Tanımlayıcı İstatistikler

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Tanımlayıcı İstatistikler"

Transkript

1 Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde kullaıla ser tplere (bast, gruplamış, sıılamış) göre hesaplamalarda kullaılacak ormüller değşmektedr. Taımlayıcı İstatstkler Yer Ölçüler )Artmetk ort. )Ağırlıklı Artmetk Ort. 3)Geometrk ort. 4)Harmok ort. 5)Mod 6)Medya 7)Kartller Değşkelk Ölçüler ) Rage (Değşm Aralığı) )Kartller arası rage 3) Ort. Mutlak sapma 4) Varyas 5) Stadart Sapma 6) Değşkelk(Varyasyo) Katsayısı Çarpıklık Ölçüler )Pearso Asmetr Ölçüsü )Bowley Asmetr Ölçüsü Basıklık Ölçüler

2 Yer Ölçüler Ver set taımlamak üzere kullaıla ve geellkle tüm elemaları dkkate alarak ver set özetlemek ç kullaıla adelerdr. Ver setdek tüm elemaları temsl edeblecek merkez oktasıa yakı br değerdr. Merkez eğlm ölçüler olarak da adladırılırlar. 3 Yer Ölçüler Hesaplama tüm verler kullaıldığı ölçüler -Artmetk Ort. -Ağırlıklı Art. Ort. -Geometrk Ort. -Harmok Ort. Hesaplama tüm verler kullaılmadığı ölçüler -Mod -Medya -Kartl 4

3 3 5 Notasyo ) ( 5. ) ( 'ler toplamı.,,, hacmlgözlemset y b a by a a a a a a a y y y y y y 6 ) Artmetk Ortalama Üzerde celeme yapıla ver setdek elemaları toplaıp celee elema sayısıa bölümesyle elde edle yer ölçüsüe artmetk ortalama der. Halk dlde ortalama ades kullaıldığıda lk akla gele kavram artmetk ortalamadır. Örek: Sıav otlarıı ortalaması, Yaz aylarıda m ye düşe ortalama yağış mktarı

4 Bast Serler İç Artmetk Ortalama N: Populasyo hacm,,3,,n N μ N : örek hacm,,3,., ÖRNEK: Br dl kursuda devam ede 0 öğrecye at yaşlar aşağıda verlmştr. Bu öğrecler arasıda tesadü olarak 5 taes seçlmş ve bulara at yaşlarda belrlemştr. Bu durumda populasyo ve örek ortalamalarıı buluuz N μ 5 N Bast Serler İç Artmetk Ortalama Örek: Br abrkada çalışa 5 edüstr müheds bldğ yabacı dl sayıları aşağıda verlmştr. Bua göre bu mühedsler bldğ yabacı dl sayısıı artmetk ortalamasıı hesaplayıız.,0,,,0 X İ 0,0,,,. 5,,,

5 Gruplamış Serler İç Artmetk Ortalama k k Grup Frekas k : rekas k: grup sayısı,,3,.,k Örek: Yadak tabloda br Samsug baysdek LCD televzyoları ekra boyutlarıa göre satış mktarları verlmştr. Frekas dağılımıı artmetk ortalamasıı hesaplayıız. k k 5() 66(3)... 94(7) ,5 9 Sıılamış Serler İç Artmetk Ortalama : rekas k : sıı sayısı,,3,.,k m : sıı orta oktası k k m k Sıılamış serlerde her br sıı çdek değerler eler olduğu blmedğde dolayı ve yalızca her br sııı rekas değerler bldğde dolayı sııı temsl etmek üzere sıı orta oktaları hesaplamada kullaılır. Kullaıla ormül gruplamış serler ç kullaıla ormüle bezerdr. 0 5

6 Örek: Aşağıdak tabloda 30 gülük süre çde br restoraı kulladığı et mktarıı dağılımı verlmştr. Gülük kullaıla et mktarıı artmetk ortalamasıı hesaplayıız. Sıılar m m da az de az de az da az de az de az Toplam k m k 33 () 39 (6) () ,6 kg. Artmetk Ortalama ( ) 0. Artmetk ortalamada sapmaları toplamı sıırdır.. ( ) m 3. Örek değerlerde meydaa gele değşm çok küçük de olsa artmetk ortalama bu değşmde etkler. Verler tümüü br oksyoudur. 6

7 Artmetk Ortalama 4. Örek gözlemler tümü a gb br sabt le çarpılırsa bu ye ver set artmetk ortalaması da esk ver set artmetk ortalamasıı a le çarpımı kadar değşr. 5. Örek gözlemler tümü a gb br sabt le toplaırsa bu ye ver set artmetk ortalaması da esk ver set artmetk ortalamasıı a le toplamı kadar değşr. 6. Artmetk ortalama tüm verler hesaplama oksyou çde kullaması ede le güçlü br statstktr. 7. Artmetk ortalama verlerdek uç değerlerde etklemes se bu statstğ zayı yöüü oluşturur. 3 Ağırlıklı Artmetk Ortalama Gözlemler bell br krtere göre ağırlıkladırılmış se ağırlıklı artmetk ortalama kullaılır. Ağırlıklı artmetk ortalama kullaılırke tüm gözlemler ağırlıkları eşt se artmetk ortalama le ayı soucu verr. İde sayıları hesaplamasıda, yüzdeler ortalamasıda çarpımları ortalamasıı alımasıda kullaılır. 4 7

8 Ağırlıklı Artmetk Ortalama w w w Bast serler ç Örek : Br öğrec w kredl, adet derste otu almıştır. W A(4) 4 90 B(3) 3 00 A(4) B(3) 3 75 C() 3 50 D() 3 0 F(0) 60 C() w ) Geometrk Ortalama Br ver setde bulua adet elemaı çarpımıı c derecede köküü alımasıyla elde edle yer ölçüsüdür. G... Geometrk ortalamaı ormülüe bakıldığıda hesaplama zorluğu olduğuda dolayı logartma ades kullaılır. Geellkle bast serler ç kullaışlı olup egat sayılar ç kullaışlı değldr. log Log G G at log log 6 8

9 Geometrk Ortalama ı Kullaım Alaları Ortalama oraları, Değşm Oraları, Logartmk dağılış göstere ver setler, ç kullaışlıdır. Örek: yat deksler, az ormüller. 7 Örek: Br alışverş merkezdek 5 arklı meyve satış yatı aşağıdak gbdr. Bua göre meyveler satış yatlarıı geometrk ortalamasıı hesaplayıız. Elma:,5 YTL. Üzüm:,5 YTL Erk: YTL Muz : 3 YTL. Armut : YTL. G (,5)()(,5)(3),5,86YTL. log 0 0,7609 0,3003 0, ,477 Log G 5,358 Log G 0, G at log 0, ,7045,86 YTL. 8 9

10 0 9 Geometrk Ortalama G < > 4. G G G 3..G olmalı ) Harmok Ortalama Br ver setde bulua adet elemaı çarpma şleme göre tersler ortalamasıı ters alımasıyla elde edle yer ölçüsüdür. Geellkle bast serler ç kullaışlıdır. H H

11 Harmok Ortalama ı Kullaım Alaları Belrl yat tpler, Zama serler, ç kullaışlıdır. Örek: Zama brm başıa hız, para brm başıa satı alıa brm sayısı. NOT: ARİTMETİK ORT. > GEOMETRİK ORT. > HARMONİK ORT. Örek: Br tekstl abrkasıda çalışa dört kş br patolou ütüleme süreler aşağıda verlmştr. Bua göre bu abrkada br patolo ortalama kaç dakkada ütüler? İşç : 0 dk. İşç : 6 dk. İşç 3: 4 dk. İşç 4 : 5 dk. H H ,58dk.

12 4) Mod Br ver setde e çok gözlee ( e çok tekrar ede ) değere veya rekası e azla ola şas değşke değere mod adı verlr. Ver set modu olmayacağı gb brde azla da modu olablr. Mod geellkle keskl şas değşkel ç oluşturula gruplamış serlerde artmetk ortalama yere kullaılablr. Kesksz serde değerler brbr sürekl bçmde zledklerde, verler grupladırılmadıkça mod olmayablecektr. 3 Bast Serler İç Mod Örek: Br abrkada çalışa 5 edüstr müheds bldğ yabacı dl sayıları aşağıda verlmştr. Bua göre bu mühedsler bldğ yabacı dl sayısıı moduu hesaplayıız. :,0,,,0,,0 0,0,0,,,,. Ver setde e çok tekrar ede elema 0 olduğuda (3 kez ) mod değer 0 dır. Eğer ver set,0,,,0,,0 şeklde olsaydı ver set k modlu olacaktı. ( 0 ve ) Eğer ver set,0,,,0, şeklde olsaydı ver set moduu olmadığı ade edlecekt. 4

13 Gruplamış Serler İç Mod Örek: Aşağıdak tabloda br Samsug baysdek LCD televzyoları ekra boyutlarıa göre satış mktarları verlmştr. Frekas dağılımıı artmetk ortalamasıı hesaplayıız. Ekra Satış Aded Frekas dağılımıa bakıldığıda e azla satış mktarı 94 ekra LCD televzyoda olduğuda dolayı ( 7 adet ) dağılımı moduu 94 olduğu söyler. Eğer 8 ekra LCD televzyolarıda da 7 adet satılsaydı dağılımı k modu olduğu ade edlrd. ( 8 ve 94 ) 5 Sıılamış Serler İç Mod Sıılamış serlerde mod değer hesaplaırke lk olarak mod sııı belrler. Mod sııı rekası e yüksek ola sııtır. Mod sııı belrledkte sora bu sıı çersde yer ala modu tam değer sıı rekası ve kede komşu ola sıı rekasları dkkate alıarak hesaplaır. 6 3

14 Mod Δ L mod. Δ Δ L Mod Δ Δ Mod Sııı Aralığıı Alt Sıırı Mod Sııı Frekası - Kedde Br Öcek Sıı Frekası Mod Sııı Frekası Kedde Br Sorak Sıı Frekası Mod Sıııı Sıı Aralığı 7 Örek: Aşağıdak tabloda 30 gülük süre çde br restoraı kulladığı et mktarıı dağılımı verlmştr. Gülük kullaıla et mktarıı moduu hesaplayıız. Sıılar 30 <36 36 <4 6 Mod sııı 4 < < < <66 Toplam 30 Mod L mod Δ Δ Δ. (0 6) ,4 kg. (0 6) (0 7) 8 4

15 5) Medya Br ver set büyükte küçüğe veya küçükte büyüğe sıraladığımızda tam orta oktada ver set k eşt parçaya ayıra değere medya adı verlr. Ver setde aşırı uçlu elemalar olduğuda artmetk ortalamaya göre daha güvelrdr. Medya, ver setdek tüm elemalarda etklemez. Brm sayısıdak değşmlerde etkler,uç değerlerde etklemez. Medyaı stadart hatası artmetk ortalamaıkde daha büyüktür. med m 9 Bast Serler İç Medya Ver Set Hacm Tek Sayı İse; c gözlem değer medyadır. Ver Set Hacm Çt Sayı İse; ve c gözlem değer artmetk ortalaması medyadır. 30 5

16 Örek: İstatstk I ders ala 0 öğrec vze otları aşağıdak gb sıralamıştır. Bua göre vze otları ç medya değer hesaplayıız. 30,4,56,6,68,79,8,88,90,98 / ve (/) c elemalar 68 ve 79 olup buları ortalaması 73,5 medya değerdr. Ver Set 30,4,56,6,68,79,8,88,90 şeklde 9 adet verde oluşsaydı ()/ c elema ola 68 ver set medyaı olacaktı. 3 Gruplamış Serler İç Medya Gruplamış serlerde medya değer hesaplaırke ver set tam orta oktasıı hag gruba at olduğuu belrlemek ç kümülat rekas sütuu oluşturulur. Sıra umarası belrledkte sora o sıra umarasıa at grup medya değer olarak ade edlr. 3 6

17 Grup Frekas Örek: Yadak tabloda br Samsug baysdek LCD televzyoları ekra boyutlarıa göre satış mktarları verlmştr. Frekas dağılımıı medyaıı hesaplayıız. / ve (/) c gözlem değerlere karşılık gele değerler (0 ve c sıra ) 8 olduğuda dolayı medya değer 8 dr. Grup Frekas Frekas dağılımı yadak gb olsaydı ()/ c elemaa ( 8 c elemaa ) karşılık gele sayı 7 olduğuda dolayı ver set medyaı 7 olacak d. 33 Sıılamış Serler İç Medya Sıılamış serlerde medya değer hesaplaırke lk olarak medya sııı belrler. Medya sııı kümülat rekaslar dkkate alıdığıda toplam rekası yarısıı çde buludura sııtır. Medya sııı belrledkte sora medya sıııda br öcek sııı kümülat rekası ve medya sııı rekası dkkate alıarak hesaplaır. 34 7

18 Medya L l. med med L med : Medya sıııı alt sıırı l : Medya sıııda br öcek sııı kümülat rekası med : Medya sıııı rekası 35 Örek: Aşağıdak tabloda 30 gülük süre çde br restoraı kulladığı et mktarıı dağılımı verlmştr. Gülük kullaıla et mktarıı medyaıı hesaplayıız. Medya sııı Sıılar 30 <36 36 < < < < <66 30 Toplam 30 l Medya L med. med , kg

19 6) Kartller Br ver set büyükte küçüğe veya küçükte büyüğe sıraladığımızda dört eşt parçaya ayıra üç değere kartller adı verlr. İlk % 5 lk kısmı çde buludura. Kartl (Q ), % 50 lk kısmı çde buludura. Kartl (Q ), % 75 lk kısmı çde buludura 3. Kartl (Q ), olarak adladırılır. %5 %5 %5 %5 %50 lk kısmı çde buludura. Kartl (Q ) ayı zamada ver set medyaıdır. Q Q Q 3 37 Bast Serler İç Kartller.Kartl Q Ver Set Hacm Tek Sayı İse; 3.Kartl Q 3 Ver Set Hacm Tek Sayı İse; 4 c gözlem değer, 3 değer, 4 c gözlem 38 9

20 Kartller Q: Brc kartl ( )/4 ücü gözlem Q: İkc kartl (medya) Q3: Üçücü kartl 3( )/4 ücü gözlem Örek verler: 7, 9, 6, 36, 39, 45, 45, 46, 48, 5 Q pozsyou (0)/4.75 Q (6-9) 4.5 Q (meda) 4 Q Sıılamış Serler İç Kartl Sıılamış serlerde kartller hesaplaırke lk olarak kümülat rekas sütuu oluşturularak kartl sııları belrler. Kartl sııları belrlerke gruplamış serlerde olduğu gb /4 ve (3)/4 cü sıralardak elemaları hag sıılara at seler o sıılar kartl sııları olur. Kartl sııları belrledkte sora bu sıılarda br öcek sııı kümülat rekası ve mevcut sıı rekası dkkate alıarak kartl değerler hesaplaır. 40 0

21 . Kartl. Kartl 3. Kartl Q Q Q 3 Medya L L l Q. L l Q. Q Q l. Q 3 4 Q Örek: Aşağıdak tabloda 30 gülük süre çde br restoraı kulladığı et mktarıı dağılımı verlmştr. Gülük kullaıla et mktarıı c ve 3 cü kartller hesaplayıız. Q sııı Q 3 sııı Q L Q 36 Sıılar 30 <36 36 < < < < <66 30 Toplam 30 3 l 4. Q 4 3 LQ 3 Q Q 3 7,5, ,5 kg l. 5,9 kg. 4

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstler Taımlayıcı İstatstler Br veya brde azla dağılışı arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere taımlayıcı statstler der.

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Merkez Eğlm Ölçüler 4... Artmetk Ortalama 4... Ağırlıklı Artmetk Ortalama 4..3. Keslmş artmetk ortalama 4..4. Geometrk Ortalama 4..5. Harmok Ortalama 4..6. Kuadratk Ortalama

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri 0.0.06 Taımlayıcı İstatstler Bölüm 3 Taımlayıcı İstatstler Br ver set taıma veya brde azla ver set arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le reas dağılışlarıı sayısal olara özetleye değerlere

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

Yayılma (Değişkenlik) Ölçüleri

Yayılma (Değişkenlik) Ölçüleri Yayılma (Değşel) Ölçüler Br ver set taıma yada farlı ver set brbrde ayırt etme ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etrafıda

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Box ve Whisker Grafiği

Box ve Whisker Grafiği www.memetaarayl.com Bölümü Amaçları DEĞİŞKELİK ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKOOMETRİ BÖLÜMÜ mehmet.aarayl@deu.edu.tr Bu Bölümü tamamladıta ora eler yapablecez: Bo ve Wher grağ ouma

Detaylı

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Değişkenlik (Yayılım) Ölçüleri

Değişkenlik (Yayılım) Ölçüleri Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm date alara heaplaa

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri

Bölüm 3. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Tanımlayıcı İstatistikler. Yer Ölçüleri Taımlayıcı İtattler Bölüm 3 Taımlayıcı İtattler Br ver et taıma veya brde azla ver et arşılaştırma ç ullaıla ve ayrıca öre verlerde hareet le rea dağılışlarıı ayıal olara özetleye değerlere taımlayıcı

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

DEĞİŞKENLİK ÖLÇÜLERİ

DEĞİŞKENLİK ÖLÇÜLERİ DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm

Detaylı

DEĞİŞKENLİK ÖLÇÜLERİ

DEĞİŞKENLİK ÖLÇÜLERİ DEĞİŞKENLİK ÖLÇÜLERİ Değşel (Yayılım) Ölçüler İ arlı aaütley brbrde ayırma ç her zama yalızca yer ölçüler yeterl olmayablr. Dağılımları brbrde ayırt etmede ullaıla ve geellle artmet ortalama etraıda değşm

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr.

Mühendislikte Olasılık, İstatistik, Risk ve Güvenilirlik Altay Gündüz. Mühendisler için İstatistik Prof. Dr. Mehmetçik Bayazıt, Prof. Dr. İSTATİSTİK DERSİ (BAÜ Müh-Mm Fakültes Dr. Bau Yağcı KAYNAKLAR Mühedslkte Olasılık, İstatstk, Rsk ve Güvelrlk Altay Güdüz Blgsayar (Ecel Destekl Uygulamalı İstatstk Pro. Dr. Mustaa Akkurt Mühedsler ç İstatstk

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE

İSTATİSTİKSEL TAHMİNLEME VE 1 ölüm maçları İSTTİSTİKSEL THMİLEME VE YORUMLM SÜRECİ ÖREKLEME VE ÖREKLEME DĞILIMLRI u bölümde öğreeceklerz. Örekleme gereksm ve yötemler celemek. Örekleme hatası kavramıı taımlamak Örekleme dağılışı

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

Doç. Dr. Mehmet AKSARAYLI

Doç. Dr. Mehmet AKSARAYLI Doç. Dr. Mehmet AKSARALI www.mehmetaksarayl İstatstksel araştırmalarda k yada daha çok değşke arasıdak lşk celemes ç e çok kullaıla yötemlerde brs regresyo aalzdr. Değşkeler arasıdak lşk matematksel br

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları

MÜHENDİSLER İÇİN İSTATİSTİK. Prof. Dr. Hüseyin Çelebi Ders Notları MEÜ. Mühedslk Fakültes Jeoloj Mühedslğ Bölümü MÜHENDİSLER İÇİN İSTATİSTİK YÖNTEMLER VE UYGULAMALAR Prof. Dr. Hüsey Çeleb Ders Notları Mers 007 Prof. Dr.-Ig. Hüsey Çeleb 1 Brkaç ülü sözü İstatstk! Matematğ

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim.

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim. 6..27 Tarhl Mühedslk ekooms fal sıavı Süre 9 dakka Sıav Saat: Sıav süresce görevllere soru sormayı. Başarılar dlerm. D: SOYD: ÖĞRENCİ NO: İMZ: Tek ödemel akümüle değer faktörü Tek ödemel gücel değer faktörü

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarhl ve 25391 sayılı Resm Gazete'de yayımlamıştır.) Amaç BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayaak Madde 1 Bu Yöetmelğ amacı, 4857 sayılı İş Kauuu 53 ücü maddes

Detaylı

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ

İSTATİSTİK. Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özkan GÖRGÜLÜ İSTATİSTİK Doç. Dr. Suat ŞAHİNLER Arş.Gör. Özka GÖRGÜLÜ Tavsye Edle Kayak Ktaplar Her öğrec keds tuttuğu düzel otlar.. Akar, M. ve S. Şahler, (997). İstatstk. Ç.Ü. Zraat Fakültes Geel Yayı No: 74, Ders

Detaylı

12.İSTATİSTİK SORU VE CEVAPLARI

12.İSTATİSTİK SORU VE CEVAPLARI .İSTATİSTİK SORU VE CEVAPLARI.. DESKRİPTİF İSTATİSTİK Soru. Br ş yerde çalışaları maaşlarıa, kşler kıdem derecelere göre aşağıdak şeklde zam yapılmıştır.acaba bu şyerde çalışa şahısları tartılı ortalama

Detaylı

9. Ders. Đstatistikte Monte Carlo Çalışmaları

9. Ders. Đstatistikte Monte Carlo Çalışmaları 9. Ders Đstatstkte Mote Carlo Çalışmaları Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve bu modeller geçerllğ sıamada kullaıla bazı blg ve yötemler

Detaylı

8. Niteliksel ( Ölçülemeyen Özellikler İçin) Kontrol Diyagramları

8. Niteliksel ( Ölçülemeyen Özellikler İçin) Kontrol Diyagramları 1 8. Ntelksel ( Ölçüleeye Özellkler İç) Kotrol Dyagraları Ürüler taşıası gereke kalte karakterstkler br ya da br kaçı belrlee sesfkasyolara uyayablr. Ntelk olarak adladırıla bu özellk edeyle ürü belrl

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR SAÜ. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ DUYARLI ORTALAMALAR PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. ORTALAMANIN TANIMI VE FAYDALARI. HASSAS ORTALAMALAR.1. Aritmetik Ortalama.. Kareli Ortalama..

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Mekez Eğlm Ölçüle 4... Atmetk Otalama 4... Ağılıklı Atmetk Otalama 4... Geometk Otalama 4..4. Hamok Otalama 4..5 Kuadatk Otalama 4..6. Medya 4..7. Katlle 4..8. Decle ve

Detaylı

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR

EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR EMEKLİLİK YATIRIM FONLARI DEĞERLENDİRMESİ AÇIKLAMA NOTLARI VE VARSAYIMLAR 2013 yılı fo getrs 02/01/2013-02/01/2014 tarhl brm pay değerler kullaılması le hesaplamıştır. 2013 yılı karşılaştırma ölçütü getrs

Detaylı

NİÇİN ÖRNEKLEME YAPILIR?

NİÇİN ÖRNEKLEME YAPILIR? İÇİ ÖREKEME YAPIIR? Zama Kısıdı Maliyeti Azaltma Hata Oraıı Azaltma Souca Ulaşma Hızı Doç.Dr. Ali Kemal ŞEHİRİOĞU Araş.Gör. Efe SARIBAY Örekleme Teorisi kousuu içide, Örekleme Tipleri populasyoda örek

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ)

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) İTATİTİKEL KALİTE KOTROLDE KULLAILA TEMEL İTATİTİKEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) Kalite Mühendisliği kapsamında İstatistik Proses Kontrolde (İPK) kullanılan temel istatistik ölçüler ve

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24

=... 29 İÇİNDEKİLER. E(X) = k... 22. 3.5. Pascal (Negatif Binom) Dağılımı... 22 1. 3.6. Hipergeometrik Dağılım... 22. N y= ... 24 İÇİNDEKİLER SİMGE LİSTESİ... KISALTMA LİSTESİ... v ÇİZELGE LİSTESİ... v ŞEKİL LİSTESİ... v ÖNSÖZ... v ÖZET... x ABSTRACT... x GİRİŞ... BÖLÜM : OLASILIK DAĞILIMLARI VE OLASILIK YOĞUNLUKLARI... BÖLÜM : OLASILIK

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ

taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ 3 İstatst Serler ve Freas Tabloları TAŞINMAZ GELİŞTİRME TEZSİZ YÜKSEK LİSANS PROGRAMI taşinmaz DEĞERLEME- DE İSTATİKSEL ANALİZ Doç. Dr. Mehmet Al CENGİZ Üte: 3 İSTATİSTİK SERİLERİ ve FREKANS TABLOLARI

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan OKTAY İÇİNDEKİLER HEDEFLER İNDEKSLER HEDEFLER İÇİNDEKİLER İNDEKSLER Basit İdeksler Bileşik İdeksler Tartısız İdeksler Tartılı İdeksler Mekâ İdeksleri İSTATİSTİĞE GİRİŞ Prof.Dr.Erka OKTAY İktisadi göstergeleri daha iyi yorumlayıp karşılaştırılabilecek

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( )

VII. OLİMPİYAT SINAVI. Sınava Katılan Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR k polinomu ( ) Sıava Katıla Tüm Talebe Arkadaşlara Başarılar Dileriz SORULAR 2 997. ( )( )( ) ( ) ( ) k x x x... k. x... 997. x poliomu ( ) a x a x... a x, a 0 ve k < k

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ / RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ A Uygulamalı Blmler ve Mühedslk ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A Appled Sceces ad Egeerg Clt/Vol.: 3-Sayı/No: : 5-63 (202 ARAŞTIRMA

Detaylı

TRAFİK SİMÜLASYON TEKNİKLERİ

TRAFİK SİMÜLASYON TEKNİKLERİ TRAFİK SİMÜLASYON TEKNİKLERİ 2. HAFTA Doç. Dr. Haka GÜLER (2015-2016) 1. TRAFİK AKIM PARAMETRELERİ Üç öeml rafk akım parameres vardır: Hacm veya akım oraı, Hız, Yoğuluk. 2. KESİNTİSİZ AKIM HACİM E AKIM

Detaylı

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003

İşletme İstatistiği. [Type the document subtitle] Ege Yazgan ve Yüce Zerey 10/21/2003 ISTANBUL BİLGİ UNİVERSİTY İşletme İstatstğ [Type the documet subttle] Ege Yazga ve Yüce Zerey 1/1/3 [Type the abstract of the documet here. The abstract s typcally a short summary of the cotets of the

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep GENEEŞTİRİMİŞ UANIK KÜMEER Mehme Şah Gazaep Üverses, Maemak ölümü, 27310, Gazaep ÖZET: u çalışmada öcelkle P ( br al ale olarak buludura bulaık kümeler GF ales br halka olarak yapıladırılmaka ve bu yapıı

Detaylı