HANGİ TÜR ARAŞTIRMALARDA PATH ANALİZİ KULLANILMALIDIR? IX Ulusal Biyoistatistik Kongresi 5-9 Eylül 2006 Zonguldak

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HANGİ TÜR ARAŞTIRMALARDA PATH ANALİZİ KULLANILMALIDIR? IX Ulusal Biyoistatistik Kongresi 5-9 Eylül 2006 Zonguldak"

Transkript

1 HANGİ TÜR ARAŞTIRMALARDA PATH ANALİZİ KULLANILMALIDIR? * M.Mutlu DAŞDAĞ * M.Yusuf ÇELİK *Ömer SATICI *Zeki AKKUŞ *H. Coşkun ÇELİK IX Ulusal Biyoistatistik Kongresi 5-9 Eylül 2006 Zonguldak Zonguldak Karaelmas Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

2 HANGİ TÜR ARAŞTIRMALARDA PATH ANALİZİ KULLANILMALIDIR? * M.Mutlu DAŞDAĞ * M.Yusuf ÇELİK *Ömer SATICI *Zeki AKKUŞ *H. Coşkun ÇELİK *Dicle Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı IX Ulusal Biyoistatistik Kongresi 5-9 Eylül 2006 Zonguldak Zonguldak Karaelmas Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı ÖZET Son yıllarda bilgisayar olanakları, komplex problemleri basite indirgeyerek çok değiģkenli istatistik yöntemlerinin kullanımını kolaylaģtırmıģtır. Path analizi çok değiģkenli yapı içerisinde alternatif çok değiģkenli istatistiksel yöntemler grubunda yer alır. AraĢtırıcılar problem çözümünde kullandıkları korelasyon ve regresyon yöntemlerinin bazı durumlarda yetersiz olduğunu bildirmiģlerdir. Bu yetersizlik path analizinin geliģtirilmesiyle giderilmiģtir. Path analizinin amacı, değiģkenler arasındaki nedensel iliģkiler için oluģturulmuģ hipotezlerin önemliliğini ve miktarını tahmin etmede kullanılan bir yöntemdir.bu durum path diyagramı ile iyi bir Ģekilde açıklanmaktadır. Path analizinde, path diyagramının oluģturulması zorluğun bir parçasıdır. Path diyagramı araģtırıcının konuyu ne kadar bildiğinin bir ölçüsüdür. Bu nedenle araģtırıcı konudaki detayı, değiģken yapılarını, etkileģimi, nedensel iliģkileri ve varyasyon kaynağını çok iyi bilmelidir. Anahtar Kelimeler: Path Diyagramı, Path Analizi GİRİŞ Path Analizi tekniği, ilk defa Amerikalı evren genetikçisi Sewall Wright tarafından 1921 yılında bir dizi denemede geliģtirilmiģ ve sosyal bilimlerde O. Duncan tarafından kullanılmıģtır. Path sözcüğünün Türkçe karģılığı iz, patika veya yol olarak verilse de bu analiz tekniği Türkçe literatüre de bu isimle girdiği için Path Analizi olarak incelenecektir.(1) Path analizi çoklu regresyon yönteminin özel bir kullanım Ģeklidir.Bu yöntem veri setindeki varyasyon kaynağını bölerek daha iyi anlaģılmasını sağlar. Çoklu regresyon analizinde dikkate alınan varsayımlar altında bir bağımlı değiģken tüm bağımsız değiģkenler üzerinden analiz edilmektedir. Path analizinde ise her bağımlı değiģken her bir bağımsız

3 değiģken üzerinde analiz edilmekte, yani birden fazla regresyon analizi yapılabilmektedir. Path analizinde en önemlisi path i çizerek karar vermektir. Daha sonra veri seti indirgenerek nedensel iliģkiler için her bir veri seti ile ilgili çoklu regresyonlar bulunur.bu regresyonların standardize edilen regresyon katsayıları path katsayıları olarak tanımlanır.hesaplanan liner korelasyonlar path diyagramında gösterilir, daha sonra artık varyans hesaplanır. PATH ANALİZİ YÖNTEMİ VE KULLANIM ALANLARI Standardize edilmiģ değiģkenler arasındaki iliģki sistemlerini inceleyen bir analiz tekniği olarak da bilinen Path Analizi tekniği, birbirleriyle sebep-sonuç iliģkisi içinde olduğu düģünülen değiģkenler arasındaki iliģkileri gösteren path diyagramlarının oluģturulması, değiģkenler arasındaki doğrusal iliģkilerin derecesini gösteren korelasyon katsayılarının direkt etkiler, dolaylı etkiler ve bileģik path katsayılarına ayrılarak analiz edilmesi ve analiz sonuçlarının doğru bir Ģekilde yorumlanması iģlemlerini kapsar. Path Analizi yöntemi, birbirleriyle iliģkili olduğu düģünülen değiģkenlerin tam olarak bir diyagramla gösterilmesi iģlemiyle baģlar ve sistemin yorumlanması hesaplanacak path katsayıları ile yapılır. Ayrıca bu katsayıların matematiksel olarak belirlenebilmesi, değiģkenler arasındaki sebep-sonuç iliģkiler sistemini bir matematiksel model ile belirlemeyi gerekli kılmaktadır. AraĢtırıcı kuracağı sebep-sonuç iliģkisini belirlerken konuyla ilgili olarak yapılmıģ araģtırmalardan yararlanabileceği gibi çalıģtığı konuyu bilen birileriyle birlikte de sebep-sonuç iliģkisine ait path diyagramını oluģturabilir. Unutulmaması gerekir ki Path Analizinin sonuçlarının yorumlanması kurulan diyagrama göredir. Bunun için eğer kurulan diyagram yanlıģ ise elde edilen sonuçların hatalı olmasının sebebi Path Analizi tekniğinden değil, kurulan diyagramın yanlıģ olmasından kaynaklanan bir durumdur(1). Her istatistik analiz tekniğinde olduğu gibi path analizi tekniğinin de bazı önemli varsayımları vardır. Bu varsayımlar; 1) Modelde yer alan değiģkenler arasındaki iliģkiler, doğrusal, eklenebilir ve sebep sonuç iliģkisine dayanmalıdır. 2) Model içerisindeki hatalar kendi aralarında ve modeldeki diğer değiģkenlerle iliģkili olmamalıdır. 3) Tek yönlü bir sebep akıģı olmalıdır. 4) Ölçümler kantitatif değiģkenlerden elde edilmiģ olmalıdır. 5) Ölçümler hatasız olarak yapılmalıdır (6).

4 Path analizinin en zor ve en önemli kısmı path diyagramının oluģturulmasıdır. Path diyagramı sayısal analizler için gerekli olmamasına rağmen, değiģkenler arasındaki doğrudan ve dolaylı iliģkilerin ortaya konulması açısından oldukça kullanıģlıdır (7). PATH ANALİZİNİN ÜSTÜNLÜKLERİ VE ZAYIFLIKLARI A) Path Analizinin Üstünlükleri 1. Ġki değiģken için hesaplanan korelasyon katsayısının içerisinde, daha önce de belirtildiği gibi, değiģkenlerin tek baģına etkisi ve diğer değiģkenlerle olan birlikte etkileri yani dolaylı etkiler bulunmaktadır. Bu nedenle, değiģkenler arasındaki iliģkilerin tümünün basit korelasyon katsayıları ile açıklanabilmesi olanaklı değildir. Bu bakımdan, doğrudan ve dolaylı etkilenme Ģekillerinin birbirinden ayrılması ve söz konusu iliģkilerin ayrıntılı bir biçimde ortaya konulması gerekmektedir(2). 2. Ġki değiģken arasında hesaplanan korelasyon katsayısına bakarak, bu iki değiģkeni birlikte etkileyen ortak bir sebep olup olmadığı konusunda hüküm vermek doğru değildir. Eğer iki değiģken arasında hesaplanan korelasyon katsayısı sıfır olarak bulunmuģsa, bu iki değiģkenin ortak sebep içermediği konusunda yorum yapmak yanıltıcı olur. Bir çok durumda, negatif yönlü korelasyonlar pozitif yönlü korelasyonlar kadar olup, birbirini dengelemektedir(3). 3. Sonuç değiģkenindeki değiģimi açıklayabilmede, modele girebilecek sebep değiģkenlerinin seçiminde de path katsayılarından yararlanılabilir. Çoklu doğrusal regresyon modeli, daha çok bağımlı değiģken olan Y deki değiģimi açıklamada etkili olan X bağımsız değiģkenlerinin bulunmasına dayanır. DeğiĢkenler arasındaki iliģkilerin mantıklı bir biçimde tartıģılması için pek düģünülmez. Aynı zamanda Path Analizinin nedensel iliģkileri açıklayabilme bakımından, doğrusal regresyon modeli yaklaģımından daha üstün olduğu görülür (4). 4. Korelâsyon katsayıları -1 ile +1 arasında değiģirken, path katsayıları bu sınırların dıģına çıkabilmektedir. Yani, path katsayılarının negatif yönlü olanları ve pozitif yönlü olanları birbirlerini dengelemekte ve korelasyon katsayılarını bu sınırlar içinde tutmaktadır. Aynı korelasyona sahip olan değiģkenler arsında, faklı path diyagramları çizilebilmekte ve bunlar arasındaki doğrusal iliģkiler farklı Ģekillerde yorumlanabilmektedir. B) Path Analizinin Zayıflıkları Daha önce de belirtildiği gibi, Path Analizi tekniği aynı veri setine değiģik path diyagramları çizilerek bunları yorumlama imkânı verir. Ancak aynı veri seti için kurulan faklı path diyagramlarından, hangisinin ya da hangilerinin kullanılabileceği konusundaki veya hangi diyagramların avantajlı olduğu konusundaki belirsizlikler ve bunun yanı sıra Path Analizi sonucunda elde edilen path katsayılarından 1 den büyük çıkan değerlerin ve buna

5 bağlı olarak da negatif değerli birlikte belirleme katsayılarının yorumlanabilmesindeki güçlükler, Path Analizi tekniğinin dezavantajları olarak görülebilir (4). Path diyagramında 1 den büyük path katsayısı varsa, bu, böyle bir sistemde dengeleyici mekanizmanın (negatif etkinin) olduğuna bir iģarettir. Bu açısıyla bakıldığı zaman, 1 den büyük çıkan path katsayıları tek olarak anlamlı değildir (5). KAYNAKLAR 1. Ġllerin GeliĢmiĢlik Düzeyini Etkileyen Faktörlerin Path Analizi Ve Kümeleme Analizi Ġle Ġncelenmesi. EriĢim: EriĢim tarihi: ġahġnler, S. ve GÖRGÜLÜ, Ö. (2000), Path Analizi ve Bir Uygulama, MKÜ Ziraat Fakültesi Dergisi 5 (1 2): KESKĠN, S. (1998), Path (Ġz) Katsayıları ve Path Analizi, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü. 4. KAġIKÇI, D. (2000), Path Katsayısı, Kısmi regresyon Katsayısı ve Korelasyon Katsayılarının KarĢılaĢtırmalı Olarak incelenmesi, Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri enstitüsü. 5. Li, C.C., (1975), Path Analysis-A Primer, The Boxwood Press, California, USA. 6. ġahinler, S., Görgülü, Ö.: Path Analizi ve Bir Uygulama, EriĢim: [ EriĢim Tarihi: Pedhazur, E.J., Multiple Regression in Behavioral Research, Harcourt Brace College Publishers, Forth Worth,1057 pp. YazıĢma Adresi: ArĢ. Gör. M.Mutlu DAġDAĞ Dicle Üniversitesi Tıp Fakültesi, Biyoistatistik AD. Diyarbakır E-posta:

SİYAH ALACA SIĞIRLARDA 305 GÜNLÜK SÜT VERİMİ ÜZERİNE ETKİLİ FAKTÖRLERİN PATH ANALİZİ İLE İNCELENMESİ

SİYAH ALACA SIĞIRLARDA 305 GÜNLÜK SÜT VERİMİ ÜZERİNE ETKİLİ FAKTÖRLERİN PATH ANALİZİ İLE İNCELENMESİ İYAH ALACA IĞIRLARDA 305 GÜNLÜK ÜT VERİMİ ÜZERİNE ETKİLİ FAKTÖRLERİN ATH ANALİZİ İLE İNCELENMEİ Ö. İşçi 1, Ç. Takma 2 Y. Akbaş 2 ÖZET İncelenen kantitatif bir özellik üzerine çeşitli faktörlerin doğrudan

Detaylı

Siyah Alaca Sığırlarda 305 Günlük Süt Verimini Etkileyen Faktörlerin Path (İz) Analizi İle Belirlenmesi

Siyah Alaca Sığırlarda 305 Günlük Süt Verimini Etkileyen Faktörlerin Path (İz) Analizi İle Belirlenmesi Kafkas Univ Vet Fak Derg 21 (2): 219-224, 2015 DOI: 10.9775/kvfd.2014.12054 Kafkas Universitesi Veteriner Fakultesi Dergisi Journal Home-Page: http://vetdergi.kafkas.edu.tr Online Submission: http://vetdergikafkas.org

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

Path Analizi ve Bir Uygulama

Path Analizi ve Bir Uygulama MKÜ Ziraat Fakültesi Dergisi 5 (-): 87-0, 000. Generated by Foxit PDF Creator Foxit oftware Path Analizi ve Bir Uygulama uat ŞAHİNLER Özkan GÖRGÜLÜ Mustafa Kemal Üniversitesi Ziraat Fakültesi Zootekni

Detaylı

İLERİ BİYOİSTATİSTİK KURSU

İLERİ BİYOİSTATİSTİK KURSU 1.GÜN (14 Eylül 2017) 08:30-09:00 Kurs Kayıt Açılış Konuşması 09:00-10:00 Tanışma -Katılımcıların Temel İstatistik Bilgisinin Değerlendirilmesio Çok Değişkenli İstatistiksel Yöntemlere Giriş o Basit Doğrusal

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 12 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

2. METODOLOJĠ 1 METODOLOJĠ. Programlar ile Ġstatistiksel Veri Analizi-2 (Prof.Dr. Kazım ÖZDAMAR,2002) çalıģmalarından yararlanılmıģtır.

2. METODOLOJĠ 1 METODOLOJĠ. Programlar ile Ġstatistiksel Veri Analizi-2 (Prof.Dr. Kazım ÖZDAMAR,2002) çalıģmalarından yararlanılmıģtır. GĠRĠġ 1 GĠRĠġ 2 GĠRĠġ 3 İÇİNDEKİLER 1. GĠRĠġ... 4 2. METODOLOJĠ... 5 3. TEMEL BĠLEġENLER ANALĠZĠ TEKNĠĞĠNĠN UYGULANMASI... 8 4. TR52 DÜZEY 2 BÖLGESĠ ĠLÇELERĠ SOSYAL GELĠġMĠġLĠK ENDEKSĠ...10 5. SONUÇ...27

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

0502309-0506309 ÖLÇME YÖNTEMLERİ. Ders Öğretim Üyeleri Prof. Dr. Hüsamettin BULUT Yrd. Doç. Dr. M. Azmi AKTACĠR

0502309-0506309 ÖLÇME YÖNTEMLERİ. Ders Öğretim Üyeleri Prof. Dr. Hüsamettin BULUT Yrd. Doç. Dr. M. Azmi AKTACĠR 0502309-0506309 ÖLÇME YÖNTEMLERİ Ders Öğretim Üyeleri Prof. Dr. Hüsamettin BULUT Yrd. Doç. Dr. M. Azmi AKTACĠR Kaynak Ders Kitabı: ÖLÇME TEKNĠĞĠ (Boyut, Basınç, AkıĢ ve Sıcaklık Ölçmeleri), Prof. Dr. Osman

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı

Kullanılacak İstatistikleri Belirleme Ölçütleri. Değişkenin Ölçek Türü ya da Yapısı ARAŞTIRMA MODELLİLERİNDE KULLANILACAK İSTATİSTİKLERİ BELİRLEME ÖLÇÜTLERİ Parametrik mi Parametrik Olmayan mı? Kullanılacak İstatistikleri Belirleme Ölçütleri Değişken Sayısı Tek değişkenli (X) İki değişkenli

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

Program AkıĢ Kontrol Yapıları

Program AkıĢ Kontrol Yapıları C PROGRAMLAMA Program AkıĢ Kontrol Yapıları Normal Ģartlarda C dilinde bir programın çalıģması, komutların yukarıdan aģağıya doğru ve sırasıyla iģletilmesiyle gerçekleģtirilir. Ancak bazen problemin çözümü,

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Yrd. Doç. Dr. Mehmet Güçlü

Yrd. Doç. Dr. Mehmet Güçlü Dersin Adı DERS ÖĞRETİM PLANI Ekonometri I Dersin Kodu ECO 301 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 6 Haftalık Ders Saati 4 Haftalık

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

Sosyal Bilimler İçin Veri Analizi El Kitabı

Sosyal Bilimler İçin Veri Analizi El Kitabı 292 Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 18 (2012) 292-297 KİTAP İNCELEMESİ Sosyal Bilimler İçin Veri Analizi El Kitabı Editör Doç. Dr. Şener BÜYÜKÖZTÜRK Dilek SEZGİN MEMNUN 1 Bu çalışmada,

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Üçüncü adımda ifade edilen özel kısıtları oluģturabilmek için iki genel yöntem geliģtirilmiģtir:

Üçüncü adımda ifade edilen özel kısıtları oluģturabilmek için iki genel yöntem geliģtirilmiģtir: TAMSAYILI DOGRUSAL PROGRAMLAMA ALGORİTMALARI TDP Algoritmaları, doğrusal programlamanın baģarılı sonuçlar ve yöntemlerinden yararlanma üzerine inģa edilmiģtir. Bu algoritmalardaki stratejiler üç adım içermektedir:

Detaylı

17.ULUSAL TURİZM KONGRESİ

17.ULUSAL TURİZM KONGRESİ 17.ULUSAL TURİZM KONGRESİ 2016 YILI BİLDİRİLERİ ÜZERİNE BİR DEĞERLENDİRME Prof. Dr. A. Celil ÇAKICI Mersin Üniversitesi Turizm Fakültesi YAZAR SAYISI YAZARLARIN UNVAN DAĞILIMI (İlk üç) 1.Yazarın Üniversitesi

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1

Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Çankırı Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 3(1): 191-198 Üniversite Öğrencilerinin Akademik Başarılarını Etkileyen Faktörler Bahman Alp RENÇBER 1 Özet Bu çalışmanın amacı, üniversite

Detaylı

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1 İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya

Detaylı

İLERİ BİYOİSTATİSTİK KURSU

İLERİ BİYOİSTATİSTİK KURSU 1.GÜN 08.00-08.50 Kurs Kayıt 08.50-09.00 Açılış Konuşması Tanışma -Katılımcıların Temel İstatistik Bilgisinin Değerlendirilmesi- Çok Değişkenli İstatistiksel Yöntemlere Giriş Basit Doğrusal Regresyon Analizi

Detaylı

1. İLİŞKİLERİN İNCELENMESİNE YÖNELİK ANALİZLER. 1.1. Sosyal Bilimlerde Nedensel Açıklamalar

1. İLİŞKİLERİN İNCELENMESİNE YÖNELİK ANALİZLER. 1.1. Sosyal Bilimlerde Nedensel Açıklamalar 1. İLİŞKİLERİN İNCELENMESİNE YÖNELİK ANALİZLER Daha önceki derslerimizde anlatıldığı bilimsel araştırmalar soruyla başlamaktadır. Ancak sosyal bilimlerde bu soruların cevaplarını genel geçerli sonuçlar

Detaylı

www.fikretgultekin.com 1

www.fikretgultekin.com 1 KORELASYON ANALĐZĐ (Correlation Analysis ) Basit Korelasyon Analizi Basit korelasyon analizinde iki değişken söz konusudur ve bu değişkenlerin bağımlıbağımsız değişken olarak tanımlanması/belirlenmesi

Detaylı

Program akıģı sırasında belirtilen satır numaralı yere gitmek için kullanılır. Genel formu: [<satır numarası>] GOTO <satır numarası 1> GOTO n

Program akıģı sırasında belirtilen satır numaralı yere gitmek için kullanılır. Genel formu: [<satır numarası>] GOTO <satır numarası 1> GOTO n KONTROL DEYİMLERİ Kontrol deyimleri bir programın normal akıģını değiģtirmek için kullanılır. Aksi söylenmedikçe programın komut satırları birbiri ardına çalıģtırılır. Program içindeki yapılan sorgulamalara

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

İşgücü Talebinin Tahmininde Sayısal ve. ve Ayrıntılı Yöntemler. İnsan Kaynakları Planlamasında Sayısal

İşgücü Talebinin Tahmininde Sayısal ve. ve Ayrıntılı Yöntemler. İnsan Kaynakları Planlamasında Sayısal İşgücü Talebinin Tahmininde Sayısal ve Sayısal Yrd. Doç. Dr. Rıza DEMİR İstanbul Üniversitesi İşletme Fakültesi İnsan Kaynakları Planlaması ve Seçimi Dersi 2017 Talep Tahmin i İnsan kaynakları talebi veya

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

I. ULUSLARARASI SPOR EKONOMİSİ VE YÖNETİMİ KONGRESİ

I. ULUSLARARASI SPOR EKONOMİSİ VE YÖNETİMİ KONGRESİ I. ULUSLARARASI SPOR EKONOMİSİ VE YÖNETİMİ KONGRESİ 12-15 EKİM 2011 / İZMİR-TÜRKİYE BİLDİRİLER KİTABI EGE ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ EGE ÜNİVERSİTESİ BEDEN EĞİTİMİ VE SPOR YÜKSEKOKULU

Detaylı

Manas Sosyal Araştırmalar Dergisi 2016 Cilt: 5 Sayı: 2. Manas Journal of Social Studies 2016 Vol.: 5 No: 2

Manas Sosyal Araştırmalar Dergisi 2016 Cilt: 5 Sayı: 2. Manas Journal of Social Studies 2016 Vol.: 5 No: 2 Manas Sosyal Araştırmalar Dergisi 2016 Cilt: 5 Sayı: 2 Manas Journal of Social Studies 2016 Vol.: 5 No: 2 STRATEJĠK ĠNSAN KAYNAKLARI YÖNETĠMĠ UYGULAMALARININ ÖRGÜT ĠNOVASYONU VE ĠÇ GĠRĠġĠMCĠLĠK ÜZERĠNDEKĠ

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ

ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ ATATÜRK ÜNĠVERSĠTESĠ UZAKTAN EĞĠTĠM MERKEZĠ 2009 ATAUZEM ŞABLON 28. HAFTA KONU BAġLIĞI Neler Öğrendik, Bilgilerimizi PekiĢtirelim AMAÇ Biyoistatistik dersinin 15-23. haftalarda öğrenilen konularını tekrarlamak

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ İÇİNDEKİLER Birinci Bölüm UYGULAMA VERİLERİ VERİ GRUBU 1. Yüzücü ve Atlet Verileri... 1 VERİ GRUBU 2. Sutopu, Basketbol ve Voleybol Oyuncuları Verileri... 4 VERİ 3. Solunum Yolları Verisi... 7 VERİ 4.

Detaylı

) -3n(k+1) (1) ile verilir.

) -3n(k+1) (1) ile verilir. FİEDMAN İKİ YÖNLÜ VAYANS ANALİZİ Tekrarlı ölçümlerde tek yönlü varyans analizinin varsayımları yerine gelmediğinde kullanılabilecek olan değiģik parametrik olmayan testler vardır. Freidman iki yönlü varyans

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

Q şeb = 1,5 Q il + Q yangın debisine ve 1 < V < 1,3 m/sn aralığında bir hıza göre

Q şeb = 1,5 Q il + Q yangın debisine ve 1 < V < 1,3 m/sn aralığında bir hıza göre 6. ĠÇME SUYU DAĞITIM ġebekesġ TASARIMI 6.1. Dağıtım ġebekesinin OluĢturulması a) Ana Boru (İsale) Hattı: Q şeb = 1,5 Q il + Q yangın debisine ve 1 < V < 1,3 m/sn aralığında bir hıza göre uygun çap (D şeb

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları

Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Olasılık ve İstatistiğe Giriş-II (STAT 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistiğe Giriş-II STAT 202 Bahar 3 0 0 3 5 Ön Koşul

Detaylı

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN

T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ. Yrd. Doç. Dr. C. Deha DOĞAN T TESTİ: ORTALAMALAR ARASI FARKLARIN TEST EDİLMESİ Yrd. Doç. Dr. C. Deha DOĞAN Gruplara ait ortalamalar elde edildiğinde, farklı olup olmadıkları ilk bakışta belirlenemez. Ortalamalar arsında bulunan

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

YRD. DOÇ. DR. HALİL COŞKUN ÇELİK İN ÖZGEÇMİŞİ

YRD. DOÇ. DR. HALİL COŞKUN ÇELİK İN ÖZGEÇMİŞİ YRD. DOÇ. DR. HALİL COŞKUN ÇELİK İN ÖZGEÇMİŞİ 1. Adı Soyadı : Halil CoĢkun ÇELĠK 2. Doğum Tarihi : 24 Ekim 1972 3. Ünvanı : Yrd. Doç. Dr. 4. Uyruk : Türkiye 5. Öğrenim Durumu: Derece Alan Üniversite Baş-Bitiş

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

Afrika Birliği Ülkelerinin Sosyal ve Ekonomik Göstergeleri Arasındaki İlişkinin Kanonik Korelasyon Analizi ile İncelenmesi

Afrika Birliği Ülkelerinin Sosyal ve Ekonomik Göstergeleri Arasındaki İlişkinin Kanonik Korelasyon Analizi ile İncelenmesi Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 2010 14 (1): 261-274 Afrika Birliği Ülkelerinin Sosyal ve Ekonomik Göstergeleri Arasındaki İlişkinin Kanonik Korelasyon Analizi ile İncelenmesi M.

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

İstatistik Derslerinin İşletme Bölümü Müfredatındaki Derslerle Etkileşiminin Yol Analizi Yardımıyla İncelenmesi

İstatistik Derslerinin İşletme Bölümü Müfredatındaki Derslerle Etkileşiminin Yol Analizi Yardımıyla İncelenmesi Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 2012 16 (1): 513-527 İstatistik Derslerinin İşletme Bölümü Müfredatındaki Derslerle Etkileşiminin Yol Analizi Yardımıyla İncelenmesi Erkan OKTAY (*)

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

Fortran komut satırı toplam 80 kolon ve 5 bölgeden oluģur. Komut satırının yapısı aģağıdaki gibidir:

Fortran komut satırı toplam 80 kolon ve 5 bölgeden oluģur. Komut satırının yapısı aģağıdaki gibidir: FORTRAN (FORmula TRANslation) Fortran komut satırı toplam 80 kolon ve 5 bölgeden oluģur. Komut satırının yapısı aģağıdaki gibidir: 1 2...5 6 7...72 73...80 A B C D E A Bölgesi: (1. kolon) B Bölgesi: (2-5

Detaylı

NEVġEHĠR ÜNĠVERSĠTESĠ BOLOGNA SÜRECĠ

NEVġEHĠR ÜNĠVERSĠTESĠ BOLOGNA SÜRECĠ NEVġEHĠR ÜNĠVERSĠTESĠ BOLOGNA SÜRECĠ ÖĞRENME ÇIKTILARI HAZIRLAMA VE ÖĞRENCĠ Ġġ YÜKÜ HESABI FUNDA NALBANTOĞLU YILMAZ Eğitim Öğretim Planlamacısı Ekim, 2011 GĠRĠġ Bologna Süreci kapsamında, yükseköğretim

Detaylı

ĠKĠ ÖRNEKLEM TESTLERĠ

ĠKĠ ÖRNEKLEM TESTLERĠ ĠKĠ ÖRNEKLEM TESTLERĠ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ 1. ĠKĠ ORTALAMA ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ. MANN-WHITNEY U TESTĠ 3. ĠKĠ YÜZDE ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ 4. x KĠ-KARE TESTLERĠ

Detaylı

İLERİ ARAŞTIRMA SORU HAVUZU

İLERİ ARAŞTIRMA SORU HAVUZU 1 ) Bir ölçümde bağımlı değişkenlerdeki farklılıkların bağımsız değişkenlerdeki farklılıkları nasıl etkilediğini aşağıdakilerden hangisi ölçer? A) Bağımlı Değişken B) Bağımsız Değişken C) Boş Değişken

Detaylı

Bir Kamu Ġhale Karar Destek Modelinde Lineer ve Nonlineer Bulanık Küme Kullanımının KarĢılaĢtırılması

Bir Kamu Ġhale Karar Destek Modelinde Lineer ve Nonlineer Bulanık Küme Kullanımının KarĢılaĢtırılması 6. İnşaat Yönetimi Kongresi, 25-26-27 Kasım 2011, Bursa 13 Bir Kamu Ġhale Karar Destek Modelinde Lineer ve Nonlineer Bulanık Küme Kullanımının KarĢılaĢtırılması Cemil Akçay 1, BarıĢ Sayın 2, A. Sertaç

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ TIP FAKÜLTESİ Dönem V SPSS İLE TEMEL BİYOİSTATİSTİK UYGULAMALARI Seçmeli Staj Eğitim Programı (2016) Eğitim Başkoordinatörü: Doç. Dr. Erkan Melih ŞAHİN Dönem Koordinatörü: Yrd. Doç. Dr. Baran GENCER Koordinatör Yardımcısı:

Detaylı

ĠSTATĠSTĠK HAKKINDA TANITICI BĠLGĠLER

ĠSTATĠSTĠK HAKKINDA TANITICI BĠLGĠLER 1 ĠSTATĠSTĠK HAKKINDA TANITICI BĠLGĠLER Ġstatistik, geçmiģ ve Ģimdiki durumla ilgili toplanmıģ sayısal verileri geliģtirilmiģ olan bazı tekniklerle analiz ederek gelecek hakkında karar vermemizi kolaylaģtıran

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ

İÇİNDEKİLER BİRİNCİ KISIM: TASARIM PAZARLAMA ARAŞTIRMASINA GİRİŞ İÇİNDEKİLER ÖNSÖZ... v TEŞEKKÜR... vi İKİNCİ BASKIYA ÖNSÖZ VE TEŞEKKÜR... vii İÇİNDEKİLER... ix ŞEKİLLER LİSTESİ... xviii TABLOLAR LİSTESİ... xx BİRİNCİ KISIM: TASARIM BİRİNCI BÖLÜM PAZARLAMA ARAŞTIRMASINA

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

İçindekiler. Pazarlama Araştırmalarının Önemi

İçindekiler. Pazarlama Araştırmalarının Önemi İçindekiler Birinci Bölüm Pazarlama Araştırmalarının Önemi 1.1. PAZARLAMA ARAŞTIRMALARININ TANIMI VE ÖNEMİ... 1 1.2. PAZARLAMA ARAŞTIRMASI İŞLEVİNİN İŞLETME ORGANİZASYONU İÇİNDEKİ YERİ... 5 1.3. PAZARLAMA

Detaylı

TEZSİZ YÜKSEK LİSANS PROJE ONAY FORMU. Eğitim Bilimleri Anabilim Dalı Eğitim Yönetimi, Denetimi, Planlaması ve Ekonomisi

TEZSİZ YÜKSEK LİSANS PROJE ONAY FORMU. Eğitim Bilimleri Anabilim Dalı Eğitim Yönetimi, Denetimi, Planlaması ve Ekonomisi TEZSİZ YÜKSEK LİSANS PROJE ONAY FORMU Eğitim Bilimleri Anabilim Dalı Eğitim Yönetimi, Denetimi, Planlaması ve Ekonomisi Bilim Dalı öğrencisi Feyzi ÖZMEN tarafından hazırlanan Aday Öğretmenlerin Öz Yeterlilikleri

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : İSTATİSTİK II Ders No : 0020050027 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

Yıl: 4, Sayı: 11, Haziran 2017, s

Yıl: 4, Sayı: 11, Haziran 2017, s Yıl: 4, Sayı: 11, Haziran 2017, s. 302-331 Deniz BERBEROĞLU 1 Zekavet KABASAKAL 2 GELĠġĠMSEL YETERSĠZLĠĞĠ OLAN ÇOCUKLARIN EBEVEYNLERĠNĠN YAġAM DOYUM VE BAġA ÇIKMA STRATEJĠLERĠNĠN ĠNCELENMESĠ Özet Bu araģtırmanın

Detaylı

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir.

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir. Bölüm BİLGİSAYAR DESTEKLİ İSTATİSTİK EXCEL DESTEKLİ İSTATİSTİK Excel de istatistik hesaplar; Genel Yöntem ve Excel Ġçerikli Çözümler olmak üzere iki esasa dayanabilir. Genel Yöntem; Excel in matematiksel

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

SoCAT. Dr Mustafa Melih Bilgi İzmir Bozyaka Eğitim ve Araştırma Hastanesi

SoCAT. Dr Mustafa Melih Bilgi İzmir Bozyaka Eğitim ve Araştırma Hastanesi Dr Mustafa Melih Bilgi İzmir Bozyaka Eğitim ve Araştırma Hastanesi Şizofreniye bağlı davranım bozuklukları bireyi ve toplumları olumsuz etkilemekte Emosyonları Tanıma Zorluğu Artmış İrritabilite Bakımverenlerin

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı