsā al-khwārizmī), matematik, gökbilim ve coğrafya alanlarında çalışmış ünlü bir Fars bilgindir. 780 yılında Harzem bölgesinin Hive şehrinde dünyaya gelmiştir. 850 yılında Bağdat'ta vefat etmiştir.

22 Ömer Hayyam -2 Hayyam Nişabur'ludur. Yaşadığı dönemin ünlü veziri Nizamül-Mülk ve Hasan Sabbah ile aynı medresede zamanın ünlü alimi Muvaffakeddin Abdüllatif ibn el Lübad'tan eğitim görmüş ve hayatı boyunca her ikisi ile de ilişkisini koparmamıştır. Bazı kaynaklar; Hasan Sabbah'ın Rey kentinden olduğu Nizamül-Mülk'ünde yaşca Ömer Hayyam ve Hasan Sabbah'tan büyük olduğunu ve buna dayanarak aynı medresede eğitim görmediklerini belirtmektedir. Ama yine de Ömer Hayyam, Hasan Sabbah ve Nizamül-Mülk'ün ilişki içinde olduklarını inkar etmemektedir. (Kaynak: Semerkant-Amin Maalouf) Birçok bilim adamınca Batıni, Mutezile anlayışlarına dâhil görülür. Evreni anlamak için, içinde yetiştiği İslam kültüründeki hakim anlayıştan ayrılmış, kendi içinde yaptığı akıl yürütmeleri eşine az rastlanır bir edebi başarı ile dörtlükler halinde dışa aktarmıştır. Çadırcı anlamına gelen "Hayyam" takma adını babasının çadırcılık yapmasından almıştır. Ayrıca İstanbul'un Beyoğlu ilçesinde bir semte adını da vermiştir. Tarlabaşı bulvarında Sakızağacı ışıklardan başlayıp, Tepebaşına kadar inen caddenin adıdır. Hayyam aynı zamanda çok iyi bir matematikçiydi Binom Açılımını ilk kullanan bilim adamıdır. Hayyam, genelde şiirlerindeki eğlence düşkünlüğünün belirgin olmasından dolayı Rubâileri ile ünlenmiştir. Geçmişte yaşamış birçok ünlünün aksine Ömer Hayyam'ın doğum tarihi günü gününe bilinmektedir. Bunun sebebi Ömer Hayyam'ın birçok konuda olduğu gibi takvim konusunda uzman olması ve kendi doğum tarihini araştırıp gün be gün doğru bulmasına dayanmaktadır.

23 Rubailerinde, dünya, varoluş, Allah, devlet ve toplumsal örgütlenme biçimleri gibi hayata ve insana ilişkin konularda özgürce ve sınır tanımaz bir şekilde akıl yürüttüğü görülmektedir. Akıl yürütürken ne içinde yaşadığı toplumun ne de daha öncesi zamanlarda yaşayan toplumların kabul ettiği hiçbir kurala/tabuya bağlı kalmamış, kendinden önce yaşayanların insan aklına koymuş olduğu sınırları kabullenmemiş, bir anlamda dünyayı, insanı, varoluşu kendi aklıyla baştan tanımlamış; bu nedenle de çağını aşarak "evrenselliğe" ulaşmıştır. Ancak unutmamak gerekir ki Hayyam'ın yaşadığı dönem, kendisi gibi çağları aşan ve tarihin gördüğü en büyük düşünürlerden birini yaratacak sosyo-kültürel altyapıya sahipti. Kendi tarihinin belkide en aydınlık dönemlerini yaşayan İslam dünyasında felsefenin hakettiği ilgiyi gördüğü, Selçuklu saraylarında ise sentez bir Ortadoğu kültürü (Türk-Hint-Arap-Çin-Bizans) oluşmaya başladığı bir dönemde yaşayan düşünür, böylece nispeten yansız ve bilimsel bir öğrenim görmüş, müslüman fakat felsefeyi günah saymayan bir toplum içinde özgürce felsefe ile ilgilenebilmiştir. Hayyam, aynı zamanda dünya bilim tarihi için de önemli bir yerdedir. Dünyanın ilk rasathanesini kurmuştur. Günümüzde kullanılan Miladi ve Hicri Takvimlerden çok daha hassas olan Celali Takvimi'ni hazırlamıştır. Okullarda Pascal Üçgeni olarak öğretilen matematik kavramı aslında Ömer Hayyam tarafından oluşturulmuştur. Matematik, astroloji konularında dünyanın önde gelen en büyük bilim adamlarındandır. Birçok bilimsel çalışması olduğu bilinmektedir.

24 Matematiğin ana dallarından biri olan Topoloji, Yunanca'da yer, yüzey veya uzay anlamına gelen topos ve bilim anlamına gelen logos sözcüklerinden türetilmiştir. Topoloji biliminin kuruluş aşamalarında yani 19. yüzyılın ortalarında, bu sözcük yerine aynı dalı ifade eden Latince analysis situs (konumun analizi) deyimi kullanılıyordu. Topoloji sözcüğü bir topolojik uzayı tanımlamak için inşa edilen ve belli koşulları sağlayan kümeler ailesi için de kullanılır. Aşağıdaki matematiksel tanımda bu koşullar sıralanmıştır. Topolojik yapı, geometri bağlamında bir kümenin üzerine konabilecek en basit yapı olarak görülebilir. Başka bir deyişle, topoloji, geometri yapmak için atılan ilk adımdır. Topoloji için: 1)MOBİUS ŞERİDİ, KLEİN ŞİŞESİ

25 Felix Klein'ın isim babalığı yaptığı bir ilginç yüzeyle tanışmak üzeresiniz. Klein şişesinin ilginç özelliklerinden biri bir yüzey (dolayısıyla iki boyutlu) olmasına rağmen bulunduğumuz üç boyutlu uzayda bir makedi yapılamaz, bu nedenle resmini de çizemeyiz! Fakat sizin insafınıza sığınarak aşağıdaki şekli sunalım: Resimde ucu tekrar içine bükülen ve zeminiyle birleşen bir şişe görülüyor. Klein şişesi ise bir manifold olduğundan (yani üzerinde yürüyen görüşü kısıtlı bir böceğin düzlem sanacağı uzaylar) kendi kendini kesmemelidir, bu nedenle dört boyutlu uzayda gerçek bir Klein şişesi oluşturulabilir: nasıl düzlemde kesişen iki doğru varsa biri üçüncü boyutta ötelenerek kesişimden kurtulabilirsek, bu durumda da kesişim bölgesindeki noktaların bir komşuluğu dördüncü boyutta uzaklaştırılır. En kolayı yüzeyi şekildeki gibi düşünüp yüzey üzerinde yürüyen bir böcek kesişim bölgesine vardığında kesişimi görmeden (bir hayalet gibi) yürüyüşünde bir değişim olmadan geçsin. Bu düşünce tarzı ile Klein şişesinin tek yüzlü olduğu rahatça söylenir: bir yüzünden boyamaya başladığımızda öteki yüze geçmeden (!) boyamaya çalışırsak boyanmamış yerin kalmadığı görülür, bu ise Klein şişesinin bir Möbius şeridi içermesinden kaynaklanır. Bir kare alıp karşılıklı kenarlarını oklar yönünde yapıştıralım. Bu takdirde elde edeceğimiz Klein şişesidir! Bu işleme topolojide bir uzayın bölüm uzayını oluşturma denir, uzayın bazı noktalarını aynı kabul etmek demektir. Yüksek boyutlu uzaylarda düşünmek yerine düzlemsel bir şekil olan bu kare üzerinde düşünelim, o halde Klein şişesi üzerindeki bir noktanın komşuluğu şekildeki kırmızı daire olarak ifade edilebilir, Klein şişesi üzerindeki bir yol ise bu kare içinde, sınırların yapıştırıldığı göz önünde bulundurularak, şekilde örneklenmiştir. Bu gösterilimin geliştirilmesi ile, Klein şişesini kesmek de daha da kolaylaştı! Örneğin bir köşegen boyunca kesersek ne elde ederiz?

26 k olarak, uzunca bir şeridin bir ucunu 180 derece büküp diğer ucu ile birleştirirsek elde edilen şeride Möbius şeridi denir. İlk olarak 1861'de Johann Benedict Listing tarafından tanımlanmıştır, dört yıl sonra ise Möbius yayınladığı bir çalışmasında tanımını vermiş, şeridin tek yüzlü olduğunu, yönlendirilememesi ile açıklamıştır.

27 Pisagor teoremine göre bir dik üçgende dik kenarların karelerinin toplamları hipotenüsün karesine eşittir. Bunun ispatı şuna dayanmaktadır: c 2 = a 2 + b 2 c uzunluğu hipotenüstür. a ve b uzunlukları ise dik kenarlardır. Her kenardan birer kare oluşturulur. Bu karelerin alanları, kare alan formülüne dayalı olarak a 2,b 2,c 2 şeklinde sıralanır. Böylece üç karenin köşelerinin birleşiminden oluşan bir dik üçgen oluşturulur. Oluşan üçgenin dik köşesinden hipotenüsün oluşturduğu karenin, hipotenüse paralel olan kenara indirilen dikme ile üçgen içerisinde öklid bağıntısı kurulur. (öklid bağıntısı benzerlikten ispatlanabilmektedir.) Öklide göre a 2 = p(p + q) yani, dik kenarlardan birinin karesi, dik açıdan hipotenüse indirilen dikmenin ayırdığı parçalardan kendisine komşu olan tarafın uzunluğu ile hipotenüsün tamamının çarpımına eşittir. Bu durumda a 2 = p.c olacaktır. Yani a kenarına ait karenin alanı, hipotenüse ait alanın dik açıdan indirilen dikmeyle ikiye ayırdığı alanlardan kendisine komşu olan alana eşit olacaktır. Bu durumu diğer kenar için de düşünürüz. a 2 = p.(p + q)b 2 = q.(p + q) p + q = c a 2 = p.c,b 2 = q.c olacaktır. Bunu takiben, a 2 + b 2 = p.c + q.c a 2 + b 2 = c.(p + q) p + q = c a 2 + b 2 = c.c a 2 + b 2 = c 2 olacaktır.matematikte, Pisagor Teoremi, Öklid sinde bir dik üçgenin 3 kenarı için bir bağıntıdır. Bilinen en eski matematiksel teoremlerden biridir. Teorem sonradan İÖ 6. YY'da Yunan filozof ve matematikçi Pisagor'a atfen isimlendirilmiş ise de, Hindu, Yunan, Çinli ve Babilli matematikçiler teoremin unsurlarını, o yaşamadan önce bilmekteydiler. Pisagor teoreminin bilinen ilk ispatı Öklid'in Elementler eserinde bulunabilir.

28 Pi sayısı (π), bir dairenin çevresinin çapına bölümü ile elde edilen matematik sabiti. Pi sayısı ismini, Yunanca περίμετρον yani "çevre" sözcüğünün ilk harfi olan π harfinden alır. Bu harf Latin Alfabesi'nde Pİ ile sembolize edilir. Ayrıca pi sayısı Arşimet sabiti ve Ludolph sayısı olarak da bilinir. Günlük kullanımda basitçe olarak ifade edilmesine rağmen gerçek değerini ifade etmek için periyodik olarak tekrar etmeyen sonsuz sayıda basamağa ihtiyaç vardır. İlk 65 basamağa kadar ondalık açılımı şöyledir: 3,

29 Bilim standlarınızın vazgeçilmez üyesi olmaya aday, orijinal adı "Pick Teoremi" (George Pick tarafından 1899'da keşfedilmiş) olan "çivilerle alan hesabı" aslında yeni keşfedilmiş bir şey değil.1899 yılından beri kendisi önemli bir teorem olarak matematik dokümanlarının arasında yerini almakta. Peki, bu teorem ne işe yarar? Nasıl uygulanır?... Gibi soruların cevabı aşağıdaki satırlarda gizli. Uygulama:Elimize düz bir tahta parçası alıyoruz, 30cm x 30cm 'lik mesela.üzerine 2cm aralıklarla çivi çakıyoruz, 10 x 10 'luk 100 çivilik bir tahtamız var.elimize aldığımız bir iple yada lastikle istediğimiz çokgeni oluşturup alanını aşağıdaki formülle buluyoruz; Alan = I + B/2-1 öyle ki I = çokgenin içindeki çivi sayısı B = çokgenin sınırlarındaki çivi sayısı Mesela şekildeki çokgenin alanı; /2-1 = 37,5

30 Fraktal parçalanmış ya da kırılmış anlamına gelen Lâtince fractuuss kelimesinden gelmiştir. İlk olarak 1975'de Polonya asıllı matematikçi Benoit Mandelbrot tarafından ortaya atıldığı varsayılır. Kendi kendini tekrar eden ama sonsuza kadar küçülen şekilleri, kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününü inceler. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza kadar sürebilir; tam tersi de her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzemesi olayıdır. Doğada görülebilsen bir örnek olarak bazı bitkilerin yapısı verilebilir

31 ÇOK YÜZLÜLER Anasayfa ÇOK YÜZLÜ, bütün yüzleri düzlem çokgenlerle sınırlanmış geometrik cisim. Herhangi bir yüzünden geçen düzlem çok yüzlüyü keserse içbükey, kesmezse dışbükey çok yüzlü adını alır. Her doğru, dışbükey birçok yüzlüyü en çok iki noktada keser. Uygulamada düzgün çok yüzlüler önem taşır. Dört, altı, sekiz, on iki ve yirmi yüzlü olmak üzere ancak beş tane düzgün çok yüzlü olabileceği kanıtlanmıştır.

32 a) kapasitesi en büyük b) en az yer kaplayacak c) yapimi(dolayısıyla dna'ya kodlanmasi en kolay) d) en sağlam petek şekli hangisidir? şeklinde sorabiliriz. şimdi bir bir incelersek.. ilk olarak bir düzlemi kendi kendini tekrar ederek kaplayan kaç şekil olduğunu bulmamız gerekir. n kenarlı bir çokgende bir iç açının ölçüsü [(n- 2)*180]/n formülü ile bulunur. bizim istediğimiz şekil hiç boşluk bırakmayacak şekilde birleşmelidir. şekil x kenarlıdır diyelim.. bunlardan kaç tanesinin bir köşesinin iç açısı toplamı 360 yapardı diye düşünürsek [(n-2)*180*x]/n=360 yazabiliriz. sadelestirme, vırt, zırt.. (n-2)*x=2n --> nx-2x-2n=0 --> nx-2x-2n+4-4=0 --> (n-2)(x-2)=4 olur.. sadece pozitif tamsayılari kenar sayısı olarak alabileceğimizden.. n=6 ve x=3 olabilir yani 3 tane düzgün altıgen (bkz: petek) n=6 ve x=6 olabilir yani 6 tane eşkenar üçgen. n=4 ve x=4 olabilir yani 4 tane kare. bu bölüm bilare isoperimetric problem başlığı yazılırsa daha anlamlı olacaktır.. bizim kodlayacağımız arıların petekleri en az malzeme kullanarak yapmaları lazımdır, yoksa bir tanri olarak bize hiç mi hiç yakışmaz. sonra "optimize olmayan arı yapan tanri" diye adımız çıkar.. işte bu zorunluluk yüzünden arıların yaptıkları petekler maksimum bal alacak alana sahip olmalıdır. arı petekleri cevresi p olan bir kare olsaydı : (p/4)^2= yani 0,0625*p^2 arı petekleri cevresi p olan bir eşkenar üçgen olsaydı : [(p^2)*kok3]/36 yani 0,0481*p^2 arı petekleri cevresi p olan bir düzgün altıgen olsaydı : [(p^2)*kok3]/24 yani 0,0721*p^2 sonuç olarak aynı çevreye sahip olmak koşulu ile bir yüzeyi kendini tekrar ederek kaplayan en fazla bal alabilecek şekil düzgün altıgen peteklerdir. biz de tanri olarak bu petekleri kullanalım, kullandiralim..

33 Altın Oran 2 Altın oran, doğada sayısız canlının ve cansızın şeklinde ve yapısında bulunan özel bir orandır. Doğada bir bütünün parçaları arasında gözlemlenen, yüzyıllarca sanat ve mimaride uygulanmış, uyum açısından en yetkin boyutları verdiği sanılan geometrik ve sayısal bir oran bağıntısıdır. Doğada en belirgin örneklerine insan vücudunda, deniz kabuklulularında ve ağaç dallarında rastlanır. Platon'a göre kozmik fiziğin anahtarı bu orandır. Altın oranı bir dikdörtgenin boyunun enine olan "en estetik" oranı olarak tanımlayanlar da vardır. Eski Mısırlılar ve Yunanlılar tarafından keşfedilmiş, mimaride ve sanatta kullanılmıştır. Göze çok hoş gelen bir orandır. Altın Oran; CB / AC = AB / CB = 1.618; bu oranın değeri her ölçü için dir. Bir doğru parçasının (AB) Altın Oran'a uygun biçimde iki parçaya bölünmesi gerektiğinde, bu doğru öyle bir noktadan (C) bölünmelidir ki; küçük parçanın (AC) büyük parçaya (CB) oranı, büyük parçanın (CB) bütün doğruya (AB)oranına eşit olsun. Altın Oran, pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı; dür. (noktadan sonraki ilk 15 basamak). Bu oranın kısaca gösterimi: olur. Altın Oranın ifade edilmesi için kullanılan sembol, PHI yani Φ'dir. Günümüzde birçok yerde karşımıza çıkan altın orana göz nizamının oranı diyebiliriz. Çoğu zaman doğayı gözlemlediğimizde bu oranın varlığını görebiliriz. Mesela ideal insanın ölçülerine göre boy uzunluğunun göbekten ayak uçlarına olan uzunluğa oranı, göbekten ayak uçlarına olan uzunluğun göbekten başucuna olan uzunluğa olan oranına eşit. Bunu simgelerle belirtecek olursak: İdeal insanın boyu x birim olsun. Göbeğinden ayak ucuna olan uzaklık da y birim olsun. Bu durumda göbeğinden başucuna olan uzaklık da x - y birim olacak. İddiaya göre ideal insandaki ölçüler şu denklemi sağlamalı: x / y = y / (x - y). İdeal insanda sağlanması istenen bu orana yani x / y oranına, altın oran denir.

34 Altın oranın görüldüğü ve kullanıldığı yerleri şöyle sıralayabiliriz: Ayçiçeği: Ayçiçeği'nin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru tane sayılarının birbirine oranı altın oranı v Çam Kozalağı: Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu eğrinin eğrilik açısı altın orandır. Deniz Kabuğu: Deniz kabuklarına dikkat edenimiz, belki de koleksiyon yapanımız vardır. İ şte deniz kabuğunun yapısı incelendiğinde bir eğrilik tespit edilmiş ve bu eğriliğin tan-jantının altın oran olduğu görülmüştür. Elektrik Devresi: Verilen n tane dirençten maksimum verim elde etmek için bir paralel bağlama yapılması gerekir. Bu durumda Eşdeğer Direnç altın orana eşittir. Kollar: Kolumuzun üst bölümünün alt bölüme oranı altın oranı vereceği gibi, kolumuzun tamamının üst bölüme oranı yine altın oranı verir. Mısır Piramitleri: Her bir piramidin tabanının yüksekliğine oranı altın oranı verir. Mona Lisa Tablosu: Bu tablonun boyunun enine oranı altın oranı verir.

35 Dikdörtgen prizmanın hacmi ve yüzey alanı Paralelkenar Prizmanın Hacmi Kürenin Hacmi ve Kürenin Yüzey Alanı Formülleri-2

36 Silindirin Hacmi ve Silindirin Yüzey Alanı Formülleri-3 Yamuk Silindirin Hacmi ve Yamuk Silindirin Alanı Düzgün olmayan kesitli silindir

37 Koninin hacmi ve koninin yüzey alanı Anasayfa Piramitin hacmi Küre parçasının hacmi ve yüzey alanı Formülleri-4

38 Kesik koninin hacmi ve yüzey alanı Anasayfa

39 1'in asallığı 19. yüzyıl'a kadar, çoğu matematikçi 1'i asal sayı olarak kabul ediyorlardı ve 1'in asal olarak kabul edilmesine dayanarak yapılan birçok çalışma geçerliliğini hâlâ sürdürmektedir,örneğin [[Moritz Abraham Stern lırsa bazı teoremlerde değişikliğe gidilmesi gerekir. Örneğin tüm pozitif tam sayıların "yalnız bir şekilde" asal sayıların çarpımları şeklinde yazılabileceğini söyleyen Aritmetiğin temel teoremi, nitekim geçmişteki asal sayı tanımına göre geçerli değildir. Asal sayılar, yalnız ve yalnız iki böleni olan doğal sayılardır. Kendisinden ve 1 sayısından başka böleni olmayan, 1'den büyük pozitif tam sayılar biçiminde de tanımlanmaktadır.(kendisinden küçük asal sayıların hiçbirine tam bölünmeyen sayılardır) Yüzden küçük asal sayılar 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 ve 97 dir. Öklid (Euklides)'ten beri asal sayılar sonsuz olduğu bilinmektedir, fakat asal sayılar hakkında pek çok başka soru hala daha cevapsızdır. Bunlardan en ünlü ikisi aralarındaki fark iki olan asal sayılar (örneğin 11 ve 13, veya 29 ve 31) hakkındaki ikiz asallar konjektürü ve asal sayıların doğal sayılar içersindeki dağılımı hakkındaki Riemann Hipotezidir. Sayılar teorisi'nin en önemli uğraşı asal sayılar hakkındaki bu tür sorulardır. Asal sayılar ayrıca kriptografi alanının da yapı taşlarıdır.

40 Goldbach Hipotezi Anasayfa Sayılar teorisindeki en eski Matematik'te çözümsüz problemlerden biridir. Goldbach'ın orijinal sanısı (üçül varsayım) Euler'e 7 Haziran 1742'de yazdığı mektupta şöyle ifade ediliyor:...en azından 2'den büyük her sayı üç asal sayının toplamıdır... Goldbach burada 1 sayısını da asal kabul etmektedir. (Bu konvansiyon artık terkedilmiştir.) (1 sayısı niçin asal değildir?: Çünkü bir asal sayı başka bir asal sayıyı asla tam bölmez. Oysa 1 sayısı diğer asalları da tam böler.) Asal sayılarla ilgili Goldbach hipotezi halen kanıtlanamamıştır: Her çift sayı iki asal sayının toplamı mıdır? Örneğin: 4 = = = = = = = = = =

41 Fermat'nın son teoremi Anasayfa Fransız matematikçi Pierre de Fermat'nın 17. yüzyılda öne sürdüğü fakat kanıtı ancak 1994 yılında İngiliz matematikçi Andrew Wiles tarafından verilen teoremdir. İfadesinin ortaokul matematik bilgileriyle anlaşılacak kadar yalın olmasına karşılık öne sürülmesiyle kanıtlanması arasında geçen çok uzun sürede pek çok ünlü matematikçi tarafından üzerinde uğraşılıp da kanıtlanamamış olmasıyla matematik tarihinde öne çıkmıştır. Kısaca, eğer n ikiden büyük bir tamsayıysa, ve x, y, z sayıları pozitif tamsayılar ise ifadesinin sağlanamayacağını ifade eder. İfadenin n=1 ve n=2 durumlarında kolayca sağlanabileceğini görmek zor değildir. Biraz açmak gerekirse, n=2 durumu ünlü Pisagor Teoremi ile yakından ilişkili olup x=3, y=4, z=5 veya x=5, y=12, z=13 tamsayı üçlüleriyle kolayca sağlanır. Bu sanının (artık teorem demek gerekiyor elbette) kanıtı için pek çok matematikçi uğraşmış ancak başarısız olmuşlardır. Ancak yakın tarihlere kadar çok büyük n değerleri için bu sanının doğrulanmasına devam edilmiştir. Bu tür kısmi ilerlemelere yönelik çabalar, hiç beklenmedik bir zamanda İngiliz matematikçi Andrew Wiles'ın bir kanıt bulduğunu duyurmasıyla son bulmuştur. Ne var ki kısa sürede Andrew Wiles'ın kanıtında bir hata bulunmuş ve Andrew Wiles uzun ve yorucu bir çabanın sonunda 1994 yılında uzmanlarca doğruluğu kabul gören bir kanıt vermeyi başarmıştır. Aslında Wiles'ın kanıtı Fermat'nın son teoreminden daha güçlü bir ifadenin, Şimura-Taniyama Konjektürü'nün de doğruluğunu göstermiştir. Söz konusu kanıt Sayılar Teorisi'nin çok gelişkin tekniklerini kullanır.

42 Matematikte, Eratosthenes(eratosten) Kalburu belirli bir tamsayıya kadar yer alan asal sayıların bulunması için kullanılan bir yöntemdir. Daha hızlı ve karmaşık olan Atkin kalburunun atası sayılır. Eski Yunan'da Eratosten tarafından geliştirilmiştir. İşleyişi Önce bir dizelgeye (listeye) 2'den başlayarak, istediğiniz en büyük tam sayıya kadar olan tüm tamsayıları yazın. Bu dizelgenin adı A olsun (resimdeki kutuların her biri). Bir diğer dizelgeye A'daki ilk asal sayı olan 2'den başlayarak bulduğunuz asal sayıları yazın. Bu dizelgenin adı B olsun (resimin sağında bulunan dizelge). A'dan 2'yi ve 2'nin tüm katlarını silin. A'da kalan ilk tek sayı asaldır. Bu sayıyı B'ye ekleyin Bu sayıyı ve tüm katlarını A'dan silin. Daha küçük katları zaten silindiğinden, silme safhası bu sayının karesinden başlayabilir. A dizelgesinde herhangi bir sayı kalmayıncaya kadar 4. ve 5. adımları tekrarlayın

43 Doğal sayılar, şeklinde sıralanan tam sayılardır. Negatif değer almazlar. Bazı kaynaklarda "0" doğal sayı olarak alınmaz. Matematikte hala sıfırın bir doğal sayı alınıp alınmayacağı tartışma konusudur, ancak eğer cebirsel inşâlar yapılmak isteniyorsa "0" sayısının doğal sayı olarak alınması avantaj sağlayabilir. Matematiğin diğer dallarında da problem hangi durumda daha kolay ifade edilebilecekse doğal sayılar kümesi de o şekilde alınır.

44 Bir doğal sayının rakamlarının belirttiği değere rakamların sayı değeri denir. Doğal sayının rakamlarının toplamına rakamların sayı değerleri toplamı denir.

45 9 basamaklı bir doğal sayının basamaklarının değerleri Birler basamağının basamak değeri : 1 Onlar basamağının basamak değeri : 10 Yüzler basamağının basamak değeri : 100 Binler basamağının basamak değeri : On binler basamağının basamak değeri : Yüz binler basamağının basamak değeri : Milyonlar basamağının basamak değeri : On milyonlar basamağının basamak değeri : Yüz milyonlar basamağının basamak değeri : Onlu sayma düzeninde bir basamağın değeri sağındaki basamağın 10 katıdır. Bir rakamın basamak değeri o rakam ile rakamın yazıldığı basamağın çarpımıyla bulunur sayısındaki 2 nin basamak değeri 2 (sayı değeri) ve 1000 (basamak değeri) çarpılarak 2 X şeklinde bulunur

46 Toplama işlemi ileri doğru sayma işlemidir. Toplama işlemine katılan sayılara terim, işlemin sonucuna toplam denir. Toplama işlemi sayıların aynı basamakları arasında yapılır. Bu nedenle toplama işleminde sayılar aynı basamaklar alt alta gelecek şekilde yazılır. Doğal sayılarda toplama aşağıdaki cebirsel kurallara uyar: Toplamsal birim öğe: a + 0 = a Toplamanın değişme özelliği: a + b = b + a Toplamanın birleşme özelliği: (a + b) + c = a + (b + c) Toplamanın çarpma üzerine dağılma özelliği (sağdan dağılma): (a + b)c = ac + bc Bir a sayısını bir b sayısıyla toplamak, a sayısının b kere ardılını almak olarak tanımlanır. Daha matematiksel bir tanım verilmek istenirse Ard(n) gösterimi n sayısının ardılını ifâde etmek üzere, toplama aşağıdaki belitlerle tanımlanır: a + 0 = a a + Ard(b) = Ard(a + b) Bu belitlerden yola çıkarak ardıllık işlemini toplama cinsinden göstermek mümkündür: 2. belitte b=0 seçilirse a + Ard(0) = ard(a + 0) sıfırın adrılı birdir, o halde, Ard(a) = a + 1 olduğu kolaylıkla görülür.

47 Çarpma işlemi ard arda toplama işlemidir. Çarpma işlemine katılan sayılara çarpan, işlemin sonucuna çarpım denir. Doğal sayılarda çarpma aşağıdaki cebirsel kurallara uyar: Çarpımsal birim öğe: a1 = a Çarpmanın değişme özelliği: ab = ba Çarpmanın birleşme özelliği: (ab)c = a(bc) Çarpmanın toplama üzerine dağılma özelliği (soldan dağılma): c(a + b) = ca + cb Bir a sayısını bir b sayısıyla çarpmak, a sayısının b kere toplamını almak olarak tanımlanır.

48 Tam sayılarla iki sayının farkı;eksilen sayı ile çıkan sayının toplama işlemine göre tersinin toplamı ile aynıdır. (+9)-(+3)=(+9)+(-3)= (+6), (-7)-(-8)= (-7)+(+8)=(+1)

49 Bölme özünde çarpmanın tersidir. Tamsayılarda bölme, her sayı için tanımlanmamıştır. Bu yüzden bölüm her zaman tamsayılar kümesinin bir öğesi olmayabilir. Örnek: (+15):(-3)=(-5)

50 Tam sayılar, doğal sayılar (0,1,2,...) ve bunların negatif değerlerinden oluşur (-1,-2,-3,...). (-0 sayısı 0 sayısına eşit olduğundan ayrı bir tam sayı olarak sayılmaz). Matematikte tam sayıların tümünü kapsayan küme genellikle (ya da Z şeklinde gösterilir). Burada "Z" harfi Almanca Zahlen (sayılar) sözcüğünün baş harfinden gelmektedir. Pozitif tam sayılar "0"dan uzaklaştıkça büyür. Negatif tam sayılar ise "0"dan uzaklaştıkça küçülür. En büyük negatif tam sayı -1'dir. En küçük pozitif tam sayı ise +1'dir. Mutlak değer, sayının başlangıç noktasına uzaklığını ifade eder. Başlangıç noktasına eşit uzaklıktaki sayılar mutlak değerce eşittir. Mutlak değer içindeki her sayı, mutlak değer dışına pozitif olarak çıkar.

51 Mükemmel Sayı : 6, 28,496 gibi kendisi hariç bütün pozitif çarpanları toplamı kendisine eşit olan sayılara denir. Mükemmel sayılar sonsuz tanedirler. Genel formülleri henüz bulunamamıştır. Ancak 2 n (2 n+1-1), sayısının her n çift sayısı ve 1 için mükemmel sayı olduğu görülebilir. Tabi buradan mükemmel sayıların çift sayı oldukları anlamı çıkmamaktadır. Yani bu formülün tüm mükemmel sayıların ortak formülü olup olmadığı bilinmemektedir. İlk 11 mükemmel sayı : 6, 28, 496, 8128, , , , , , ,

52 1 den büyük asal olmayan bir tamsayının rakamlarının toplamı, sayı asal çarpanlarına ayrılarak yazıldığında bu yazılışta bulunan tüm asal çarpanların rakamlarının toplamına eşit oluyorsa bu tür sayılara Smith sayısı denir. 121 = 11 * = = 4 ( 121 bir Smith sayısıdır. ) 166 = 2 * = = 13 ( 166 bir Smith sayısıdır. ) Bu sayının nasıl ortaya çıktığını merak ediyor musunuz? 1982 yılında matematikçi Albert Wilansky, kardeşi Smith i ararken onun telefon numarasının ( ) bu ilginç özelliğini fark etmiş. Bundan dolayı da bu sayılara Smith sayıları adını vermiş. Bu sayıyı da inceleyelim; = 3 * 5 * 5* = = 42 ( bir Smith sayısıdır. )

53 Sayılar teorisi ile ilgili güzel, kolay anlaşılır ve doğruluğu henüz ispatlanmamış bir diğer teorem de "Collatz teoremi". Lothar Collatz tarafından 1937 yılında ortaya atılmış. "3n+1 Teoremi" olarak da biliniyor yılında Paul Erdos, matematiğin henüz bu problemi çözmek için yeterli olgunluğa erişmediğini söylemiş. Teorem söyle: Elinize herhangi bir pozitif tamsayı alın. Bu sayı çift ise ikiye bölün, tek ise 3 ile çarpıp 1 ekleyin. Bu işlem sonucunda ulaştığınız sayıyı tekrar aynı değerlendirme ve işleme tabi tutun.a Collatz teoremine göre, seçtiğiniz pozitif tamsayı kaç olursa olsun bu işlem eninde sonunda 1 ile sonlanıyor. İşte örnekler Seçilen sayı: 6 Adım 1: Sayı çift olduğu için 2'ye bölünecek, sonuç 3; Adım 2: 3 tek bir sayı olduğu için 3'le çarpılıp 1 eklenecek, sonuç: 10 Adım 3: 10 çift olduğundan, 10/2 = 5 Adım 4: 5 tek sayı olduğundan 5*3+1 = 16 Adım 5: 16 çift, 16/2 = 8 Adım 6: 8 çift, 8/2 = 4 Adım 7: 4 çift, 4/2 = 2 Adım 8: 2 çift, 2/2 = 1

54 Çokgensel sayılar: Bir çokgenin köşelerini baz alarak elde ettiğimiz sayı dizelerinden oluşur. Yukarıdaki şekilde görülen çokgensel sayıları inceleyelim. Üçgen sayılar 1, 3, 6, 10, 15, 21,... şeklinde devam eden sayılar dır. Kare sayılar 1, 4, 9, 16, 25,... (Kare alma işlemiyle de aynı sonuca ulaşabilinir.) Beşgen sayılar 1, 5, 12, 22, 35, Bu sayı örüntülerinin genel ifadelerini verelim. Üçgen, kare, beşgen, altıgen, yedigen ve sekizgen sayılar hep çokgensel sayılardır ve alttaki formüllerle bulunabilirler: Üçgen P3,n= n(n+1)/2...1, 3, 6, 10, 15, Kare P4,n= (n üzeri 2)...1, 4, 9, 16, 25, Beşgen P5,n= n(3n-1)/2...1, 5, 12, 22, 35, Altıgen P6,n= n(2n-1)...1, 6, 15, 28, 45, Yedigen P7,n= n(5n-3)/2...1, 7, 18, 34, 55, Sekizgen P8,n= n(3n-2)...1, 8, 21, 40, 65,

55 Matematikte Gerçek sayılar (veya reel sayılar) kümesi, oranlı sayılar (rasyonel sayılar) kümesinin standart metriğe göre bütünlenmesiyle elde edilen kümedir. Reel sayılar kümesi sembolüyle gösterilir. Daha basit söyleyişle, bir reel sayı, ondalık gösteriminde virgülden sonra sonsuz basamağı olan bir sayıdır. Her oranlı sayı (rasyonel sayı) bir reel sayıdır; virgülden sonra tekrar eden ondalık açılımı vardır (0 dahil). Örneğin: veya veya eşitliklerinde olduğu gibi. Burada dikkat edilmesi gereken, ondalık basamaklardaki rakamların bir süre sonra bloklar halinde periyodik tekrar etme özelliğidir. Bu şöyle ispatlanabilir: m, n iki tamsayı (n pozitif) olsun. m/n oranlı sayısı ondalık ifade edilmek istendiğinde, m 'yi n 'ye bölerken (bölme algoritmasını uygularken) ilk adımda kalan 0 ile n arasında olacaktır. Kalanın yanına sıfırlar ekleyip bölmeye devam edilecek ve bir sonraki adımda kalan yine 0 ile n arasında olacaktır. Sonsuz adımda sonlu sayıda değer alabilen kalanlar, bir süre sonra aynı değeri alacak ve kendini tekrar edecektir. Oranlı sayılardan reel sayıları elde etme işlemiyse oranlı sayılara ondalık açılımındaki rakamların devirsel tekrar etmediği sayıların eklenmesi olarak düşünülebilir. Bu tür sonradan elde ettiğimiz reel sayılara irrasyonel sayılar denir.

56 Oranlı sayılar kümesine dahil olmayan Gerçek sayılardır. Kesir olarak ifade edilemeyen bu sayılara π, e ve örnek verilebilir. Q' veya I ile gösterilir. Bu sayılar belli bir düzeni olmaksızın sonsuza kadar devam eden ondalık sayılar (örneğin pi sayısı) veya oranlı karşılığı olmayan kökler olabilir. Örnekler: 3 7, 2, 5 (9/8) veya (4/9) irrasyonel sayılar değildir çünkü rasyonel karşılıkları vardır: 3 64=4 (4/9)=2/3

57 Matematikte, rasyonel veya oranlı sayılar (veya kesirler) iki tamsayının birbirine oranı ile ifade edilebilen sayılardır. Oranlı sayılar b sıfır olmamak üzere a/b şeklinde (a ve b tamsayı) yazılabilir. 2/3 ve 4/6 veya 6/9 eşdeğer oranlı sayılardır. Dolayısıyla her oranlı sayı sonsuz şekilde ifade edilebilir. Oranlı sayıların en basit formu a ve b tamsayılarının ortak böleninin olmadığı a/b ifadesidir veya veya Her tam sayı oranlı sayıdır. Çünkü şeklinde yani oranlı sayı tanımına uygun biçimde yazılabilirler. Oranlı sayılar kümesi, tam sayılar kümesi 'yi kapsar. Yaani. Tanım Oranlı sayılar kümesi, tam sayıların bir genişlemesidir ve Q ile veya ile gösterilir.

58 Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. Karmaşık sayılar şu biçimde gösterilirler Genel olarak karmaşık sayılar için "z" harfi kullanılır. a ve b sayıları gerçel olup Anasayfa özelliğini sağlayan sanal birime i denir. Kimi zaman özellikle elektrik mühendisliğinde i yerine, j kullanılır. Ayrıca matematikte bu sayıların uzayı c olarak gösterilir. Bu harfin seçilmesinin nedeni İngilizce'de karmaşık sözcüğünün karşılığı olarak complex sözcüğünün kullanılmasıdır, nitekim bazı Türkçe kaynaklarda complex sözcüğünden devşirilen kompleks sözcüğüne de rastlanabilir. Karmaşık sayılara böyle bir adın verilmesinin nedeni ise aşağıda da göreceğimiz gibi gerçel ve sanal kısımların bir arada durmasıdır. Bütün gerçel sayılar sanal kısımları sıfıra eşit olan birer karmaşık sayı olarak düşünülebilir. Diğer bir deyişle gerçel sayılar, karmaşık sayı düzleminde gerçel sayılar ekseni üzerinde bulunurlar. Bir z karmaşık sayısının gerçel ve sanal parçaları sırasıyla Re(z) ve Im(z) şeklinde gösterilir. Bütün bu tanımları ve özellikleri bir örnekte gösterelim. sayısı gerçel kısmı Re(z) = 4, sanal kısmı Im(z) = 7 olan C uzayında bir karmaşık sayıdır. Gerçel sayılar, karmaşık sayıların alt kümesi olduğu için, R uzayındaki cebrin hepsi dolayısıyla c uzayında da tanımlıdır. Bunun dışında karmaşık sayıların başka özellikleri de vardır. Örneğin bir karmaşık sayı düzlemde bir vektör olarak temsil edilebilir.

59 n Pascal üçgeni, binom açılımındaki katsayıları bulmaya yarar. Pascal'ın bu üçgeni, olasılıklar kuramında da ustalıkla kullanılır. Bu üçgen, biyolojideki uygulamalar, matematik, istatistik ve pek çok modern fizik konularında uygulama alanı bulur. (Bazı kaynaklara göre eski Çinliler de üçgeni tanımışlar; bazıları da Pascal üçgeni diye aslında bir Hayyam üçgeninden bahsetmişlerdir.) Olasılıklar kuramının çıkış nedeni, Pascal'a kumarbaz Chevalier de Mere tarafından önerilmesiydi. En önemli görevi de elli iki kâğıt oyunu oynuyordu. Bu ara tavla zarlarının, şekilleri aynı olan ayrı renkli bilyelerin önemi büyüktür. Buna bağlı olarak, ünlü Pascal üçgeni doğdu. Pascal'ın bu üçgeni, daha sonraki yıllarda çok kullanıldı. Özellikle seri açılımları ve binom açılımı bu yöntemle kolaylıkla bulunur.

60 İskoç matematikçi Joun Napier in ( ) Napier in kemikleri (Napier s rods veya Napier s bones) adıyla anılan hesaplama aletleri de çerçeve metoduyla çarpma temeline dayanmaktadır ve günümüzdeki modern bilgisayarların en ilkel numunelerinden sayılmak tadır. Bunlarda 0 dan 9 a kadarki herbir rakam için ayrı bir çubuk mevcuttur ve her bir çubukta o rakamın 1 den 9 a kadarki katları çerçevelerde yazılı bulunmaktadır. Bunlara ek bir de index denen çubuk vardır ki bu da rakamların, katlarını belirtmektedir. Napier in kemikleri mekanik olarak çarpma, bölme ve karakök alma işlerinde kullanılmaktaydı ve bunlar o devirde özellikle tüccarlar tarafından yaygın olarak kullanılmaktaydı. Bunun dışında Napier 1614 yılında logaritmayı (karmaşık görünümlü sayılarla çarpma ve bölme yaparken, üsleri kullanarak, bu işlemleri toplamaya dönüştürme yöntemi) bularak hesaplamak devrim yapmıştır.resimi büyütmek için tıklayın.

61

62 Miletli Thales (d. M.Ö. 624 ö. M.Ö. 546), Sokrates öncesi dönemde yaşamış olan Anadolu'lu bir filozoftur. İlk filozof olduğu için Felsefenin ve bilimin öncüsü olarak adlandırılır. Eski Yunan'ın Yedi Bilgelerinin ilkidir. Birçok kişi tarafından felsefe ve bilimin kurucusu olarak düşünülür. Elimize ulaşmış hiçbir metni yoktur. Yaşadığı döneme ait kaynaklarda da adına rastlanamaz ancak hakkındaki bilgiler Herodot ve Diogenes Laertios gibi antik yazarlardan edinilir. Bertrand Russell'e göre Felsefe Thales'le başlamıştır. Thales Teoremi : Matematik alanında çığırlar açmış birisidir. Eski Yunan bilginlerinden Kallimakhos'un aktardığı bir düşünceye göre denizcilere kuzey takım yıldızlarından Büyükayı yerine Küçükayı'ya bakarak yön bulmalarını öğütlemiştir. Aynı zamanda Mısırlılardan geometriyi öğrenip Yunanlılara tanıtmıştır. Bulduğu bazı geometri teoremleri şunlardır: Çap çemberi iki eşit parçaya böler. Bir ikizkenar üçgenin taban açıları birbirine eşittir.

63 İtalyan papazı ve matematikçisi olan Cavalieri, 1598 tarihinde Milano'da doğdu. Galile'nin en iyi öğrencilerinden biri olan Cavalieri, 1629 yılından ölünceye kadar Bologna'da matematik okuttu. Astronomi ve küresel trigonometriyle ilgilendi. Logaritma ve hesaplarının İtalya'da uygulanmasında öncülük etti. "Süreklilerin Bölünmezleri Yolundan, Yeni Bir Yöntemle İlerletilmiş " adlı eseri 1635 yılında yayınlandı. Bu eserinde, "bölünmezler" kuramıyla büyük bir ün kazandı. Bu kuram, geometrik büyüklükleri, sonsuz öğeli bir sayıdan oluşmuş kabul eder. Bu öğeler, geometrik büyüklüğün ayrılabileceği en son terimdir. Bu nedenle de bölünemez olarak nitelenir. Uzunlukların, yüzeylerin ve hacimlerin ölçülmesi sonsuz sayıda bölünmezlerin toplamından başka bir şey değildir. Belirli bir integralin hesaplanması da bu ilkeye dayanır. Cavalieri, bu teoremiyle bugünkü sonsuz küçükler hesabı denen analizin öncüsü olarak sayılabilir yılında Bologna'da ölen Cavalieri'nin kendi adıyla anılan postülatları, teoremleri ve bunlardan başka kitapları da vardır.

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK Hazırlayan: Sunan: Muhammed ERKUŞ Sefer Ekrem ÇELİKBİLEK 20047095 20043193 FİBONACCİ SAYILARI ve ALTIN ORAN Fibonacci Kimdir? Leonardo Fibonacci (1175-1250) Pisalı Leonardo Fibonacci Rönesans öncesi Avrupa'nın

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

Danışman Öğretmen:Şerife Çekiç

Danışman Öğretmen:Şerife Çekiç Bartu İNCE Yiğit TUNÇEL Berkay Necmi TAMCI Yusuf Kaan UZAR Danışman Öğretmen:Şerife Çekiç TRİGONOMETRİ TANIMI Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03

I 5. SINIF ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIM I- 01 I- 02 II- 01 II- 02 II- 03 I 5. SINIF MATEMATİK VE İŞLEMLER 1.1. En çok dokuz basamaklı doğal sayıları okur ve yazar. 1.2. En çok dokuz basamaklı doğal sayıların bölüklerini, basamaklarını ve rakamların basamak değerlerini belirtir.

Detaylı

Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır.

Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır. Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır. Altın oran pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı 1.618033988749894..(Noktadan

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015 Sayılar ve Altın Oranı Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2015 16 Ağustos 2015 Ben kimim? Denizli nin Çal ilçesinin Ortaköy kasabasında 1958 yılında

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

MATE 417 MATEMATİK TARİHİ DÖNEM SONU SINAVI

MATE 417 MATEMATİK TARİHİ DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 417 MATEMATİK TARİHİ DÖNEM SONU SINAVI 23 Ocak 2014 Numara: Grup: Soru Bölüm 1 Bölüm 2 Bölüm 3 21 22 23 24 25 TOPLAM Numarası (1-10) (11-15) (16-20) Ağırlık 20 10

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI

SİDRE 2000 ORTAOKULU 2014 2015 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI -6.09.0 DÖNÜŞÜM Sİ 5-9.09.0 ÖRÜNTÜ VE SÜSLEMELER SİDRE 000 ORTAOKULU 0 05 EĞİTİM VE ÖĞRETİM YILI MATEMATİK DERSİ 8. SINIF ÜNİTELENDİRİLMİŞ YILLIK PLANI,. Doğru, çokgen ve çember modellerinden örüntüler

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır.

Sıfırdan farklı a, b, c tam sayıları için aşağıdaki özellikler sağlanır. SAYILAR TEORİSİ 1 Bölünebilme Bölme Algoritması: Her a ve b 0 tam sayıları için a = qb + r ve 0 r < b olacak şekilde q ve r tam sayıları tek türlü belirlenebilir. r sayısı a nın b ile bölümünden elde edilen

Detaylı

ÜNİTELENDİRME ŞEMASI

ÜNİTELENDİRME ŞEMASI LENDİRME ŞEMASI ÜNİTE DOĞRULAR VE AÇILAR. Aynı düzlemde olan üç doğrunun birbirine göre durumlarını belirler ve inşa eder.. Paralel iki doğrunun bir kesenle yaptığı açıların eş olanlarını ve bütünler olanlarını

Detaylı

3. SINIF MATEMATİK 1. KİTAP

3. SINIF MATEMATİK 1. KİTAP . SINIF MATEMATİK 1. KİTAP Bu kitabın bütün hakları Hacer KÜÇÜKAYDIN a aittir. Yazarın yazılı izni olmaksızın kısmen veya tamamen alıntı yapılamaz ve çoğaltılamaz. Copyright 2015 YAZAR Ahmet KÜÇÜKAYDIN

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

Murat Kaya / Rehber Öğretmen www.psikorehberim.com 1

Murat Kaya / Rehber Öğretmen www.psikorehberim.com 1 MATEMATİK Sayılar 9 6 7 6 9 8 9 7 8 6 8 9 6 4 5 Üslü-Köklü İfadeler 4 5 4 2 2 1 1 3 2 4 2 4 2 4 2 Oran ve Orantı 1-3 1 1 1 2-1 2 1 1-1 1 Çarpanlara Ayırma 3 3 2 3 1 3-3 1 1 4 4 4 4 1 Denklemler-Problem

Detaylı

Trigonometrik Dönüşümlerin Fiziksel Yorumu

Trigonometrik Dönüşümlerin Fiziksel Yorumu S a y f a 1 Trigonometrik Dönüşümlerin Fiziksel Yorumu Giriş Çoğumuz, trigonometrik dönüşüm formüllerini aklımızda tutmakta güçlük çekiyoruz. Ancak her şeyin bir kolay yolu var. Trigonometrik dönüşüm formüllerini

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

LİSELER İÇİN PROJE VE PERFORMANS ÖDEVLERİ

LİSELER İÇİN PROJE VE PERFORMANS ÖDEVLERİ LİSELER İÇİN PROJE VE PERFORMANS ÖDEVLERİ 1. JENGA OYUNU 2. MOBİÜS ŞERİDİ VE KLEİN ŞİŞESİ 3. FRAKTALLAR. 4. ÇİVİLERLE ALAN HESAPLAMA. 5. KART OYUNLARI 6. NAPİER İN KEMİKLERİ 7. TANGRAM 8. Pi SAYISI. 9.

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Jeodezi 7 1 Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Elipsoid yüzeyinin küçük parçalarında oluşan küçük üçgenlerin (kenarları 50-60 km den küçük) hesaplanmasında klasik jeodezide

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır? Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder.

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder. 1 Sayıtlama Dizgeleri Hint-Arap Sayıtlama Dizgesi Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Sümerlerin, Mısırlıların, Romalıların ve diğer uygarlıkların kullandıkları

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

15. Bağıntılara Devam:

15. Bağıntılara Devam: 15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür

Detaylı

9. SINIF. NET ÖLÇME ve DEĞERLENDİRME MERKEZİ 10.12.2009 TARİHLİ GENEL DEĞERLENDİRME SINAVI - 03 (GDS - 03) KONU DAĞILIMLARI

9. SINIF. NET ÖLÇME ve DEĞERLENDİRME MERKEZİ 10.12.2009 TARİHLİ GENEL DEĞERLENDİRME SINAVI - 03 (GDS - 03) KONU DAĞILIMLARI Paragraf 4 Sözcükte Anlam 3 Edebi Türler 1 Noktalama 2 Dillerin Sınıflandırılması 1 Şiir Bilgisi 9 İletişim 1 Dilin İşlevleri 2 Ses Olayları 1 Dil Dışı Göstergeler 1 TÜRKÇE Yazım Kuralları 2 Dil ve Kültür

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri

Küpoktahedron. İkosahedron. Çember. Eşkenar üçgen. İkosidodekahedron. Kare. İkizkenar üçgen. Dik üçgen. Simit ve Peynir'le Geometri İkosahedron Küpoktahedron Hazırlayan: Banu Binbaşaran Tüysüzoğlu Çizim: Bilgin Ersözlü İkosidodekahedron Çember Eşkenar üçgen İkizkenar üçgen Dik üçgen Kare Küpoktahedron Üçgen şeklinde sekiz, kare şeklinde

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

4. Yazılı belgeler dikkate alınırsa, matematiğin M.Ö. 3000 2000 yılları arasında Yunanistan da başladığı söylenebilir.

4. Yazılı belgeler dikkate alınırsa, matematiğin M.Ö. 3000 2000 yılları arasında Yunanistan da başladığı söylenebilir. MATE417 ÇALIŞMA SORULARI A) Doğru/Yanlış : Aşağıdaki ifadelerin Doğru/Yanlış olduğunu sorunun altındaki boş yere yazınız. Yanlış ise nedenini açıklayınız. 1. Matematik ile ilgili olabilecek en eski buluntu,

Detaylı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı

GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Eğitimde. Lise ve Ön Lisans Adayları İçin. konu anlatımlı KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin GEOMETRİ KPSS 206 Pegem Akademi Sınav Komisyonu; 204 KPSS ye Pegem Yayınları ile hazırlanan adayların, 00'ün üzerinde soruyu kolaylıkla çözebildiğini

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

Ali Sinan Sertöz. Tarih: 5 Şubat 1998, Antalya

Ali Sinan Sertöz. Tarih: 5 Şubat 1998, Antalya SEMİNER Ali Sinan Sertöz 1 KONİ KESİTLERİ Tarih: 5 Şubat 1998, Antalya 1.1 Başlangıç Koni kesitleri ilk kez eski Yunan da ortaya çıkmıştır. MÖ 350 yıllarında yaşamış olan Menaechmus un koni kesitlerini

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI C PROGRAMLAMA DİLİ YRD.DOÇ.DR. BUKET DOĞAN 1 PROGRAM - ALGORİTMA AKIŞ ŞEMASI Program : Belirli bir problemi çözmek için bir bilgisayar dili kullanılarak yazılmış deyimler dizisi. Algoritma bir sorunun

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 108 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600 MATEMATİK ÖĞRETMENLİĞİ Analiz Yazar: Prof.Dr. Vakıf CAFEROV Editör: Öğr.Gör.Dr. Mehmet ÜREYEN Bu kitabın basım, yayım

Detaylı

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir.

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. İşaretli Tamsayı Gösterimi 1. İşaretli Büyüklük Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. Örnek

Detaylı

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25

Yükseköğretime Geçiş Sınavı (Ygs) / 11 Nisan 2010. Matematik Soruları ve Çözümleri 12 E) 25 Yükseköğretime Geçiş Sınavı (Ygs) / Nisan 00 Matematik Soruları ve Çözümleri. 0, 0,0 0, işleminin sonucu kaçtır? A) B) 4 7 C) 0 8 D) E) Çözüm 0, 0,0 0, = 0,00 0,0 0, = 0,7 0, 000 7 7. = = 000 00 0... işleminin

Detaylı

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

8.SINIF MATEMATİK DERSİ PROJE ÖDEVİ

8.SINIF MATEMATİK DERSİ PROJE ÖDEVİ PROJE ÖDEVİ KONUSU:cisimler/Sizden düzgün geometrik cisimlerin(prizmalar,piramitler, küre ) kapalı maketlerinin hazırlanması istenmektedir. 2)Düzgün prizma ve pramitlerin özelliklerini öğreniniz. 3)Açık

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 2-Onlar basamağı 5, yüzler basamağı 2 ve binler basamağı 6

Detaylı

EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 2010-2011 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI

EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 2010-2011 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI EMİRDAĞ M.Z.SARI ANADOLU LİSESİ 00-0 EĞİTİM ÖĞRETİM YILI 9. SINIFLAR GEOMETRİ DERSİ ÜNİTELENDİRİLMİ YILLIK PLANI ÜNİTE AY HAFTA SAAT KAZANIMLAR KONULAR ÖĞRENME ÖĞRETME YÖNTEM İ KAYNAK ARAÇ VE GEREÇKLER

Detaylı

MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ

MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ İÇİNDEKİLER Önsöz.III Bölüm I: MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ 11 1.1. Matematiğin Tanımına Çeşitli Yaklaşımlar 12 1.2.Matematik Öğrenmenin Amaçları 13 1.3.Matematik ile Diğer Öğrenme Alanlarının

Detaylı

17. yy. Dehalar Yüzyılı

17. yy. Dehalar Yüzyılı 17. yy. Dehalar Yüzyılı 20. yy a kadar her bilimsel gelişmeyi etkilediler. 17. yy daki bilimsel devrimin temelleri 14.yy. da atılmıştı fakat; Coğrafi keşifler ile ticaret ve sanayideki gelişmeler sayesinde

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır?

Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994. Matematik Soruları ve Çözümleri = 43. olduğuna göre a kaçtır? Öğrenci Seçme Sınavı (Öss) / 17 Nisan 1994 Matematik Soruları ve Çözümleri 4.10 +.10 1. 4 10 4 işleminin sonucu kaçtır? A) 0,4 B) 4, C) 4 D) 40 E) 400 Çözüm 1 4.10 +.10 4 10 4 4.10 +.10 10 1+ 1 = 4 4 (40+

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

6.12 Örnekler PROBLEMLER

6.12 Örnekler PROBLEMLER 6.1 6. 6.3 6.4 6.5 6.6 6.7 Çok Parçalı Taşıyıcı Sistemler Kafes Sistemler Kafes Köprüler Kafes Çatılar Tam, Eksik ve Fazla Bağlı Kafes Sistemler Kafes Sistemler İçin Çözüm Yöntemleri Kafes Sistemlerde

Detaylı