Hidden Markov Model. Forward Algoritması Viterbi Algoritması. Doç.Dr.Banu Diri. Rasgele Olmayan /Gerekirci Model

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Hidden Markov Model. Forward Algoritması Viterbi Algoritması. Doç.Dr.Banu Diri. Rasgele Olmayan /Gerekirci Model"

Transkript

1 Hidden Markov Model Forward Algoritması Viterbi Algoritması Doç.Dr.Banu Diri Rasgele Olmayan /Gerekirci Model Bir trafik lambası düşünelim; ışıkların sırasıyla red - red/amber - green - amber - red. Bu sıralama bir durum makinesi ile görüntülensin ve trafik ışığının her farklı durumu birbirini takip etsin. red red-amber green amber Herbir durum sadece bir öceki duruma bağlıdır, öyleki eğer ışık yeşil ise onu izleyen renk amber olacaktır. Çünkü sistem deterministik. Bu tip sistemlerde bir durumdan diğer bir duruma geçişi anlamak ve analiz etmek kolaydır. Slide 1 1

2 Rasgele Olmayan /Gerekirci Model Bir trafik lambası düşünelim; ışıkların sırasıyla red - red/amber - green - amber - red. Bu sıralama bir durum makinesi ile görüntülensin ve trafik ışığının her farklı durumu birbirini takip etsin. red red-amber green amber Herbir durum sadece bir öceki duruma bağlıdır, öyleki eğer ışık yeşil ise onu izleyen renk amber olacaktır. Çünkü sistem deterministik. Bu tip sistemlerde bir durumdan diğer bir duruma geçişi anlamak ve analiz etmek kolaydır. Slide 2 Rasgele Olmayan /Gerekirci Model Bir trafik lambası düşünelim; ışıkların sırasıyla red - red/amber - green - amber - red. Bu sıralama bir durum makinesi ile görüntülensin ve trafik ışığının her farklı durumu birbirini takip etsin. red red-amber green amber Herbir durum sadece bir öceki duruma bağlıdır, öyleki eğer ışık yeşil ise onu izleyen renk amber olacaktır. Çünkü sistem deterministik. Bu tip sistemlerde bir durumdan diğer bir duruma geçişi anlamak ve analiz etmek kolaydır. Slide 3 2

3 Rasgele Olmayan /Gerekirci Model Bir trafik lambası düşünelim; ışıkların sırasıyla red - red/amber - green - amber - red. Bu sıralama bir durum makinesi ile görüntülensin ve trafik ışığının her farklı durumu birbirini takip etsin. red red-amber green amber Herbir durum sadece bir öceki duruma bağlıdır, öyleki eğer ışık yeşil ise onu izleyen renk amber olacaktır. Çünkü sistem deterministik. Bu tip sistemlerde bir durumdan diğer bir duruma geçişi anlamak ve analiz etmek kolaydır. Slide 4 Rasgele Olmayan /Gerekirci Model Bir trafik lambası düşünelim; ışıkların sırasıyla red - red/amber - green - amber - red. Bu sıralama bir durum makinesi ile görüntülensin ve trafik ışığının her farklı durumu birbirini takip etsin. red red-amber green amber Herbir durum sadece bir önceki duruma bağlıdır, öyleki eğer ışık yeşil ise onu izleyen renk amber olacaktır. Çünkü sistem deterministik. Bu tip sistemlerde bir durumdan diğer bir duruma geçişi anlamak ve analiz etmek kolaydır. Slide 5 3

4 Rasgele Olan /Gerekirci Olmayan Model Markov modelde bir durumdan diğer bir duruma geçiş önceki n duruma bağlı olarak gerçekleştirilir. Bu işlem order n model olarak adlandırılır, n değeri gelecek durumun seçiminde etkili olan durum sayısıdır. N basit Markov model first order (n=1) modeldir. Gerekirci modele benzemez, çünkü burada durumların olasılıkları sözkonusudur ilk olasılıklar vektörü п M adet durum (state) varsa maksimum M 2 adet bağlantı (transition) olabilir. Bu bağlantıların olasılıkları da Transition Matrix ile verilir. Slide 6 First order Markov process : states : 3 durum - sunny, cloudy, rainy. vector (п): 0 anında herbir state in olasılığı state transition matrix : Verilen bir önceki güne göre havanın ne olabileceğinin olasılığı Slide 7 4

5 HMM kullanan uygulamalar NLP Part-of-speech tagging Word segmentation Information extraction Optical Character Recognition (OCR) Speech recognition Modeling acoustics Computer Vision gesture recognition Biology Gene finding Protein structure prediction Economics, Climatology, Communications, Robotics Slide 8 Saklı Markov Model (Hidden Markov Model) Markov modelden farklı olarak Saklı Markov Modelde sistemin herhangi bir t anında, hangi durumda olduğu bilinmez, ancak sistem bir durumda iken bu durumun tetiklediği gözlemi ortaya çıkarır. (outputs) Slide 9 5

6 Saklı Markov model (HMM) bir üçlüdür (п,a, B) State lerin başlangıç durumları; state transition matrix; confusion matrix; HMM de üç problem vardır. 1. Gözlemlenen bir sekansın gerçekleşme olasılığının bulunması (Forward Algorithm). 2. Gözlemlere dayanarak saklı state lerin en muhtemel sekansının bulunması (Viterbi Algorithm). 3. Gözlemlenen sekansın üretilebilmesi için model parametrelerin belirlenmesi (Forward-Backward). Slide 10 Forward Algorithm Gözlemlenen bir sekansın olasılığının bulunması 27 farklı Pr(dry,damp,soggy HMM) = Pr(dry,damp,soggy sunny,sunny,sunny) + Pr(dry,damp,soggy sunny,sunny,cloudy) + Pr(dry,damp,soggy sunny,sunny durum,rainy) Pr(dry,damp,soggy rainy,rainy,rainy) Slide 11 6

7 T uzunluğunda gözlemlenen sekans Intermediate probabilities (α's) değeri t=1 deki bütün state ler için hesaplanır. t = 2,..., T her adım için her state in partial probability hesaplanır Son olarak bütün partial probability ler toplanır ve verilen HMM için gözlemlenen sekansın olasılığı hesaplanır. Slide 12 Hidden States (weather) Sunny Cloudy Rainy Observed States Dry Dryish Damp Soggy Initial State Prob.(Π vector) Sunny 0.63 Cloudy 0.17 Rainy 0.20 State transition matrix ( a' matrix) Yesterday Weather Today Weather Sunny Cloudy Rainy Sunny Cloudy Rainy Confusion matrix ( b' matrix) Slide 13 7

8 Slide 14 Slide 15 8

9 Slide 16 Slide 17 9

10 Slide Slide 19 10

11 Slide 20 Slide 21 11

12 Olası Hidden State Sekansının Bulunması Gözlemlenen sekansı veren Hidden State sekanslarının bulunması gerekir. Farklı path ler çıkarılabilir ancak amaç en iyi path bulmaktır. Maksimum olasılığı veren path aranır. Bunu için partial probability hesaplanır. Slide 22 Viterbi Algoritması ) Slide 23 12

13 Viterbi Algorithm Slide 24 Slide 25 13

14 Slide 26 Slide 27 14

15 Delta = max (( *0.5), (0.0425*0.375), ( *0.125)) * 0.15 = Slide 28 Delta = max (( *0.25), (0.0425*0.125), ( *0.675)) * 0.25 = Slide 29 15

16 Delta = max (( *0.25), (0.0425*0.375), ( *0.375)) * 0.35 = Slide 30 Slide 31 16

17 Kaynaklar n.html Slide 32 17

SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ

SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 12, Sayı 1, 2007 SÜREKLİ SAKLI MARKOV MODELLERİ İLE METİNDEN BAĞIMSIZ KONUŞMACI TANIMA PARAMETRELERİNİN İNCELENMESİ Cemal HANİLÇİ Figen

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Sınıflandırma yöntemleri Karar ağaçları ile sınıflandırma Entropi Kavramı ID3 Algoritması C4.5

Detaylı

Dil Modelleri. Doç.Dr.Banu Diri

Dil Modelleri. Doç.Dr.Banu Diri Dil Modelleri Doç.Dr.Banu Diri Dilin modellenmesinin amacı Konuşma tanıma (Speech recognition) El yazısı tanıma (Handwriting recognition) İmla hatalarının düzeltilmesi (Spelling correction) Makine çeviri

Detaylı

BM312 Ders Notları - 3 2014

BM312 Ders Notları - 3 2014 DETERMİNİSTİK SONLU OTOMATLAR (DETERMINISTIC FINITE AUTOMATA) Bir Sonlu Otomat (FA) sabit ve sonlu kapasitede bir merkezi işlem ünitesine sahiptir. Giriş bilgisini input tape üzerinden string olarak alır.

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

BİLECİK ÇEVRESİNDE DEPREM TEHLİKESİNİN SAKLI MARKOV MODELİ İLE TAHMİNİ

BİLECİK ÇEVRESİNDE DEPREM TEHLİKESİNİN SAKLI MARKOV MODELİ İLE TAHMİNİ ÖZET: BİLECİK ÇEVRESİNDE DEPREM TEHLİKESİNİN SAKLI MARKOV MODELİ İLE TAHMİNİ C.E. Can 1, G. Ergün 2 ve C. Gökçeoğlu 3 1 Araştırma Görevlisi, İstatistik Bölümü, Hacettepe Üniversitesi, Beytepe, Ankara 2

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

MARKA TERCİHLERİNE VE TERCİH NEDENLERİNE GİZLİ MARKOV MODELİNİN UYGULANMASI

MARKA TERCİHLERİNE VE TERCİH NEDENLERİNE GİZLİ MARKOV MODELİNİN UYGULANMASI Eskişehir Osmangazi Üniversitesi Sosyal Bilimler ergisi, 0() MARKA TERCİHLERİNE VE TERCİH NEENLERİNE GİZLİ MARKOV MOELİNİN UYGULANMASI Tuncay CAN Marmara Üniversitesi İktisadi ve İdari Bilimler Fakültesi

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

DGridSim Gerçek Zamanlı Veri Grid Simülatörü. Gerçek-Zamanlı Veri Dağıtımı Dokümanı v 1.0.1 01.08.2011

DGridSim Gerçek Zamanlı Veri Grid Simülatörü. Gerçek-Zamanlı Veri Dağıtımı Dokümanı v 1.0.1 01.08.2011 DGridSim Gerçek Zamanlı Veri Grid Simülatörü Gerçek-Zamanlı Veri Dağıtımı Dokümanı v 1.0.1 01.08.2011 Mustafa Atanak Sefai Tandoğan Doç. Dr. Atakan Doğan 1. Tek Rotadan Veri Dağıtımı 1.1 Gerçek-Zamanlı

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm

Detaylı

Örnekleme Yöntemleri

Örnekleme Yöntemleri Örnekleme Yöntemleri Evren & Örneklem (Fraenkel & Wallen, 1990) Evren & Örneklem 2 Evren Evren, araştırma sonuçlarının genelleneceği (geçerli olacağı) büyük grup. Hedef evren, araştırmacının ulaşmak istediği,

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DOKTORA YETERLİK SINAVI YÖNETMELİĞİ Doktora Yeterlik Sınavı, başvurunun yapıldığı ve Doktora Yeterlik Komitesi nin başvuruyu onayladığı dönemdeki, dönem sonu sınavlarının

Detaylı

T.C. AKSARAY ÜNİVERSİTESİ REKTÖRLÜĞÜ AKADEMİK YABANCI DİL DESTEK (AYDD) BİRİMİ ÇALIŞMA ESASLARI

T.C. AKSARAY ÜNİVERSİTESİ REKTÖRLÜĞÜ AKADEMİK YABANCI DİL DESTEK (AYDD) BİRİMİ ÇALIŞMA ESASLARI T.C. AKSARAY ÜNİVERSİTESİ REKTÖRLÜĞÜ AKADEMİK YABANCI DİL DESTEK (AYDD) BİRİMİ ÇALIŞMA ESASLARI AKADEMİK YABANCI DİL DESTEK BİRİM TANIMI: Aksaray Üniversitesi Rektörlüğü Akademik Yabancı Dil Destek (AYDD)

Detaylı

tree) nedir? Karar Ağacı (Decision Decisiontree

tree) nedir? Karar Ağacı (Decision Decisiontree Karar Ağacı (Decision Decisiontree tree) nedir? Bir işletme yönetimi tarafından tercihlerin, risklerin, kazançların, hedeflerin tanımlanmasında yardımcı olabilen ve birçok önemli yatırım alanlarında uygulanabilen,

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES)

BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES) BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES) Context-free dillerin üretilmesi için context-free gramer ler kullanılmaktadır. Context-free dillerin

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

KARAR TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü KARAR TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü Karar Ortamları Karar Analizi, alternatiflerin en iyisini seçmek için akılcı bir sürecin kullanılması ile ilgilenir. Seçilen

Detaylı

EĞİTİM ÖĞRETİM YILI 4 YAŞ GRUPLARI ARALIK-OCAK AYI BÜLTENİ

EĞİTİM ÖĞRETİM YILI 4 YAŞ GRUPLARI ARALIK-OCAK AYI BÜLTENİ 2016-2017 EĞİTİM ÖĞRETİM YILI 4 YAŞ GRUPLARI ARALIK-OCAK AYI BÜLTENİ BU AY NELER ÖĞRENECEĞİZ? Dünyanın hareketleri canlıların yaşamlarını etkiler ana fikrinden yola çıkarak ; Dünyanın hareketleri (gece-gündüz,

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması Özellikleri ve Olasılıkların Hesaplanması Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Poisson dağılımı kesikli dağılımlar içinde Binom dağılımından

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

Yüz Tanımaya Dayalı Uygulamalar. (Özet) 4 Yüz Tanımaya Dayalı Uygulamalar (Özet) Günümüzde, teknolojinin gelişmesi ile yüz tanımaya dayalı bir çok yöntem artık uygulama alanı bulabilmekte ve gittikçe de önem kazanmaktadır. Bir çok farklı uygulama

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2013-2014 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 18.03.2014 Sınav Süresi: 50 dakika

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

Investigation of Three Basic Problems in Hidden Markov Models

Investigation of Three Basic Problems in Hidden Markov Models Investigation of Three Basic Problems in Hidden Markov Models Zuleyha Semerci, Master of Science Thesis Department of Statistics, Hacettepe University 2006 SAKLI MARKOV MODELLERİNDE ÜÇ TEMEL PROBLEMİN

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

Dr. Akarsu Hafta-4 11/16/2014 1

Dr. Akarsu Hafta-4 11/16/2014 1 Dr. Akarsu Hafta-4 11/16/2014 1 GİRİŞ Olasılık dolaylı istatistiğin önemli metotlarının temelini oluşturmaktadır. Örneğin, cinsiyet belirleyici bir prosedür belirlediğinizi iddia ediyorsunuz ve her seferinde

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201 BÖLÜM KODU:01 011-01 01.Yarıyıl Dersleri 0.Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 10 Analiz II Analysis II 4 1 5 6 MTK 11 Lineer Cebir I Linear Algebra I 1 4 MTK 1 Lineer Cebir II Linear

Detaylı

SÖZCÜK VE HECE TABANLI KONUŞMA TANIMA SİSTEMLERİNİN KARŞILAŞTIRILMASI

SÖZCÜK VE HECE TABANLI KONUŞMA TANIMA SİSTEMLERİNİN KARŞILAŞTIRILMASI T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI 2016-YL-054 SÖZCÜK VE HECE TABANLI KONUŞMA TANIMA SİSTEMLERİNİN KARŞILAŞTIRILMASI Özlem YAKAR Tez Danışmanı: Yrd. Doç. Dr.

Detaylı

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY 9.-10. KISIM, 34156 BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Vize İris Segmentation Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim program ve kaynak

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım

Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Yılmaz KAYA 1, Ömer Faruk ERTUĞRUL 2, Ramazan TEKİN 3 1 Siirt Üniversitesi, Bilgisayar Mühendisliği Bölümü 2 Batman Üniversitesi, Elektrik-Elektronik

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu :

ÖZGEÇMİŞ. 1. Adı Soyadı : Olcay Taner Yıldız. 2. Doğum Tarihi : 15.05.1976. 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : ÖZGEÇMİŞ 1. Adı Soyadı : Olcay Taner Yıldız 2. Doğum Tarihi : 15.05.1976 3. Unvanı : Doç. Dr. 4. Öğrenim Durumu : Derece Alan Üniversite Yıl Lisans Bilgisayar Mühendisliği Boğaziçi Üniversitesi 1997 Y.

Detaylı

Ses Komut Tanıma ile Gezgin Araç Kontrolü. Mobile Vehicle Control With Voice Command Recognition

Ses Komut Tanıma ile Gezgin Araç Kontrolü. Mobile Vehicle Control With Voice Command Recognition Ses Komut Tanıma ile Gezgin Araç Kontrolü * 1 Muharrem ÇELEBİ, 2 Ali BULDU 1 Elektronik ve Haberleşme Mühendisliği, Fen Bilimleri Enstitüsü, Kocaeli Üniversitesi, Türkiye 2 Bilgisayar Mühendisliği, Teknoloji

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

Doğu Akdeniz Üniversitesi Bilgisayar ve Teknoloji Yüksek Okulu Bilgi teknolojileri ve Programcılığı Bölümü DERS 1 - BİLGİSAYAR VE ÇEVRE ÜNİTELERİ

Doğu Akdeniz Üniversitesi Bilgisayar ve Teknoloji Yüksek Okulu Bilgi teknolojileri ve Programcılığı Bölümü DERS 1 - BİLGİSAYAR VE ÇEVRE ÜNİTELERİ Doğu Akdeniz Üniversitesi Bilgisayar ve Teknoloji Yüksek Okulu Bilgi teknolojileri ve Programcılığı Bölümü DERS 1 - BİLGİSAYAR VE ÇEVRE ÜNİTELERİ Bilgisayar, kendine önceden yüklenmiş program gereğince

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal 1 SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM Dr. Murat Günal SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) Sekröte sunulacak Yeni Ürün (veya Teknoloji) Mevcut ve gelecekteki demografik durum

Detaylı

1. GİRİŞ Kılavuzun amacı. Bu bölümde;

1. GİRİŞ Kılavuzun amacı. Bu bölümde; 1. GİRİŞ Bu bölümde; Kılavuzun amacı EViews Yardım EViews Temelleri ve Nesneleri EViews ta Matematiksel İfadeler EViews Ana Ekranındaki Alanlar 1.1. Kılavuzun amacı Ekonometri A. H. Studenmund tarafından

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

Türkiye deki karla kaplı alanların uydulardan takibi ve uzun yıllar trend analizi

Türkiye deki karla kaplı alanların uydulardan takibi ve uzun yıllar trend analizi Türkiye deki karla kaplı alanların uydulardan takibi ve uzun yıllar trend analizi İbrahim Sönmez 1, Ahmet Emre Tekeli 2, Erdem Erdi 3 1 Ondokuz Mayıs Üniversitesi, Meteoroloji Mühendisliği Bölümü, Samsun

Detaylı

OSMANLICA BASKI METİNLER İÇİN ARAMA ALTYAPISI An OCR-Based Information Retrieval System for Printed Ottoman Materials

OSMANLICA BASKI METİNLER İÇİN ARAMA ALTYAPISI An OCR-Based Information Retrieval System for Printed Ottoman Materials OSMANLICA BASKI METİNLER İÇİN ARAMA ALTYAPISI An OCR-Based Information Retrieval System for Printed Ottoman Materials C. Ozan Ceyhan, Melih Taşdizen, Berkin Malkoç, Atabey Kaygun, Kürşat Aker Özet Bu çalışmada,

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme

Örneklem. Yöntemleri FBED511 Eğitim Bilimlerinde Temel Araştırma Yöntemleri 1. Evren & Örneklem. Evren. Örneklem ve örnekleme Yöntemleri & EBE Z Eğitimde Araştırma Yöntemleri (Fraenkel & Wallen, 1990), araştırma sonuçlarının genelleneceği (geçerli olacağı) büyük grup. Hedef evren, araştırmacının ulaşmak istediği, ancak ulaşması

Detaylı

Ses Komut Tanıma ile Gezgin Araç Kontrolü

Ses Komut Tanıma ile Gezgin Araç Kontrolü Ses Komut Tanıma ile Gezgin Araç Kontrolü Rifat Edizkan 1, Burak Tiryaki 1, Tunç Büyükcan 1, İsmail Uzun 2 1 Eskişehir Osmangazi Üniversitesi, Elektrik Elektronik Mühendisliği Bölümü, 26480, Eskişehir

Detaylı

Ayşe Arslan 1, Ahmet Çağrı Bağbaba 2, Baha Şen 1, Berna Örs 2. Ankara Yıldırım Beyazıt Üniversitesi

Ayşe Arslan 1, Ahmet Çağrı Bağbaba 2, Baha Şen 1, Berna Örs 2. Ankara Yıldırım Beyazıt Üniversitesi Kalp Üfürümlerinin İzlenmesi için Walsh-Hadamard Dönüşümü Tabanlı Otomatik Sınıflandırma Sistemi The Walsh-Hadamard Transform Based Automated Grading System For Monitoring of Heart Murmurs Ayşe Arslan

Detaylı

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr.

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr. Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi 00-0 Bahar Dönemi Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA Bu sunu izleyen kaynaklardaki örnek ve bilgilerden faydalanarak

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir

Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticili (supervised) öğrenme: Sınıflandırma (classification) Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğu bilinir Eğiticisiz (unsupervised) öğrenme: Kümeleme (clustering) Hangi nesnenin hangi

Detaylı

KONYA İLİ HAVA KALİTESİNİN DEĞERLENDİRİLMESİ

KONYA İLİ HAVA KALİTESİNİN DEĞERLENDİRİLMESİ KONYA İLİ HAVA KALİTESİNİN DEĞERLENDİRİLMESİ Bu çalışma da 2000-2010 yıllarındaki yıllık, aylık, saatlik veriler kullanılarak kirleticilerin mevsimsel değişimi incelenmiş, sıcaklık, rüzgar hızı, nisbi

Detaylı

Rasgele Sayılar Rasgele Basamaklar

Rasgele Sayılar Rasgele Basamaklar Rasgele Sayılar Rasgele Basamaklar Gerçek hayatı taklit etmek için ihtiyaç duyulan rasgeleliği elde etmek rasgele sayılar ın kullanılması ile mümkündür. Rasgele sayıların oluşturulmasında rasgele basamaklar

Detaylı

BASICS OF ENGLISH SENTENCE STRUCTURE

BASICS OF ENGLISH SENTENCE STRUCTURE BASICS OF ENGLISH SENTENCE STRUCTURE What must we remember? (Neyi hatırlamalıyız?) 1. Sentence Structure / Word Order Cümle Yapısı / Sözcük Sırası Bilindiği gibi İngilizce Cümleler Türkçe gibi yazılmamaktadır.

Detaylı

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR Çizgeler (Graphs) ve Uygulamaları Doç. Dr. Aybars UĞUR Giriş Şekil 12.1 : Çizge (Graph) Çizge (Graph) : Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan bağlantılardan

Detaylı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ Doç. Dr. İhsan KAYA Markov Analizi Markov analizi, bugün çalışan bir makinenin ertesi gün arızalanma olasılığının

Detaylı

DOKU TİPİ İMGELERİN SINIFLANDIRILMASI İÇİN BİR UYARLAMALI ENTROPİ TABANLI DALGACIK-YAPAY SİNİR AĞI SİSTEMİ

DOKU TİPİ İMGELERİN SINIFLANDIRILMASI İÇİN BİR UYARLAMALI ENTROPİ TABANLI DALGACIK-YAPAY SİNİR AĞI SİSTEMİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 22, No 1, 27-32, 2007 Vol 22, No 1, 27-32, 2007 DOKU TİPİ İMGELERİN SINIFLANDIRILMASI İÇİN BİR UYARLAMALI ENTROPİ TABANLI DALGACIK-YAPAY

Detaylı

İşaret ve Sistemler. Ders 1: Giriş

İşaret ve Sistemler. Ders 1: Giriş İşaret ve Sistemler Ders 1: Giriş Ders 1 Genel Bakış Haberleşme sistemlerinde temel kavramlar İşaretin tanımı ve çeşitleri Spektral Analiz Fazörlerin frekans düzleminde gösterilmesi. Periyodik işaretlerin

Detaylı

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME 4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME Bu bölümde; Bir grup değişkenin çalışma sayfası görüntüsünü görüntüleme Bir grup değişkenin tanımlayıcı istatistiklerini görüntüleme Bir grup içerisindeki

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Olasılığa Giriş Bundan önceki bölümlerde veri setini özetleyen,

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Elektronik Yayıncılıkta Arşivsel Derinliğe Ulaşmak: 3 Milyon Elektronik Kitap

Elektronik Yayıncılıkta Arşivsel Derinliğe Ulaşmak: 3 Milyon Elektronik Kitap Elektronik Yayıncılıkta Arşivsel Derinliğe Ulaşmak: 3 Milyon Elektronik Kitap 1 Elektronik Yayıncılık Bilginin sunulma ve erişilme süresini katbekat azaltmıştır. Dijitalleştirme Bilginin kaynaklarının

Detaylı

TOBB ETU Department of Economics IKT 262 Midterm Exam

TOBB ETU Department of Economics IKT 262 Midterm Exam TOBB ETU Department of Economics IKT 262 Midterm Exam Ayça Özdo gan 26 EKIM 2015 AD/SOYAD ve NUMARA: Sınav 100 + 10 puan üzerindendir. Süreniz 120 dakikadır. Sınavda ders notları, kitap veya hesap makinesi

Detaylı

Bilgisayar Tabanlı Araç Plaka Tanıma Sistemi. Computer Based Vehicle Plate Recognition System

Bilgisayar Tabanlı Araç Plaka Tanıma Sistemi. Computer Based Vehicle Plate Recognition System BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 1, SAYI: 3, EYLÜL 2008 1 Bilgisayar Tabanlı Araç Plaka Tanıma Sistemi Okan BİNGÖL 1, Ömer KUŞCU 2 1 Süleyman Demirel Üniversitesi Teknik Eğitim Fakültesi Elektronik-Bilgisayar

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

Uyarlı Kokusuz Kalman Filtresi

Uyarlı Kokusuz Kalman Filtresi Uyarlı Kokusuz Kalman Filtresi Esin KÖKSAL BABACAN 1,*, Levent ÖZBEK 1, Cenker BİÇER 1 1 Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü, Sistem Belirleme ve Simülasyon Laboratuarı, 06100 Tandoğan/ANKARA

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJENİN ADI: OYUN TEORİSİ İLE İSTANBUL TRAFİĞİNİN İNCELENMESİ HAZIRLAYANLAR: ECE TUNÇKOL-BERKE OĞUZ AKIN MEV KOLEJİ ÖZEL

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

KONU: BARAJLARDA SİSMİK TEHLİKENİN TAYİNİ - Olasılıksal ve deterministik hesaplar sonrası baraj tasarımında kulanılacak sismik tehlike seviyeleri

KONU: BARAJLARDA SİSMİK TEHLİKENİN TAYİNİ - Olasılıksal ve deterministik hesaplar sonrası baraj tasarımında kulanılacak sismik tehlike seviyeleri KONU: BARAJLARDA SİSMİK TEHLİKENİN TAYİNİ - Olasılıksal ve deterministik hesaplar sonrası baraj tasarımında kulanılacak sismik tehlike seviyeleri SUNUM YAPAN: Sinan Akkar (ODTÜ) Barajlarda sismik tehlike

Detaylı

ANA SINIFI B AYLIK BÜLTEN - 1 SANAT

ANA SINIFI B AYLIK BÜLTEN - 1 SANAT ANA SINIFI B AYLIK BÜLTEN - 1 SANAT Ekim 2016 Anahtarların kenarından kalemle çizdik ve anahtarların şeklini çıkardık. Her anahtarın girinti ve çıkıntılarının farklı olduğunu gördük. Aile bireylerimizi

Detaylı

Rasgele Sayıların Özellikleri

Rasgele Sayıların Özellikleri Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 6 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Fonksiyon Prototipleri Fonksiyon Prototipleri Derleyici, fonksiyonların ilk hallerini (prototiplerini)

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Hipotez Testi 21/03/2012 AYŞE S. ÇAĞLI aysecagli@beykent.edu.tr 1 Güven aralığı ve Hipotez testi Güven aralığı µ? µ? Veriler, bir değer aralığında hangi değeri gösteriyor? (Parametrenin gerçek

Detaylı

İŞLETMELERDE BECERİ EĞİTİMİ DERSİ MİCROSOFT WORD 2007 ÇALIŞMALARI

İŞLETMELERDE BECERİ EĞİTİMİ DERSİ MİCROSOFT WORD 2007 ÇALIŞMALARI 1 2 3 Microsoft Office Word Belgesinde çalışmamızı tamamladıktan sonra simgesine tıkladığımızda açılan menüde dosyamızı kaydedebiliriz veya yazıcıdan çıktısını alabiliriz. Çalışmamızda değişiklik yapmak

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

METAL VE ELEKTRONİK SAN.TİC.LTD.ŞTİ LED MODÜLLER

METAL VE ELEKTRONİK SAN.TİC.LTD.ŞTİ LED MODÜLLER METAL VE ELEKTRONİK SAN.TİC.LTD.ŞTİ LED MODÜLLER LOW POWER LED DİZGİLİ MODÜLLER LED tipi : OSRAM Duris E3 LED kasa boyutu: 3.0 mm x 1.4 mm Açı: 110 30 ma kadar sürülebilme özelliği Lineer aydınlatma için

Detaylı

Bileşik Cümlelerde Yan Cümleciklerin Otomatik Etiketlenmesi

Bileşik Cümlelerde Yan Cümleciklerin Otomatik Etiketlenmesi Bileşik lerde Yan ciklerin Otomatik Etiketlenmesi Metin BİLGİN 1, Mehmet Fatih AMASYALI 2 1 Tophane Mesleki ve Teknik Anadolu Lisesi, BURSA 2 Yıldız Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü,

Detaylı

Bilgisayar ve Bilişim Bilimleri Fakültesi Sakarya Üniversitesi

Bilgisayar ve Bilişim Bilimleri Fakültesi Sakarya Üniversitesi SAKLI MARKOV MODEL KULLANARAK TÜRKÇE KONUŞMAYI VE YAZIYI İŞARET DİLİNE ÇEVİRME Cemil Öz 1, Beyza Eken 2, Büşra Şahin 3, Esra Akbulut 4, Fatma Akbulut 5 1,2,3,4,5 Bilgisayar Mühendisliği Bölümü Bilgisayar

Detaylı

ÜRETİM ÇİZELGELEME. Yrd. Doç. Dr. Pınar Mızrak Özfırat. Celal Bayar Üniversitesi Yayınları Yayın No: 0010

ÜRETİM ÇİZELGELEME. Yrd. Doç. Dr. Pınar Mızrak Özfırat. Celal Bayar Üniversitesi Yayınları Yayın No: 0010 ÜRETİM ÇİZELGELEME Yrd. Doç. Dr. Pınar Mızrak Özfırat Celal Bayar Üniversitesi Yayınları Yayın No: 0010 2013 Celal Bayar Üniversitesi Yönetim Kurulu'nun 2013/13 sayılı ve X no'lu kararı ile basılmıştır.

Detaylı

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri-

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- Hazırlayan Yrd. Doç. Selçuk Üniversitesi Mühendislik Fakültesi - Endüstri Mühendisliği Bölümü Giriş Zaman içerisinde tamamen önceden kestirilemeyecek şekilde

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

ÖZEL ASÇAY ANAOKULU PAMUK ŞEKERLER SINIFI HAFTALIK BÜLTENİ. Hazırlayan: MELTEM DÖKÜLMEZ

ÖZEL ASÇAY ANAOKULU PAMUK ŞEKERLER SINIFI HAFTALIK BÜLTENİ. Hazırlayan: MELTEM DÖKÜLMEZ ÖZEL ASÇAY ANAOKULU PAMUK ŞEKERLER SINIFI HAFTALIK BÜLTENİ Hazırlayan: MELTEM DÖKÜLMEZ BU HAFTA NELER ÖĞRENDİK *Trafik kurallarını öğrendik. *Trafik lambalarındaki renklerin ne anlama geldiği hakkında

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI STOKASTİK (RASSAL) SÜREÇLER Bazen rassal değişkenlerin zamanla nasıl değiştiğiyle ilgileniriz. Örneğin

Detaylı