ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR"

Transkript

1 ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ LİSESİ MART 2015

2 İÇİNDEKİLER PROJE ÖZETİ.. 3 PROJENİN AMACI 4 KULLANILAN YÖNTEM 4 KULLANILAN YÖNTEM.. 5 HADARİZM SHORTCUT. 6 SONUÇLAR VE TARTIŞMA 7 KAYNAKÇA

3 PROJE ÖZETİ Şans oyunlarındaki olasılık hesapları ilgimi çekiyordu. Örneklem olarak iddia kuponunu düşünürsek; bir kuponda en az 3 maç oynanabiliyor. Her maçın da 3 farklı sonucu olabilir. Maçın berabere bitmesine:0, ev sahibinin kazanmasına:1 ve deplasmandaki takımın kazanmasına:2 diyelim. İlk maçın berabere bittiği bir kupon şu şekilde doldurulabilir: 000,001,002,010,011,012,022,021,020 şeklinde sonuçlanabilir. Bu sayıları alt alta yazınca toplam 99 oluyor. Aynı şekilde ilk maçı ev sahibinin kazandığını düşünürsek: 100,101,102,110,111,112,120,122,121 şeklinde farklı sonuç ortaya çıkar. Bu sayıları alt alta yazınca toplam 999 oluyor. İlk maçın ev sahibinin kazandığı durumlar toplamından ilk maçın berabere bitme durumlarını çıkarırsak =100 bulunur. Sonra, ilk maçı deplasmandaki takımın kazandığı durumlarla arasındaki bağıntıyı da inceledim. Permütasyon bilgimle basamak değerleri arasındaki ilişkiyi incelemek üzere yola çıktım. Bir sayı kümesinin elemanlarıyla belirli bir basamakta yazılabilecek sayıların toplamları arasında bir ilişki vardır. sonucuna vardım. İdda kuponu dışında başka bir örnek üzerinden, düşündüğümü desteklemeye çalıştım. ÖRNEK 1: Sayı kümesinin elemanları 1,2 ve 3 olsun. Bu elemanlarla yazılabilecek dokuz tane iki basamaklı sayı vardır. 1 elemanını başa sabitlersek üç tane iki basamaklı sayı yazabiliriz. Bu sayılar 11,12 ve 13 tür. Bu sayıların toplamı 36 dır. 2 elemanını sabitlersek yine üç tane iki basamaklı sayı yazabiliriz. Bu sayılar 21,22 ve 23 tür. Bu sayıların toplamı ise 66 dır. 3 elemanını sabitleyip yazarsak 31,32,33 sayılarına ulaşırız. Bu sayıların toplamı ise 96 dır. Görüldüğü gibi her toplam arasında 30 fark vardır. Bunun sebebi ise başa bir elemanı sabitlediğimizde üç tane sayı yazılabiliyor ve bu sayılar iki basamaklı olduklarından 3 çarpı 10 dan 30 oluyor. Peki acaba bu genelleştirilebilir mi diye düşünmeye başladım. Bu tip problemleri araştırdım. Aşağıdaki örneğin çözümünü inceleyerek projemi olgunlaştırdım. Kaynak taramamı google scholara (bilimsel makale için yazılan) digit problems, formula for sum of 3 digit numbers (basamak problemleri) gibi farklı konu başlıkları yazarak yaptım. Böyle bir formüle rastlamadım. 3

4 PROJENİN AMACI Çözümleme yapmadan veya dizi bilgisi kullanmadan farklı rakamlarla başlayan, farklı basamaklı sayıların toplamları arasındaki farkın genel bir formülle daha hızlı bulunması. KULLANILAN YÖNTEM ÖRNEK 2: 3,4 ve 5 rakamlarını kullanarak yazılabilecek rakamları birbirinden farklı 3 basamaklı sayılar toplamı kaçtır? Çözümler: 1.) Permütasyon ve aritmetik dizi konularında öğrendiklerimle anlamlandırdığım; bu rakamlar ile yazılabilecek rakamları birbirinden farklı en küçük sayı 345, en büyüğü ise 543. Rakamları birbirinden farklı 3 basamaklı, 3.2.1= 6 sayı yazılabilir = ) 3,4 ve 5 rakamlarının her biri 100 ler, 10 lar ve 1 ler basamaklarına 2 şer kere gelebilir. Bu sebeple; 100.( )+10.( )+( )=2664 Sınıfta bahsettiğimiz bu çözümlerden sonra yaptığım araştırmalar sonucunda gmat blog sitesinde rastladığım kısa yol aşağıdaki gibidir; (n-1)!.(basamak değerleri toplamı).(111 (n tane) ) Bu soru için n=3, (3-1)!.(3+4+5).(111)=2664 Bu problem eğer 3.4 ve 5 rakamlarını kullanarak yazılabilecek 3 basamaklı sayılar toplamı kaçtır şeklinde sorulsaydı; (111 (n tane)).(basamaklar toplamı).n n 1 şeklindedir. Buna göre yanıt: 111.(1+2+3).3 2 =5994 Bu sorunun çözümünü inceledikten sonra, Acaba bu sayılar ardışık olmazsa? sorusu geldi aklıma ve genelleştirmeye çalıştım. 4

5 ÖRNEK 3: Rastgele, rakamlar arasındaki fark birbirinden farklı olan elemanlara sahip bir A = {3,5,8,9} kümesi seçiliyor. 8 ile başlayan 3 basamaklı sayılar toplamı ile 3 ile başlayan 3 basamaklı sayıların toplamı arasındaki fark kaçtır? (Alternatif çözümleri incelemeden önce aklınıza ilk gelen çözümü not ediniz. Bulduğunuz yöntemle çözmek ne kadar sürdü? ) Alternatif çözümler: 1.) = = = ) 8 ile başlayan 3 basamaklı sayılar yazılırken 8 rakamı 16 kere 100 ler basamağında yer alacaktır. 3,5,8 ve 9 ise 4 er kere 10 lar basamağında, 4 er kere 1 ler basamağında bulunacaktır ( )+4.( )= ( )+4.( )= = ) 8 veya 3 ile başlayan 3 basamaklı 16 sayı yazılabilir. 16. ( ) 16. ( ) = ) 2.yoldaki ifadelerin taraf tarafa çıkarılması sonucu bu 3.yola başvurabiliriz. (yazılabilecek sayılar).100.(b-a) formülü kullanılarak; 8 veya 3 ile başlayan yazılabilecek 3 basamaklı 4.4=16 sayı yazılabilir. 8-3= =8000 olarak bulunur. Genelleştirmek gerekirse; 5

6 HADARİZM SHORTCUT A = {a, b, c} ve a < b < c olmak üzere, a.) a,b ve c rakamları kullanılarak 2 basamaklı 3.3=9 sayı yazılabilir. a rakamı ile başlayan yazılabilecek 2 basamaklı sayılar toplamı: aa+ab+ac= 10a+a+10a+b+10a+c =31a+b+c şeklindedir. b rakamı ile başlayan yazılabilecek 2 basamaklı sayılar toplamı: ba+bb+bc= 10b+a+10b+b+10b+c=31b+a+c b ile başlayan 2 basamaklı sayılar toplamından a ile başlayan 2 basamaklı sayılar toplamını çıkardığımızda; 31a+b+c-(31b+a+c)=30.(b-a) Peki neden bu fark 30.(b-a)? 30 nasıl açıklanabilir? Bu genelleştirilebilinir mi? 30.(b-a)=3.10.(b-a) a rakamı başa yazıldığında birler basamağına yazılabilecek 3 sayı vardır; a,b ve c. İki basamaklı sayılar toplamını bulduğumuzdan dolayı (çözümlemeden gelen) 10 katsayısı gelmektedir. b.) Peki aynı problemi 4 basamaklı sayılar için düşündüğümüzde olması beklenilen durum nedir? a rakamı ile başlayan yazılabilecek 3.3.3=27 tane 4 basamaklı sayı vardır. Çözümleme yöntemiyle yapılan toplam sonucu 27000a+333.(a+b+c) şeklinde bulunur. Aynı şekilde b rakamı ile başlayan yazılabilecek 3.3.3=27 tane 4 basamaklı sayı vardır. Çözümle yöntemiyle yapılan toplam sonucu 27000b+333.(a+b+c) şeklinde bulunur. b rakamı ile başlayan 4 basamaklı sayılar toplamından a rakamı ile başlayan 4 basamaklı sayılar toplamını çıkardığımızda (b-a) ifadesi bulunur (b-a) şeklinde açıklanabilir. Genelleştirildiğinde; n N + olmak üzere, a sayısı ile başlayan yazılabilecek n basamaklı sayıların toplamları ile b sayısı ile başlayan yazılabilecek n basamaklı sayıların toplamları arasındaki fark (yazılabilecek sayılar). (b a). 10 n 1 şeklinde ifade edilebilir. 6

7 SONUÇLAR VE TARTIŞMA A tipi: Bu sonuca ulaştıktan sonra a ile başlayan 4 basamaklı sayılar toplamı ile a ile başlayan 2 basamaklı sayılar toplamı arasında bir ilişki olup olmadığını inceledim..herhangi bir ilişkiye ulaşamadım a+333(a+b+c)-31a-b-c=26336a+332(b+c) B tipi: Aynı şekilde rakamları birbirinden farklı sayıların toplamlarının farkı arasında da herhangi bir ilişkiye ulaşamadım. Bu formülün aynı zamanda farklı tabanlarda da uygulanıp uygulanamayacağını denemek istedim. Örneğin 3 tabanında 1 ile başlayan 2 basamaklı sayıların toplamından, yine aynı tabanda 0 ile başlayan 2 basamaklı sayılar toplamını çıkardığımızda Hadarizm Shortcut ın uygulanabilir olduğunu gördüm. 3 tabanında 0 ile başlayan yazılabilecek 2 basamaklı sayılar toplamı; (00) 3 + (01) 3+ (02) 3= (10) 3 3 tabanında 1 ile başlayan yazılabilecek 2 basamaklı sayılar toplamı; (11) 3 + (10) 3+ (12) 3 = (110) 3 (110) 3 (10) 3 = (100) 3 Bu sefer formül şu şekilde olur; (b-a).(yazılabilecek sayılar).(3 1 ) (1-0).(3).(3)=9 (10 tabanında çarpıp 3 tabanına çevireceğiz.) 9 sayısı 3 tabanında (100) 3 şeklinde ifade edilir. Hadarizm Shortcut formülünün, geliştirilmesi halinde, şu ana kadar ilişkisini ispatlayamadığım A ve B tipi problemlere ışık olacağına inanıyorum. Devirli ondalık ifadeleri, rasyonel ifadelere çevirirken kullandığımız kısa yol gibi, bu formül de kitaplarda anonim olarak değil de Hadarizm shortcut olarak yer alabilir diye düşünüyorum. Çünkü biz öğrenciler kısa, pratik ve hızlı çözümleri çabuk benimsiyoruz. Bu çalışmanın bana en büyük katkısı, edindiğim yeni bakış açısı, matematikte kendi çabalarımla ve danışmanım Sandra Güner in yardımlarıyla bir noktaya ulaşmanın verdiği zevk olmuştur. 7

8 KAYNAKÇA 8

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara

Detaylı

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30

1. ÜNİTE 2. ÜNİTE 3. ÜNİTE. Bölüm 1 : Üslü Sayılar... 8. Bölüm 2 : Doğal Sayılar... 18. Bölüm 3 : Doğal Sayı Problemleri... 30 İçindekiler 1. ÜNİTE Bölüm 1 : Üslü Sayılar... 8 Bölüm 2 : Doğal Sayılar... 18 Bölüm 3 : Doğal Sayı Problemleri... 30 Bölüm 4 :- Çarpanlar ve Katlar, Bölünebilme... 40 Bölüm 5 : Asal Sayılar, Ortak Bölenler,

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199

1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ. 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 1.DENEME HAZIRLIK MATEMATİK MATEMATİK TESTİ 1-En yakın yüzlüğe yuvarlandığında 2200 olan en küçük sayı hangisidir? A-2150 B-2151 C-2190 D-2199 2-Onlar basamağı 5, yüzler basamağı 2 ve binler basamağı 6

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK

SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde. Lise ve Ön Lisans Adayları İçin MATEMATİK KPSS Genel Yetenek Genel Kültür Lise ve Ön Lisans Adayları İçin MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2014 KPSS ye Pegem Yayınları ile hazırlanan adayların,

Detaylı

7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? A) 74 B) 47 C) 34 2)

7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? A) 74 B) 47 C) 34 2) MATEMATİK 2. SINIF 1. 7 onluk + 4 birlikten oluşan sayı aşağıdakilerden hangisidir? 74 47 34 2) 3. 48 sayısının onluk ve birliklerine ayrılışı hangi seçenekte doğru verilmiştir? 4 onluk + 8 birlik 8 onluk

Detaylı

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder.

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder. 1 Sayıtlama Dizgeleri Hint-Arap Sayıtlama Dizgesi Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Sümerlerin, Mısırlıların, Romalıların ve diğer uygarlıkların kullandıkları

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

barisayhanyayinlari.com

barisayhanyayinlari.com YGS MATEMATİK KONU ANLATIM FASİKÜLLERİ SERİSİ 1 ISBN 978-605-84147-0-9 Baskı Tarihi Ağustos 015 Baskı Yeri: İstanbul YAYINLARI İletişim tel: (538) 90 50 19 barisayhanyayinlari.com Benim için her şey bir

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

Temel Matematik Testi - 4

Temel Matematik Testi - 4 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: D00. Bu testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

YGS MATEMATİK SORU BANKASI

YGS MATEMATİK SORU BANKASI YGS MATEMATİK SORU BANKASI Sebahattin ÖLMEZ www.limityayinlari.com Sınavlara Hazırlık Serisi YGS Matematik Soru Bankası ISBN: 978-60-48--9 Copyright Lmt Limit Yayınları Bu kitabın tüm hakları Lmt Limit

Detaylı

ÖN SÖZ. Değerli Adaylar,

ÖN SÖZ. Değerli Adaylar, ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek.

Detaylı

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız.

1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. 2) Aşağıdaki ifadeleri matematiksel ifade olarak yazınız. 9BÖLÜM DENKLEMLER DENKLEMLER TEST 1 1) Aşağıdaki tabloda verilen ifadelerin matematiksel karşılığını yazınız. Sözel İfade Matematiksel İfade Orhan ın yaşının dört eksiği Bir sayının sekiz fazlası Cebimdeki

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Saymanın Temelleri 1. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Ayşe nin Doğum Günü Partisi Saymanın Temelleri Ayşe

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1

Ortak Akıl MATEMATİK DENEME SINAVI 3 201412-1 Ortak Akıl YGS MATEMATİK DENEME SINAVI 011-1 Ortak Akıl Adem ÇİL Ayhan YANAĞLIBAŞ Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN Kadir ALTINTAŞ Köksal YİĞİT

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

TAM DEĞER ARDIŞIK TOPLAMLAR

TAM DEĞER ARDIŞIK TOPLAMLAR ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

t sayı tabanı ve üzere, A (abcde) sayısının basamakları: ( 2013) sayısını çözümleyelim. A (abcde) sayısının, ( 30214) sayısını çözümleyelim.

t sayı tabanı ve üzere, A (abcde) sayısının basamakları: ( 2013) sayısını çözümleyelim. A (abcde) sayısının, ( 30214) sayısını çözümleyelim. SAYI SİSTEMLERİ A. Basamak ve Taban Bir doğal sayıyı oluşturan rakamlardan her birine basamak, rakamların bulundukları yerdeki değerine basamak değeri ve bu doğal sayının tanımlandığı sayı sistemine de

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı

Özel AKEV İlköğretim Okulu Fen ve Matematik Olimpiyatı Özel KEV İlköğretim Okulu Fen ve Matematik Olimpiyatı DİKKT! CEVP KĞIDININ TEST -- BÖLÜMÜNE MTEMTİK SORULRI İŞRETLENECEKTİR. ) 3 basamaklı 4 tane sayının aritmetik ortalaması 400 dür. Bu dört sayının birler

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY 9.-10. KISIM, 34156 BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

Bunu bir örnek üzerinde gösterelim : Örneğin, ,... birer 5 0 2 3, 0 5 0 4. ondalık kesirdir.

Bunu bir örnek üzerinde gösterelim : Örneğin, ,... birer 5 0 2 3, 0 5 0 4. ondalık kesirdir. Bölüm ONDALIK KESİRLER Paydası 0 un tam kuvveti olan veya bu duruma getirilebilen kesirlere ondalık kesirler denir. Örneğin, ondalık kesirdir. 0 ; 00 ; 000,... birer Paydaları 0 un tam kuvveti olmayan

Detaylı

Temel Excel Kullanım Bilgisi

Temel Excel Kullanım Bilgisi Temel Excel Kullanım Bilgisi Excel Fonksiyonları Başlangıç Microsoft Excel in en zevkli olan formül kısmı hakkında kısa kısa bilgileri ve bazı formüllerin nasıl yazıldığını burada bulacaksınız.

Detaylı

ÖZEL EGE LİSESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI SORULARI

ÖZEL EGE LİSESİ 15. OKULLAR ARASI MATEMATİK YARIŞMASI 7. SINIF ELEME SINAVI SORULARI . a ve b pozitif tam sayılar olmak üzere a 2b+2 2 b+4 yukarıdaki bölme işleminde, a nın alabileceği en küçük değer kaçtır?. 25 soruluk bir sınavda her doğru cevaba 5 puan verilirken, her yanlış cevaptan

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Beyin Cimnastikleri (I) Ali Nesin

Beyin Cimnastikleri (I) Ali Nesin Beyin Cimnastikleri (I) Ali Nesin S eks, yemek ve oyun doğal zevklerdendir. Her memeli hayvan hoşlanır bunlardan. İlk ikisi konumuz dışında. Üçüncüsünü konu edeceğiz. 1. İlk oyunumuz şöyle: Aşağıdaki dört

Detaylı

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ DİKKAT: 1. Soru kitapçıklarını kontrol ederek, baskı

Detaylı

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ

İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ İSTANBUL İLİ İLKÖĞRETİM OKULLARI 4, 5, 6. SINIFLAR ARASI MATEMATİK OLİMPİYATI SORU KİTAPÇIĞI 13 NİSAN 2013 T.C İSTANBUL VALİLİĞİ ÖZEL AKASYA KOLEJİ DİKKAT: 1. Soru kitapçıklarını kontrol ederek, baskı

Detaylı

Mikrobilgisayarda Aritmetik

Mikrobilgisayarda Aritmetik 14 Mikrobilgisayarda Aritmetik SAYITLAMA DİZGELERİ Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Konumuz bu tarihi gelişimi incelemek değildir. Kullanılan sayıtlama

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

Limit Oyunları. Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012

Limit Oyunları. Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012 Limit Oyunları Ufuk Sevim ufuk.sevim@itu.edu.tr 10 Ekim 2012 1 Giriş Limit ve sonsuzluk kavramlarının anlaşılması birçok insan için zor olabilir. Hatta bazı garip örnekler bu anlaşılması zor kavramlar

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 200 20 ÖSS-YGS - - - 2 2 / - 2/ 2/ / LYS OBEB OKEK OBEB: iki veya daha fazla sayıyı birlikte bölebilen en büyük tamsayıya bu sayıların OBEB i denir Sayılar

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir?

SAYILAR - 3. 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685 tir. Bu üç sayıdan en küçüğü en az kaç olabilir? SAYILAR - 3 1) (x + y) ile (y + z) aralarında asal sayılardır. 7x + 3y = 4z olduğuna göre x - z farkı kaçtır? A) -3 B) -2 C) -1 D) 0 E) 1 2) Birbirinden farklı üç basamaklı üç doğal sayının toplamı 2685

Detaylı

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç

Starboard dosya aç dosyayı seçerek Andropi teach menu içe aktar dosyayı seçiyoruz nesne olarak seç Not: Starboard programında dosya aç kısmından dosyayı seçerek açabilirsiniz. Yazı karakterlerinde bozulma oluyorsa program kapatılıp tekrar açıldığında yazı düzelecektir. Ben yaptığımda düzelmişti. Andropi

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

IQ Oyun Tasarımı Öğretmen Kılavuzu Dedektif Oyunu

IQ Oyun Tasarımı Öğretmen Kılavuzu Dedektif Oyunu IQ Oyun Tasarımı Öğretmen Kılavuzu Dedektif Oyunu Özet Öğrenciler bir oyun tasarımcısının bakış açısından dedektif Oyunu denen bir IQ oyununu tasarlayacaklar ya da analiz/ test edeceklerdir. Bu ödev öğrencilerinizin

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

6BÖLÜM ONDALIK SAYILAR

6BÖLÜM ONDALIK SAYILAR 6BÖLÜM ONDALIK SAYILAR ONDALIK SAYILAR TEST ) Aşağıdaki kesirleri ondalık sayıya çeviriniz. a) 3 b) 2 c) 9 d) 4 5 25 20 2) Aşağıdaki ondalık sayıların basamaklarındaki rakamların sayı ve basamak değerlerini

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker kpss soru bankası tamamı çözümlü sözel adaylar için matematik geometri kenan osmanoğlu / kerem köker ÖN SÖZ Değerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor.

6. Rakamları farklı, iki basamaklı farklı beş doğal sayının. 7. A = 7 + 11 + 15 + 19 + + 99 veriliyor. Bölüm: Doğal Sayılar ve Tamsayılar Test: Temel Kavramlar. abc ve cba üç basamaklı doğal sayılardır. abc cba = 97 olduğuna göre, abc biçiminde yazılabilecek en küçük doğal sayının rakamları toplamı A) B)

Detaylı

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde

kpss ezberbozan serisi MATEMATİK GEOMETRİ SORU BANKASI Eğitimde kpss ezberbozan serisi 2016 MATEMATİK GEOMETRİ SORU BANKASI Eğitimde 29. yıl KOMİSYON KPSS EZBERBOZAN MATEMATİK - GEOMETRİ SORU BANKASI ISBN 978-605-318-360-0 Kitapta yer alan bölümlerin tüm sorumluluğu

Detaylı

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ ÖZEL EGE LİSESİ ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ HAZIRLAYAN ÖĞRENCİ: ATAHAN ÖZDEMİR DANIŞMAN ÖĞRETMEN: DEFNE

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

2. Cevaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 4. A, B ve C birer rakam olmak üzere,

2. Cevaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 4. A, B ve C birer rakam olmak üzere, YGS ENEME SINVI TEMEL MTEMT K TEST 1. u testte Temel Matematikle ilgili 40 soru vard r.. evaplar n z, cevap ka d n n Temel Matematik Testi için ayr lan k sm na iflaretleyiniz. 1. a tam sayı olmak üzere,

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00

A SINAV TARİHİ VE SAATİ : 28 Nisan 2007 Cumartesi, 09.30-11.00 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 12. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2007 Birinci Bölüm Soru kitapçığı türü A SINAV TARİHİ

Detaylı

DGS SAYISAL BÖLÜM. 1) 6,20 sayısı hangi sayının % 31 idir? A) 10 B) 15 C) 20 D) 25 E) 30. olduğuna göre, y kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

DGS SAYISAL BÖLÜM. 1) 6,20 sayısı hangi sayının % 31 idir? A) 10 B) 15 C) 20 D) 25 E) 30. olduğuna göre, y kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 DGS SAYISAL BÖLÜM Sınavın bu bölümünden alacağınız standart puan, Sayısal DGS Puanınızın (DGS-SAY) hesaplanmasında 3; Eşit Ağırlıklı DGS Puanınızın (DGS-E hesaplanmasında,8; Sözel DGS Puanınızın (DGS-SÖZ)

Detaylı

Çarpım fonksiyonu, seçilen hücredeki rakamların veya belirtilen hücre aralığının çarpımını alır.

Çarpım fonksiyonu, seçilen hücredeki rakamların veya belirtilen hücre aralığının çarpımını alır. Excel Fonksiyonları =TOPLA() Fonksiyonu Topla fonksiyonu seçilen hücrelerdeki rakamların veya belirtilen rakam dizisinin toplamını alır. Topla fonksiyonunu kullanmadan + operatörü ile formül yazarak toplama

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

EXCEL 2007 ELEKTRONİK ÇİZELGE

EXCEL 2007 ELEKTRONİK ÇİZELGE EXCEL 2007 ELEKTRONİK ÇİZELGE Excel, Microsoft Office paketinde yer alan ve iş hayatında en sık kullanılan programlardandır. Bir hesap tablosu programıdır. Excel, her türlü veriyi (özellikle sayısal verileri)

Detaylı

FORMÜL ADI (FONKSİYON) FORMÜLÜN YAZILIŞI YAPTIĞI İŞLEMİN AÇIKLAMASI

FORMÜL ADI (FONKSİYON) FORMÜLÜN YAZILIŞI YAPTIĞI İŞLEMİN AÇIKLAMASI 1 SIKÇA KULLANILAN EXCEL FORMÜLLERİ 1 AŞAĞI YUVARLAMA =aşağıyuvarla(c7;2) 2 YUKARI YUVARLAMA =yukarıyuvarla(c7;2) 3 YUVARLAMA =yuvarla(c7;2) 4 TAVANA YUVARLAMA =tavanayuvarla(c7;5) 5 TABANA YUVARLAMA =TABANAYUVARLA(E2;5)

Detaylı

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER YILLAR 00 00 00 00 00 00 007 008 009 00 ÖSS-YGS - - - - - - - - BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER a,b R ve a 0 olmak üzere ab=0 şeklindeki denklemlere Birinci dereceden bir bilinmeyenli denklemler

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir.

Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. İşaretli Tamsayı Gösterimi 1. İşaretli Büyüklük Bir işaretli büyüklük sayısında en soldaki basamak bir işaret içerir. Diğer basamaklarda ise sayısal değerin büyüklüğü (mutlak değeri) gösterilir. Örnek

Detaylı

"Bütün kümelerin kümesi", X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in "Alt kümeleri kümesi" de X'in alt kümesidir.

Bütün kümelerin kümesi, X olsun. Öyle ise her alt kümesi kendisinin elemanıdır. X'in Alt kümeleri kümesi de X'in alt kümesidir. Matematik Paradoksları: Doğru Parçası Paradoksu: Önce doğru parçasının tarifini yapalım: Doğru Parçası: Başlangıcı ve sonu olan ve sonsuz adet noktadan oluşan doğru. Pekiyi nokta nedir? Nokta: Kalemin

Detaylı

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c)

ORAN-ORANTI TEST 1. 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) 7BÖLÜM ORAN - ORANTI ORAN-ORANTI TEST 1 1) Asağıdaki şekillerde mavi bölgelerin kırmızı bölgelere oranını bulunuz. a) b) c) ) Aşağıda okunuşları verilen oranları yazınız. a) 16 nın 14 e oranı b) 6 nın

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

8.SINIF MATEMATİK DERSİ PROJE ÖDEVİ

8.SINIF MATEMATİK DERSİ PROJE ÖDEVİ PROJE ÖDEVİ KONUSU:cisimler/Sizden düzgün geometrik cisimlerin(prizmalar,piramitler, küre ) kapalı maketlerinin hazırlanması istenmektedir. 2)Düzgün prizma ve pramitlerin özelliklerini öğreniniz. 3)Açık

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır?

2. (v+w+x+y+z) 8 ifadesinin açılımında kaç terim vardır? 3. log 5 0, 69897 olduğuna göre 50 10 sayısı kaç basamaklıdır? Ayrık Hesaplama Yapıları A GRUBU 3.03.0 Numarası Adı Soyadı : CEVAP : ANAHTARI SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına numaranızı ve isminizi mürekkepli kalem

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

Haziran 2008 Ataköy Gazetesindeki(Yer darlığından gazetede kısaltılarak yayınlanmıştır.) Kemal Türkeli'nin ÖSS+SBS Rehberlik köşe yazısıdır.

Haziran 2008 Ataköy Gazetesindeki(Yer darlığından gazetede kısaltılarak yayınlanmıştır.) Kemal Türkeli'nin ÖSS+SBS Rehberlik köşe yazısıdır. Haziran 2008 Ataköy Gazetesindeki(Yer darlığından gazetede kısaltılarak yayınlanmıştır.) Kemal Türkeli'nin ÖSS+SBS Rehberlik köşe yazısıdır. 2008 ÜNİVERSİTE(ÖSS) + 2008 OKS veya SBS( Liselere Giriş 6.

Detaylı

Aynıları A5 ve A6 içinde yapıldığında, 25 ve 76 nın şartları sağladığı görülür.

Aynıları A5 ve A6 içinde yapıldığında, 25 ve 76 nın şartları sağladığı görülür. 1) Okulun bahçesine homojen dağılımda yağmur yağdığı için kutuların taban alanları önemsizdir. Her alanda eşit miktarda yükselme olacaktır. Dolayısıyla sadece kutuların yüksekliklerini göze almamız gerekiyor.

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,

Detaylı

Erken Bo alma. (Prematür ejakülasyon) ile ilgili Bilgilendirme Bro ürü. www.späterkommen.de

Erken Bo alma. (Prematür ejakülasyon) ile ilgili Bilgilendirme Bro ürü. www.späterkommen.de Erken Bo alma (Prematür ejakülasyon) ile ilgili Bilgilendirme Bro ürü www.späterkommen.de Erken bo alma sorununuz var ml test edin Erken boşalma riskinizi, aşağıdaki uzman kişilerce hazırlanmış sorulara

Detaylı

Üçüncü Uluslararası Matematik ve Fen Araştırması (TIMSS) Nedir? Neyi Sorgular? Örnek Geometri Soruları ve Etkinlikler

Üçüncü Uluslararası Matematik ve Fen Araştırması (TIMSS) Nedir? Neyi Sorgular? Örnek Geometri Soruları ve Etkinlikler Üçüncü Uluslararası Matematik ve Fen Araştırması (TIMSS) Nedir? Neyi Sorgular? Örnek Geometri Soruları ve Etkinlikler Yard. Doç. Dr. Sinan Olkun Arş. Gör. Tuba Aydoğdu Abant İzzet Baysal Üniversitesi,

Detaylı

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI. LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI. LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA PROJE ADI KATLAMA YÖNTEMİ İLE EŞKENAR ÜÇGEN VEALTIGENDE

Detaylı

BİLGİSAYAR PROGRAMLAMA

BİLGİSAYAR PROGRAMLAMA BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 Excel - Hücreler Excel de hücrelere hangi değerler girilebilir? Metin Rakam Tarih ve Saat Formül 1 HÜCRE SEÇİMİ Matematikteki

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

-ÖRÜNTÜ NEDİR? Bir örnek verebilir misin?

-ÖRÜNTÜ NEDİR? Bir örnek verebilir misin? ÖRÜNTÜLERİ TAMIYALIM Fred bu örüntünün ne olduğunu anlayamadım bir türlü. Bana birde sen anlatır mısın? -ÖRÜNTÜ NEDİR? Örüntü, bir nesne veya olay kümesindeki elemanların ardışık olarak düzenli bir biçimde

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı