Tanımlayıcı İstatistikler

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tanımlayıcı İstatistikler"

Transkript

1 Taımlayıcı İstatstler Taımlayıcı İstatstler Br veya brde azla dağılışı arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere taımlayıcı statstler der. Aalzlerde ullaıla ser tplere (bast, gruplamış, sıılamış) göre hesaplamalarda ullaılaca ormüller değşmetedr. Yer Ölçüler )Artmet ort. )Ağırlılı Artmet Ort. )Geometr ort. 4)Harmo ort. )Mod 6)Medya 7)Kartller Değşel Ölçüler ) Rage (Değşm Aralığı) )Kartller arası rage ) Ort. Mutla sapma 4) Varyas ) Stadart Sapma 6) Değşel(Varyasyo) Katsayısı Çarpılı Ölçüler )Pearso Asmetr Ölçüsü )Bowley Asmetr Ölçüsü Basılı Ölçüler Yer Ölçüler Ver set taımlama üzere ullaıla ve geellle tüm elemaları date alara ver set özetleme ç ullaıla adelerdr. Yer Ölçüler Ver setde tüm elemaları temsl edeblece merez otasıa yaı br değerdr. Merez eğlm ölçüler olara da adladırılırlar. Hesaplama tüm verler ullaıldığı ölçüler -Artmet Ort. -Ağırlılı Art. Ort. -Geometr Ort. -Harmo Ort. Hesaplama tüm verler ullaılmadığı ölçüler -Mod -Medya -Kartl 4

2 y y + y y a a + a + + a ( a + by ) a Notasyo hacmlgözlemset,,, y + + y + b 'ler toplamı a( ) a y ) Artmet Ortalama Üzerde celeme yapıla ver setde elemaları toplaıp celee elema sayısıa bölümesyle elde edle yer ölçüsüe artmet ortalama der. Hal dlde ortalama ades ullaıldığıda l ala gele avram artmet ortalamadır. Öre: Sıav otlarıı ortalaması, Yaz aylarıda m ye düşe ortalama yağış mtarı 6 Bast Serler İç Artmet Ortalama N: Populasyo hacm,,,,n N N μ N μ N 0 0 : öre hacm,,,., ÖRNEK: Br dl ursuda devam ede 0 öğrecye at yaşlar aşağıda verlmştr. Bu öğrecler arasıda tesadü olara taes seçlmş ve bulara at yaşlarda belrlemştr. Bu durumda populasyo ve öre ortalamalarıı buluuz Bast Serler İç Artmet Ortalama Öre: Br abrada çalışa edüstr müheds bldğ yabacı dl sayıları aşağıda verlmştr. Bua göre bu mühedsler bldğ yabacı dl sayısıı artmet ortalamasıı hesaplayıız.,0,,,0 X İ 0,0,,,.,,,

3 Gruplamış Serler İç Artmet Ortalama : reas : grup sayısı,,,., 9 Gruplamış Serler İç Artmet Ortalama Öre: Aşağıda tabloda br Samsug baysde LCD televzyoları era boyutlarıa göre satış mtarları verlmştr. Freas dağılımıı artmet ortalamasıı hesaplayıız. Grup Freas μ (0) + 66() () () + 66() (7) , 0 Grup Freas Sıılamış Serler İç Artmet Ortalama : reas : sıı sayısı,,,., m : sıı orta otası m Sıılamış serlerde her br sıı çde değerler eler olduğu blmedğde dolayı ve yalızca her br sııı reas değerler bldğde dolayı sııı temsl etme üzere sıı orta otaları hesaplamada ullaılır. Kullaıla ormül gruplamış serler ç ullaıla ormüle Öre: Aşağıda tabloda 0 gülü süre çde br restoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı artmet ortalamasıı hesaplayıız. Sıılar m m 0 < < < < < < Toplam 0 98 m () + 9 (6) () ,6 g. bezerdr.

4 Artmet Ortalama. ( ) 0. Artmet ortalamada sapmaları toplamı sıırdır. ( ) m Artmet Ortalama 4. Öre gözlemler tümü a gb br sabt le çarpılırsa bu ye ver set artmet ortalaması da es ver set artmet ortalamasıı a le çarpımı adar değşr.. Öre gözlemler tümü a gb br sabt le toplaırsa bu ye ver set artmet ortalaması da es ver set artmet ortalamasıı a le toplamı adar değşr.. Öre değerlerde meydaa gele değşm ço üçü de olsa artmet ortalama bu değşmde etler. Verler tümüü br osyoudur. 6. Artmet ortalama tüm verler hesaplama osyou çde ullaması ede le güçlü br statsttr. 7. Artmet ortalama verlerde uç değerlerde etlemes se bu statstğ zayı yöüü oluşturur. 4 Ağırlılı Artmet Ortalama Gözlemler bell br rtere göre ağırlıladırılmış se ağırlılı artmet ortalama ullaılır. Ağırlılı artmet ortalama ullaılıre tüm gözlemler ağırlıları eşt se artmet ortalama le ayı soucu verr. İde sayıları hesaplamasıda, yüzdeler ortalamasıda çarpımları ortalamasıı alımasıda ullaılır. Ağırlılı Artmet Ortalama w w w Bast serler ç Öre : Br öğrec w redl, adet derste otu almıştır. W 4 00 A(4) 4 90 B() 00 A(4) 8 B() 7 C() 0 D() 0 F(0) 60 C() w

5 ) Geometr Ortalama Geometr Ortalama ı Kullaım Alaları Br ver setde bulua adet elemaı çarpımıı c derecede öüü alımasıyla elde edle yer ölçüsüdür. G... Geometr ortalamaı ormülüe baıldığıda hesaplama zorluğu olduğuda dolayı logartma ades ullaılır. Geellle bast serler ç ullaışlı olup egat sayılar ç ullaışlı değldr. Log G log G at log log 7 Ortalama oraları, Değşm Oraları, Logartm dağılış göstere ver setler, ç ullaışlıdır. Öre: yat desler, az ormüller. 8 Öre: Br alışverş merezde arlı meyve satış yatı aşağıda gbdr. Bua göre meyveler satış yatlarıı geometr ortalamasıı hesaplayıız. Elma:, YTL. Üzüm:, YTL Er: YTL Muz : YTL. Armut : YTL. G... (,)()(,)(),,86YTL. log 0 + 0, ,00 + 0, ,477 Log G,8 Log G 0,704 G at log 0, ,704,86 YTL. 9. > 0 olmalıdır..g <. G G G 4. G Geometr Ortalama. Uç değerlerde artmet ortalama adar etlemez. 0

6 ) Harmo Ortalama Br ver setde bulua adet elemaı çarpma şleme göre tersler ortalamasıı ters alımasıyla elde edle yer ölçüsüdür. Geellle bast serler ç ullaışlıdır. H H Harmo Ortalama ı Kullaım Alaları Belrl yat tpler, Zama serler, ç ullaışlıdır. Öre: Zama brm başıa hız, para brm başıa satı alıa brm sayısı. NOT: ARİTMETİK ORT. > GEOMETRİK ORT. > HARMONİK ORT. Öre: Br testl abrasıda çalışa dört ş br patolou ütüleme süreler aşağıda verlmştr. Bua göre bu abrada br patolo ortalama aç daada ütüler? İşç : 0 d. İşç : 6 d. İşç : 4 d. İşç 4 : d. H H,8d

7 4) Mod Br ver setde e ço gözlee ( e ço terar ede ) değere veya reası e azla ola şas değşe değere mod adı verlr. Ver set modu olmayacağı gb brde azla da modu olablr. Mod geellle esl şas değşel ç oluşturula gruplamış serlerde artmet ortalama yere ullaılablr. Kessz verde değerler brbr sürel bçmde zledlerde, verler grupladırılmadıça mod Bast Serler İç Mod Öre: Br abrada çalışa edüstr müheds bldğ yabacı dl sayıları aşağıda verlmştr. Bua göre bu mühedsler bldğ yabacı dl sayısıı moduu hesaplayıız. :,0,,,0,,0 0,0,0,,,,. Ver setde e ço terar ede elema 0 olduğuda ( ez ) mod değer 0 dır. Eğer ver set,0,,,0,,0 şelde olsaydı ver set modlu olacatı. ( 0 ve ) Eğer ver set,0,,,0, şelde olsaydı ver set moduu olmadığı ade edlecet. olmayablecetr. 6 Gruplamış Serler İç Mod Öre: Aşağıda tabloda br Samsug baysde LCD televzyoları era boyutlarıa göre satış mtarları verlmştr. Freas dağılımıı artmet ortalamasıı hesaplayıız. Sıılamış Serler İç Mod Sıılamış serlerde mod değer hesaplaıre l olara mod sııı belrler. Era Satış Aded Freas dağılımıa baıldığıda e azla satış mtarı 94 era LCD televzyoda olduğuda dolayı ( 7 adet ) dağılımı moduu 94 olduğu söyler. Eğer 8 era LCD televzyolarıda da 7 adet satılsaydı dağılımı modu olduğu ade edlrd. ( 8 ve 94 ) 7 Modsııı reası e yüse ola sııtır. Modsııı belrledte sora bu sıı çersde yer ala modu tam değer sıı reası ve ede omşu ola sıı reasları date alıara hesaplaır. 8 7

8 L Mod Δ Δ Mod Δ L mod +. Δ + Δ Mod Sııı Aralığıı Alt Sıırı Mod Sııı Freası - Kedde Br Öce Sıı Freası Mod Sııı Freası Kedde Br Sora Sıı Freası Mod Sıııı Sıı Aralığı 9 Öre: Aşağıda tabloda 0 gülü süre çde br restoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı moduu hesaplayıız. Sıılar 0 <6 6 <4 6 Mod sııı 4 < <4 7 4 < <66 Toplam 0 Mod Lmod Δ +. Δ + Δ (0 6) ,4 g. (0 6) + (0 7) 0 ) Medya Br ver set büyüte üçüğe veya üçüte büyüğe sıraladığımızda tam orta otada ver set eşt parçaya ayıra değere medya adı verlr. Ver setde aşırı uçlu elemalar olduğuda artmet ortalamaya göre daha güvelrdr. Medya, ver setde tüm elemalarda etlemez. Brm sayısıda değşmlerde etler,uç değerlerde etlemez. Medyaı stadart hatası artmet ortalamaıde daha büyütür. med m Bast Serler İç Medya Ver Set Hacm Te Sayı İse; + Ver Set Hacm Çt Sayı İse; ve + c gözlem değer medyadır. c gözlem değer artmet ortalaması medyadır. 8

9 Öre: İstatst I ders ala 0 öğrec vze otları aşağıda gb sıralamıştır. Bua göre vze otları ç medya değer hesaplayıız. 0,4,6,6,68,79,8,88,90,98 / ve (/)+ c elemalar 68 ve 79 olup buları ortalaması 7, medya değerdr. Ver Set 0,4,6,6,68,79,8,88,90 şelde 9 adet verde oluşsaydı (+)/ c elema ola 68 ver set medyaı olacatı. Gruplamış Serler İç Medya Gruplamış serlerde medya değer hesaplaıre ver set tam orta otasıı hag gruba at olduğuu belrleme ç ümülat reas sütuu oluşturulur. Sıra umarası belrledte sora o sıra umarasıa at grup medya değer olara ade edlr. 4 Grup Freas Grup Freas Öre: Yada tabloda br Samsug baysde LCD televzyoları era boyutlarıa göre satış mtarları verlmştr. Freas dağılımıı medyaıı hesaplayıız. / ve (/)+ c gözlem değerlere arşılı gele değerler (0 ve c sıra ) 8 olduğuda dolayı medya değer 8 dr. Freas dağılımı yada gb olsaydı (+)/ c elemaa ( 8 c elemaa ) arşılı gele sayı 7 olduğuda dolayı ver set medyaı 7 olaca d. Sıılamış Serler İç Medya Sıılamış serlerde medya değer hesaplaıre l olara medya sııı belrler. Medya sııı ümülat reaslar date alıdığıda toplam reası yarısıı çde buludura sııtır. Medya sııı belrledte sora medya sıııda br öce sııı ümülat reası ve medya sııı reası date alıara hesaplaır

10 Medya L L med : Medya sıııı alt sıırı l + l. med : Medya sıııda br öce sııı ümülat reası med : Medya sıııı reası med 7 Öre: Aşağıda tabloda 0 gülü süre çde br restoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı medyaıı hesaplayıız. Medya sııı Sıılar 0 <6 6 < < <4 7 4 < <66 0 Toplam 0 l Medya L med +. med ,g ) Kartller Br ver set büyüte üçüğe veya üçüte büyüğe sıraladığımızda dört eşt parçaya ayıra üç değere artller adı verlr. İl % l ısmı çde buludura. Kartl (Q ), % 0 l ısmı çde buludura. Kartl (Q ), % 7 l ısmı çde buludura. Kartl (Q ), olara adladırılır. %0 l ısmı çde buludura. Kartl (Q ) ayı zamada ver set medyaıdır. % % % % Q Q Q 9.Kartl Q + 4.Kartl Q + 4 Bast Serler İç Kartller c gözlem değerdr c gözlem değerdr 40 0

11 Öre: İstatst I ders ala 9 öğrec vze otları aşağıda gb sıralamıştır. Bua göre vze otları ç Q ve Q değerler hesaplayıız. 0,4,6,6,68,79,8,88,90 (+)/4 cü elema ola 49.Kartl, (+)/4 cü elema ola 8.Kartl olara ade edlr. Öre verler: 7, 9, 6, 6, 9, 4, 4, 46, 48, 0 Q pozsyou (0+)/4.7 Q (6-9) 4. Q (meda) 4 Q ü pozsyou (0+)/47.7 Q4+0.7(46-4) Gruplamış Serler İç Kartller Gruplamış serlerde artller hesaplaıre ver set l çeyre ve so çeyre ısmıı tam olara ade etme amacıyla ümülat reas sütüü oluşturulur. Gruplamış serlerde öre hacm te veya çt olduğua baılmasızı /4 cü elema.kartl (Q ), ()/4 cü elema se. Kartl (Q ), olara ade edlr. 4 Grup Freas Grup Freas Öre: Yada tabloda br Samsug baysde LCD televzyoları era boyutlarıa göre satış mtarları verlmştr. Freas dağılımıı. ve cü Kartller hesaplayıız. /4 değere arşılı gele sıra grup değer 8 olduğuda.kartl, ve /4 değere arşılı gele grup değer 94 olduğuda.kartl olara ade edlr. Freas dağılımı yada gb verlmş olsaydı Q 66 ve Q 8 olaca d. 44

12 Sıılamış Serler İç Kartl Sıılamış serlerde artller hesaplaıre l olara ümülat reas sütuu oluşturulara artl sııları belrler. Kartl sııları belrlere gruplamış serlerde olduğu gb /4 ve ()/4 cü sıralarda elemaları hag sıılara at seler o sıılar artl sııları olur. Kartl sııları belrledte sora bu sıılarda br öce sııı ümülat reası ve mevcut sıı reası date alıara artl değerler hesaplaır. 4. Kartl. Kartl. Kartl Q L Q Medya L + Q L l Q + 4. Q + 4 l Q. Q l. Q Q 46 Öre: Aşağıda tabloda 0 gülü süre çde br restoraı ulladığı et mtarıı dağılımı verlmştr. Gülü ullaıla et mtarıı c ve cü artller hesaplayıız. Sıılar 0 <6 Q sııı 6 < < Q sııı 48 <4 7 4 < <66 0 Toplam 0 l l Q L + 4. Q 4 Q LQ +. Q Q 7,, , g ,9 g

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri 0.0.06 Taımlayıcı İstatstler Bölüm 3 Taımlayıcı İstatstler Br ver set taıma veya brde azla ver set arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Yayılma (Değişkenlik) Ölçüleri

Yayılma (Değişkenlik) Ölçüleri Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Değişkenlik (Yayılım) Ölçüleri

Değişkenlik (Yayılım) Ölçüleri Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm date alara heaplaa

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Box ve Whisker Grafiği

Box ve Whisker Grafiği www.memetaarayl.com Bölümü Amaçları DEĞİŞKELİK ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKOOMETRİ BÖLÜMÜ mehmet.aarayl@deu.edu.tr Bu Bölümü tamamladıta ora eler yapablecez: Bo ve Wher grağ ouma

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri Taımlayıcı İtattler Bölüm 3 Taımlayıcı İtattler Br ver et taıma veya brde azla ver et arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le rea dağılışlarıı ayıal olara özetleye değerlere taımlayıcı

Detaylı

DEĞİŞKENLİK ÖLÇÜLERİ

DEĞİŞKENLİK ÖLÇÜLERİ DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm

Detaylı

DEĞİŞKENLİK ÖLÇÜLERİ

DEĞİŞKENLİK ÖLÇÜLERİ DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ 3 İstatst Serler ve Freas Tabloları TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ Doç. Dr. Mehmet Al CENGİZ Üte: 3 İSTATİSTİK SERİLERİ ve FREKANS TABLOLARI

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

REGRESYON VE KORELASYON ANALİZİ

REGRESYON VE KORELASYON ANALİZİ REGRESYON VE KORELASYON ANALİZİ.. Doğrusal İlşler.. Yalı (ast) Regreso... E Küçü Kareler Metodu a) Normal Delemler Çözümü ) Determat metodu c) Orj Kadırma... Regresou Stadart Sapması..3. Regresou Duarlılığı..4.

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Merkez Eğlm Ölçüler 4... Artmetk Ortalama 4... Ağırlıklı Artmetk Ortalama 4..3. Keslmş artmetk ortalama 4..4. Geometrk Ortalama 4..5. Harmok Ortalama 4..6. Kuadratk Ortalama

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

İstatistik Araştırma Dergisi, Cilt: 02, No: 02, Sayfa: , 2003.

İstatistik Araştırma Dergisi, Cilt: 02, No: 02, Sayfa: , 2003. İstatst Araştırma Dergs, Clt: 0, No: 0, Sayfa: 03-7, 003. İstatstsel Parametre Kestrm Teler Webull Dağılımıı Parametreler Hesaplamasıda Kullaımı Ve Deprem Verler Webull Dağılımıa Uygulaması Veysel YILMAZ

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

DEĞİŞKENLİK (YAYIKLIK) ÖLÇÜLERİ

DEĞİŞKENLİK (YAYIKLIK) ÖLÇÜLERİ SAÜ 6. BÖLÜM DEĞİŞKELİK (YAYIKLIK) ÖLÇÜLERİ PROF. DR. MUSTAFA AKAL İÇİDEKİLER 1. DEĞİŞKELİĞİ TAIMI VE ÇEŞİTLERİ. AALATİK OLMAYA DEĞİŞKELİK ÖLÇÜLERİ 3. ORTALAMA MUTLAK SAPMA 3.1. Bast Serde Ortalama Mutla

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

Fark Denklemlerinin Çözümünde Parametrelerin Değişimi Yöntemi

Fark Denklemlerinin Çözümünde Parametrelerin Değişimi Yöntemi Far Delemler Çzümüde Parametreler Değşm Ytem *Hüsey Koama Saarya Üverstes, Fe-Edebyat Faültes, Matemat Blümü, 587, Saarya Özet: İçersde e az br mertebede,,,, E b solu arları buluduğu osyoel delemlere Far

Detaylı

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI)

Ele Alınacak Ana Konular. Hafta 3: Doğrusal ve Zamanla Değişmeyen Sistemler (Linear Time Invariant, LTI) 5..5 Ele Alıaca Aa Koular Ayrı-zama işaretleri impuls dizisi ciside ifade edilmesi Ayrı-zama LTI sistemleri ovolüsyo toplamı gösterilimi Hafta 3: Doğrusal ve Zamala Değişmeye Sistemler (Liear Time Ivariat

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e İST KUYRUK TEORİSİ ARASIAV SORULARI ( MAYIS ). Bir baaı müşteri hizmetleride te işi hizmet vermetedir. Müşteriler ortalama daiada bir arama yapmatadır bua arşı ortalama servis süresi ise daia sürmetedir.

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ)

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) İTATİTİKEL KALİTE KOTROLDE KULLAILA TEMEL İTATİTİKEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) Kalite Mühendisliği kapsamında İstatistik Proses Kontrolde (İPK) kullanılan temel istatistik ölçüler ve

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı

ı ı ı ğ ş ı ı ıı ıı ıı ı ı ıı ıı ıı ıı ııı Ş Ü Ğ Ü Ğİ Ö İ Ö öç Ş İ Ğ ç ç ö Ü Ş ö Ö ç ç ö ö ö Ğ Ğ Ü Ş Ü Ş İ İ ö ö ç ç İ Ç İ Ü Ş İ Ç Ç Ü Ş İ İ ö İ Ü İ İ Ü Ü Ü Ü İ Ü ö ç ö Ç İ ç İ İ ç ç ç İ İ İ ö ö İ ö ö ç İ ö ç İ İ İ ç ç ö ç ö ç ç İ ç İ ö ç ç ç ö

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI

WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI VII. Ulusal Temiz Eerji Sempozyumu, UTES 008 7-9 Aralı 008, İstabul WEIBULL DAĞILIM PARAMETRELERİNİ BELİRLEME METODLARININ KARŞILAŞTIRILMASI Seyit Ahmet AKDAĞ, Öder GÜLER İstabul Tei Üiversitesi, Eerji

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR SAÜ. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. ORTALAMANIN TANIMI VE FAYDALARI. HASSAS ORTALAMALAR.1. Aritmetik Ortalama.. Kareli Ortalama..

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

8. Niteliksel ( Ölçülemeyen Özellikler İçin) Kontrol Diyagramları

8. Niteliksel ( Ölçülemeyen Özellikler İçin) Kontrol Diyagramları 1 8. Ntelksel ( Ölçüleeye Özellkler İç) Kotrol Dyagraları Ürüler taşıası gereke kalte karakterstkler br ya da br kaçı belrlee sesfkasyolara uyayablr. Ntelk olarak adladırıla bu özellk edeyle ürü belrl

Detaylı

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarhl ve 25391 sayılı Resm Gazete'de yayımlamıştır.) Amaç BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayaak Madde 1 Bu Yöetmelğ amacı, 4857 sayılı İş Kauuu 53 ücü maddes

Detaylı

TABAKALI ŞANS ÖRNEKLEME

TABAKALI ŞANS ÖRNEKLEME 6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ İSTATİSTİK Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özka GÖRGÜLÜ Tavsye Edle Kayak Ktaplar Her öğrec keds tuttuğu düzel otlar.. Akar, M. ve S. Şahler, (997). İstatstk. Ç.Ü. Zraat Fakültes Geel Yayı No: 74, Ders

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ. İnci AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 2007

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ. İnci AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 2007 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENTİTÜSÜ DOKTORA TEZİ SONLU KARMA DAĞILIMLARDA PARAMETRE TAHMİNİ İ AÇIKGÖZ İSTATİSTİK ANABİLİM DALI ANKARA 7 Her haı salıdır ÖZET Dotora Tez SONLU KARMA DAĞILIMLARDA PARAMETRE

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

9. Ders. Đstatistikte Monte Carlo Çalışmaları

9. Ders. Đstatistikte Monte Carlo Çalışmaları 9. Ders Đstatstkte Mote Carlo Çalışmaları Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve bu modeller geçerllğ sıamada kullaıla bazı blg ve yötemler

Detaylı

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları MEÜ. Mühedslk Fakültes Jeoloj Mühedslğ Bölümü MÜHENDİSLER İÇİN İSTATİSTİK YÖNTEMLER VE UYGULAMALAR Prof. Dr. Hüsey Çeleb Ders Notları Mers 007 Prof. Dr.-Ig. Hüsey Çeleb 1 Brkaç ülü sözü İstatstk! Matematğ

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

İstatistiksel Proses Kontrol - Seminer Notları -

İstatistiksel Proses Kontrol - Seminer Notları - MÜSEM - KALİTE YÖNETİCİLİĞİ UZMANLIK SERTİFİKA PROGRAMI 06 Nisa 00 İstatistisel Proses Kotrol - Semier Notları - Marmara Üiversitesi, Tei Eğitim Faültesi e-posta eoer@marmara.edu.tr GSM 053 910016 - Telefo

Detaylı

D( 4 6 % ) "5 2 ( 0* % 09 ) "5 2

D( 4 6 % ) 5 2 ( 0* % 09 ) 5 2 3 BÖLÜM KAALI SİSEMLEDE EMODİNAMİĞİN I KANUNU I Yasaya giriş Birii bölümde eerjii edilide var veya yo edilemeyeeği vurgulamış, sadee biçim değiştirebileeği belirtilmişti Bu ile deeysel souçlara dayaır

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı