Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez"

Transkript

1 Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez

2 Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca en uygun çözümün bulunmasını sağlayan bir matematiksel yöntemdir. Amaç fonksiyonunu en büyük veya en küçük yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dır.

3 Doğrusal Programlama UYGULANDIĞI ALANLAR Yatırım ve üretim planlamasında Ulaştırma sorunlarının çözümünde, İşletmelerin kuruluş yerlerinin saptanması, Beslenme problemlerinin çözümünde, İşletmelerde görevlerin planlanmasında

4 Doğrusal Programlama nın dayandığı varsayımlar Modeldeki değişkenlerin rakamlarla ifade edilebilir (kantitatif) olması gerekir. Kalitatif değişkenlerle model kurulamaz. Değişkenler arasında alternatif seçim olanağı olmalıdır. Alternatif yoksa DP söz konusu olamaz, örneğin bir çiftlikte tek bitki yetiştirilecekse optimizasyona gerek yoktur, çiftlikte birkaç alternatif bitki yetiştirilebilecekse, çiftlik karının maksimum olabilmesi için hangi bitkiden ne kadar üretim yapılması gerektiği, DP ile belirlenebilir.

5 Doğrusal Programlama nın dayandığı varsayımlar Değişkenler arasında kurulan ilişkiler doğrusal olmalıdır. DP nın uygulanacağı işletme problemleri kısa dönemli olmalıdır. Tarımsal üretimde girdi ve üretim fiyatları ancak kısa dönemlerde sabit kabul edilebilir.

6 Y=a+bX Doğrusal ilişki (2 değişken arasında, Y bağımlı değişken, X bağımsız değişken) Y=b0+b1X1+b2X2+...+bnXn Doğrusal ilişki (Birkaç bağımsız değişken ile bağımlı değişken arasında) Y=5X Doğrusal İlişki Doğrusal ilişki Y=3X 2 Doğrusal değil (Eğrisel ilişki) Y=4+7(X) 0.5 Doğrusal değil (Eğrisel ilişki)

7 DP modelinde 3 unsur vardır : 1. Amaç fonksiyonu 2. Kısıtlar (kısıtlayıcı fonksiyonlar) 3. Pozitiflik kısıtı Doğrusal Programlamanın Matematiksel Yapısı

8 Amaç Fonksiyonu Maksimizasyon Z 45 + x max = x1 55 Minimizasyon Z 25 + x min = x

9 Amaç Fonksiyonu Amaç fonksiyonu Z, değişkenler X ve sabit katsayılar C ile gösterilirse, amaç fonksiyonu: Z max/min Veya : = n i= 1 CiXi Z maks =C 1 X 1 +C 2 X C n X n biçiminde ifade edilir.

10 Kısıtlar ) 1,2,... (j 1 m b X a n i j i ij = = ) 1,2,... (j 1 m b X a n i j i ij = = ) 1,2,... (j 1 m b X a n i j i ij = = =

11 Pozitiflik Kısıtı Doğrusal programlama modelleri gerçek problemlere uygulanır. Bu nedenle değişkenler negatif değerli olamazlar. Böylece:; X1...Xn 0 yazılmalıdır.

12 Değişkenler Modele girecek olan değişkenler problemi açıklayan kantitatif büyüklüklerdir. Bu değişkenlerin optimum değerleri modelin çözümü ile bulunur. Parametreler ve sabiteler ise, bu değişkenlerin katsayılarını oluştururlar.

13 Modele girecek olan değişkenler; X 1, X 2,...,X n Verilen sabit değerler (ham madde miktarları veya makine kapasiteleri) b 1,b 2,...,b m Değişkenler Değişkenler arasındaki ilişkileri kuran parametreler; a 11,a 12,...,a nm ile ifade edilir.

14 Doğrusal Programlama Aşamaları 1. Problemin belirlenmesi 2. Model değişkenlerinin belirlenmesi 3. Model parametrelerinin belirlenmesi 4. Matematiksel modelin kurulması 5. Problemin çözülmesi 6. Sonuçların değerlendirilmesi (yorumlanması) 7. Sonuçların uygulanması

15 Problemin belirlenmesi Çözülmek istenen sorun ortaya konur. Örneğin, işletmenin özellikleri, üretilecek alternatif ürünler, üretimde kullanılan girdiler ve miktarları, kullanılan girdilerin kapasiteleri, üretilecek ürünlerden elde edilecek gelirler, vb.

16 Model Değişkenlerinin Belirlenmesi Üretilecek alternatif ürünler, DP modelinin karar değişkenlerini (X 1, X 2, X 3,...) oluşturur.

17 Model Parametrelerinin Belirlenmesi Üretilecek alternatif ürünlerin gelirleri veya masrafları, DP modelinin amaç fonksiyonunun katsayılarını (c 1, c 2, c 3,...) oluşturur. Üretimde kullanılan girdilerin (malların, kaynakların) miktarları, kısıtların a parametrelerini, bu kaynakların kapasiteleri ise kısıtların b parametrelerini oluşturur.

18 Amaç fonksiyonu Z maks =C 1 X 1 +C 2 X C n X n Kısıtlar a11x1+a12x a1nxn <= b1 a21x1+a22x a2nxn <= b2... am1x1+am2x amnxn <= bm Pozitiflik kısıtı X 1 >=0 X 2 >=0... X n >=0 Matematiksel Modelin Kurulması

19 Matematiksel Modelin Kurulması Z: Enbüyük veya enküçük yapılacak olan amaç fonksiyonu değeri c: Karar değişkenlerinin amaç fonksiyonuna katkısı (gelir veya masraf gibi) X: Karar değişkenleri a: Teknoloji katsayıları (karar değişkenlerinin üretimi için gerekli kaynak miktarları) b: Sınırlı kaynak miktarları (kaynak kapasiteleri)

20 Problemin Çözülmesi Grafik Çözüm Simpleks Çözüm Bilgisayar yazılımları yardımıyla çözüm

21 Sonuçların Değerlendirilmesi (Yorumlanması) ve Uygulanması Geliştirilmiş olan modelle sistemin çalışması karşılaştırılır ve modelin beklenen davranışı sergileyip sergilemeyeceği incelenir. Modelin geçmiş olaylara uygulanarak ortaya çıkan sonuçları değerlendirilir ve geçerliliği hakkında bilgiler toplanır. Elde edilen optimum çözüm sonuçlarının işletme için (yönetim açısından) uygun olup olmadığı incelenir. Uygun olmayan sonuçlar varsa ilk aşamaya geri dönülerek yeni bir model oluşturulur ve tekrar çözülür, sonuçlar yine değerlendirilir.

22 Örnek Problem Bir oyuncak imalatçısı model otomobil ve uçak üretimi yapmayı planlamaktadır. Şirket bu iki imalatını iki ayrı işlemin yapıldığı I ve II nolu atölyelerinde gerçekleştirmektedir. Çizelgede bir adet model otomobil ile model uçak imali için atölye işlem süreleri ve atölye kapasiteleri verilmiştir. Bir model otomobil satışından 45 TL, bir model uçak satışından ise 55 TL kar elde edilecektir. Maksimum kar için her bir üründen ne kadar imal edilmelidir?

23 Örnek Problem

24 Örnek Problem Çözüm Aşamaları 1. Problemin belirlenmesi (problem verilmiş) 2. Model değişkenlerinin (X) belirlenmesi 3. Model parametrelerinin (a,b,c) belirlenmesi 4. Matematiksel modelin kurulması

25 Sistematik Özet

26 Matematiksel Model 1. Amaç fonksiyonu Z 45 + x 2. Kısıtlar max = x1 55 6x 3x x + 10x 3. Pozitiflik koşulu x 1, x2 0

27 Örnek Problem Kuru tarım yapan bir çiftçi sulu tarıma geçmek istiyor. Kuruda yetiştirdiği bitkiler biliniyor. Sulu tarımda hangi bitkileri yetiştirirse karı maksimum olur?

28 Bilinmesi Gerekenler Kuruda ve suluda yetiştirebileceği (agroekolojik açıdan uygun) ürünler? Bu ürünlerin pazarlama durumu? Bu ürünler için gerekli teknoloji düzeyi? O yörede bu ürünlerden ne kadar kazanabileceği (TL/da)? Verimi Satış fiyatı Üretim girdileri miktar ve fiyatları

29 Bilinmesi Gerekenler Arazi kısıtlı mı? Su kısıtlı mı? Sermaye kısıtlı mı? İşgücü kısıtlı mı? Münavebe gerekli mi? Pazarlama kısıtları var mı? Hayvancılık yapılacak mı?

30 Teşekkürler Prof. Dr. Ferit Kemal Sönmez

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Doğrusal Programlamada Grafik Çözüm

Doğrusal Programlamada Grafik Çözüm Doğrusal Programlamada Grafik Çözüm doğrusal programlama PROBLEMİN ÇÖZÜLMESİ (OPTİMUM ÇÖZÜM) Farklı yöntemlerle çözülebilir Grafik çözüm (değişken sayısı 2 veya 3 olabilir) Simpleks çözüm Bilgisayar yazılımlarıyla

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli)

Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli) ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS 2 NOTLAR Optimizasyon İçin Kök(Generic) Model (Doğrusal-Olmayan Programlama Modeli) X, karar değişkenlerinin bir vektörü olsun. z, g 1, g 2,...,g m fonksiyonlardır.

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

Yöneylem Araştırması II

Yöneylem Araştırması II Yöneylem Araştırması II Öğr. Gör. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr BÖLÜM I: Doğrusal Programlama Tekrarı Doğrusal Programlama Tanımı Doğrusal Programlama Varsayımları Grafik Çözüm Metodu Simpleks

Detaylı

Tarımda Mühendislik Düşünce Sistemi. Prof. Dr. Ferit Kemal SÖNMEZ

Tarımda Mühendislik Düşünce Sistemi. Prof. Dr. Ferit Kemal SÖNMEZ Tarımda Mühendislik Düşünce Sistemi Prof. Dr. Ferit Kemal SÖNMEZ Sistem Aralarında ilişki veya bağımlılık bulunan elemanlardan oluşan bir yapı veya organik bütündür. Bir sistem alt sistemlerden oluşmuştur.

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA ÖRNEKLER (MODEL KURMA, ÇÖZÜM, YORUM)

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA ÖRNEKLER (MODEL KURMA, ÇÖZÜM, YORUM) SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA ÖRNEKLER (MODEL KURMA, ÇÖZÜM, YORUM) Ek 2: Esin 1984, Sayfa 34, Örnek 2.2 ye Ek Sistematik Özet Malzemeler Makine Makineler A B C D kapasitesi (b) Malzemelerin

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

KISITLI OPTİMİZASYON

KISITLI OPTİMİZASYON KISITLI OPTİMİZASYON SİMPLEKS YÖNTEMİ Simpleks Yöntemi Simpleks yöntemi iteratif bir prosedürü gerektirir. Bu iterasyonlar ile gerçekçi çözümlerin olduğu bölgenin (S) bir köşesinden başlayarak amaç fonksiyonunun

Detaylı

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ Örnek (2-5) Güzel-Giyim konfeksiyon piyasaya ceket, etek ve elbise yapmaktadır. Konfeksiyoncu, ceketi, eteği ve elbiseyi kendisinin A1, A2

Detaylı

Lineer Programlama. Doğrusal terimi, hem amaç hem de kısıtları temsil eden matematiksel fonksiyonların doğrusal olduğunu gösterir.

Lineer Programlama. Doğrusal terimi, hem amaç hem de kısıtları temsil eden matematiksel fonksiyonların doğrusal olduğunu gösterir. LİNEER PROGRAMLAMA Giriş Uygulamada karşılaşılan birçok optimizasyon problemi kısıtlar içerir. Yani optimizasyon probleminde amaç fonksiyonuna ilave olarak çözümü kısıtlayıcı ek denklemler mevcuttur. Bu

Detaylı

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I

KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I KONU 4: DOĞRUSAL PROGRAMLAMA MODELİ İÇİN ÇÖZÜM YÖNTEMLERİ I 4.1. Dışbükeylik ve Uç Nokta Bir d.p.p. de model kısıtlarını aynı anda sağlayan X X X karar değişkenleri... n vektörüne çözüm denir. Eğer bu

Detaylı

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI (OPERATIONAL RESEARCH) ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SUNUM PLANI Yöneylem araştırmasının Tanımı Tarihçesi Özellikleri Aşamaları Uygulama alanları Yöneylem

Detaylı

ATAMA (TAHSİS) MODELİ

ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ ATAMA (TAHSİS) MODELİ Doğrusal programlamada kullanılan bir başka hesaplama yöntemidir. Atama problemleri, doğrusal programlama (simpleks yöntem) veya transport probleminin çözüm

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

İbrahim Küçükkoç Arş. Gör.

İbrahim Küçükkoç Arş. Gör. Doğrusal Programlamada Karışım Problemleri İbrahim Küçükkoç Arş. Gör. Balikesir Üniversitesi Endüstri Mühendisliği Bölümü Mühendislik-Mimarlık Fakültesi Çağış Kampüsü 10145 / Balıkesir 0 (266) 6121194

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

Çözümlemeleri" adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu.

Çözümlemeleri adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu. Dersi Veren Öğretim Üyesi: Doç. Dr. Mehmet KORKMAZ Özgeçmişi Mehmet KORKMAZ, 1975 yılında Malatya da doğdu. İlkokul, ortaokul ve liseyi memleketi olan Isparta da tamamladı. 1996 yılında İ.Ü. Orman Fakültesi,

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X 1 + 4 X subject to: X

Detaylı

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1

Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 İÇİNDEKİLER Önsöz... XIII Önsöz (Hava Harp Okulu Basımı)...XV BÖLÜM 1 1. YÖNEYLEM ARAŞTIRMASINA GİRİŞ... 1 1.1. Yöneticilik / Komutanlık İşlevi ve Gerektirdiği Nitelikler... 2 1.1.1. Yöneticilik / Komutanlık

Detaylı

Yöneylem Araştırması

Yöneylem Araştırması Yöneylem Araştırması Çok sayıda teknik ve bilimsel yaklaşımı içeren Yöneylem Araştırması, genellikle kıt kaynakların paylaşımının söz konusu olduğu sistemlerin en iyi şekilde tasarlanması ve işletilmesine

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING

DOĞRUSAL PROGRAMLAMA TEKNİĞİ İLE KÖMÜR DAĞITIM OPTİMİZASYONU COAL DISTRIBUTION OPTIMIZATION BY UTILIZING LINEAR PROGRAMMING Eskişehir Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XX, S.1, 2007 Eng&Arch.Fac. Eskişehir Osmangazi University, Vol..XX, No:1, 2007 Makalenin Geliş Tarihi : 17.02.2006 Makalenin Kabul Tarihi : 16.11.2006

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1 EKON 305 Yöneylem Araştırması I Doğrusal Programlama Doç. Dr. Murat ATAN 1 Doğrusal Programlama Karar Verme ve Modeller Algılanan ihtiyaçlara özgü kasıtlı ve düşünceli seçim (Kleindorfer ve diğ., 1993)

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

YÖNEYLEM ARAŞTIRMASI-I

YÖNEYLEM ARAŞTIRMASI-I YÖNEYLEM ARAŞTIRMASI-I İST205U KISA ÖZET DİKKAT Burada ilk 4 sahife gösterilmektedir. Özetin tamamı için sipariş veriniz www.kolayaof.com 1 1.ÜNİTE Yöneylem Araştırmasına Giriş GİRİŞ Yöneylem Araştırması

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Stok Kontrol Önceki Derslerin Hatırlatması Ders 7 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik Süresi

Detaylı

Stok Kontrol. Ders 6. Farklı Bir Stok Yönetimi Durumu. Önceki Derslerin Hatırlatması

Stok Kontrol. Ders 6. Farklı Bir Stok Yönetimi Durumu. Önceki Derslerin Hatırlatması Stok Kontrol Ders 6 Farklı Bir Stok Yönetimi Durumu Önceki Derslerin Hatırlatması Uzun Dönemli Stok Problemi Talep hızı sabit, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik Süresi

Detaylı

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2)

Stok Kontrol. Önceki Derslerin Hatırlatması. Örnek (Ekonomik Sipariş Miktarı Modeli)(1) Örnek (Ekonomik Sipariş Miktarı Modeli)(2) Stok Kontrol Önceki Derslerin Hatırlatması Ders 5 Farklı Bir Stok Yönetimi Durumu Uzun Dönemli Stok Problemi Talep hızı sabit oranlı, biliniyor Birim ürün maliyeti sabit Sipariş maliyeti sabit Tedarik

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP)

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) 1. Non-lineer kar analizi, 2. Kısıtlı optimizasyon, 3. Yerine koyma (substitution) yöntemi, 4. Lagranj Çarpanları Yöntemi 5. Başabaş Analizleri ve Duyarlılık Testleri

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/ Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/25.12.2016 1. Bir deri firması standart tasarımda el yapımı çanta ve bavul üretmektedir. Firma üretmekte olduğu her çanta başına 400TL, her

Detaylı

İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız.

İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız. ISLE 403 YÖNEYLEM ARAŞTIRMASI DERS 3 NOTLAR DP Modellerinin Standart Biçimde Gösterimi: İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız. Gepetto Marangozhanesi için DP modeli

Detaylı

Yöneylem Araştırması III

Yöneylem Araştırması III Yöneylem Araştırması III Doç. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr Yöneylem Araştırması III 1 BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA

Detaylı

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ Yöneylem Araştırması III Prof.Dr. Bilal TOKLU btoklu@gazi.edu.tr Yöneylem Araştırması III BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA HEDEF

Detaylı

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir. MODELLEME MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

0.1 Zarf Teoremi (Envelope Teorem)

0.1 Zarf Teoremi (Envelope Teorem) Ankara Üniversitesi, Siyasal Bilgiler Fakültesi Prof. Dr. Hasan Şahin 0.1 Zarf Teoremi (Envelope Teorem) Bu kısımda zarf teoremini ve iktisatta nasıl kullanıldığını ele alacağız. bu bölüm Chiang 13.5 üzerine

Detaylı

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması

Karar değişkenlere ilişkin fonksiyonların ve bu fonksiyonlara ilişkin sınırlamaların tanımlanması İNŞAAT PROJELERİNİN PROGRAMLAMA, TASARIM VE YAPIM SÜRECİNDE OPTİMİZASYON Doğrusal Optimizasyon Optimizasyon Kuramı (Eniyileme Süreci) Doğrusal Olmayan Optimizasyon Optimizasyon en iyi çözümü bulma sürecidir.

Detaylı

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10

Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10 Bölüm 10 Ders 10 Simpleks Yöntemine Giriş 10.1 Alıştırmalar 10 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 197 198 BÖLÜM 10. DERS 10 1. Soru 1 1. Aşağıda verilen simpleks tablolarında temel, temel olmayan,

Detaylı

Şanlıurfa Kuru Tarım İşletmelerinde Farklı Makina Seti ve Arazi Büyüklüğüne Göre Optimum Ürün Deseninin Belirlenmesi

Şanlıurfa Kuru Tarım İşletmelerinde Farklı Makina Seti ve Arazi Büyüklüğüne Göre Optimum Ürün Deseninin Belirlenmesi Şanlıurfa Kuru Tarım lerinde Farklı Makina Seti ve Arazi Büyüklüğüne Göre Optimum Ürün Deseninin Belirlenmesi Cevdet SAĞLAM 1, Refik POLAT 2 1 Harran Üniversitesi, Ziraat Fakültesi, Tarım makineları Bölümü,

Detaylı

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER

KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER KONU 3: DOĞRUSAL PROGRAMLAMA PROBLEMLERİ İLE İLGİLİ ÖRNEKLER Örnek 1: Bir boya fabrikası hem iç hem dış boya üretiyor. Boya üretiminde A ve B olmak üzere iki tip hammadde kullanılıyor. Bir günde A hammaddesinden

Detaylı

a2 b3 cij: birim başına ulaşım maliyeti xij: taşıma miktarı

a2 b3 cij: birim başına ulaşım maliyeti xij: taşıma miktarı Ulaştırma Modelleri Ulaştırma modeli Ulaştırma modeli doğrusal programlama modellerinin özel bir türüdür. Modelin amacı bir işletmenin belirli kapasitedeki üretim merkezlerinden, belirli talebi olan tüketim

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/36 İçerik Optimalliği etkileyen değişimler 2/36 (Optimallik Sonrası Analiz): Eğer orijinal modelin parametrelerinde bazı değişiklikler meydana gelirse optimal çözüm değişecek

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

EMM3208 Optimizasyon Teknikleri

EMM3208 Optimizasyon Teknikleri 2017-2018 Bahar Yarıyılı Balıkesir Üniversitesi Endüstri Mühendisliği Bölümü EMM3208 Optimizasyon Teknikleri (GAMS Kurulumu ve Temel Özellikleri, GAMS ile Modellemeye Giriş) 3 Yrd. Doç. Dr. İbrahim Küçükkoç

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -II- Tek değişkenli doğrusal olmayan karar modelinin çözümü Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

YÖNEYLEM ARAŞTIRMASI

YÖNEYLEM ARAŞTIRMASI GİRİŞ 1 Yönetim fonksiyonları Sanayi devrimi ile birlikte endüstri işletmelerinin hızla büyümeleri sonucunda bir kişinin bütün yöneticilik fonksiyonlarını tek başına yürütebilmesi imkansız hale gelmiştir

Detaylı

YÖNEYLEM ARAŞTIRMASI - II

YÖNEYLEM ARAŞTIRMASI - II YÖNEYLEM ARAŞTIRMASI - II Araş. Gör. Murat SARI 1/35 I Giriş Biri diğerini izleyen ve karşılıklı etkileri olan bir dizi kararın bütünüyle ele alındığı problemler için geliştirilen karar modelleri ve bunların

Detaylı

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım.

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım. 3. Simpleks Yöntem Doğrusal programlama modelleri grafik yöntem dışında simpleks yöntem adı altında özel bir yöntemle çözülebilir. Bu yöntem Simple Matrix kelimlerinin kısaltmasıdır ve bir çeşit matris

Detaylı

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon OPTİMİZASYON Bu bölümde çok değişkenli kısıtsız optimizasyon problemlerinin çözüm yöntemleri incelenecektir. Bu bölümde anlatılacak yöntemler, kısıtlı optimizasyon problemlerini de çözebilmektedir. Bunun

Detaylı

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO

ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO ÜRİ MÜHİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI DERSİ LINDO Hazırlayanlar Prof. Dr. Bilal TOKLU Arş. Gör. Talip KELLEGÖZ KASIM 2004 1. Giriş 1 LINDO (Linear, INteractive, and Discrete Optimizer) doğrusal ve

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü Dr. Özgür Kabak Doğrusal olmayan programlama Tek değişkenli DOP ların çözümü Uç noktaların analizi Altın kesit Araması Çok değişkenli DOP ların

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

Genel Graf Üzerinde Mutlak 1-merkez

Genel Graf Üzerinde Mutlak 1-merkez Genel Graf Üzerinde Mutlak 1-merkez Çözüm yöntemine geçmeden önce bazı tanımlara ihtiyaç vardır. Dikkate alınan G grafındaki düğümleri 1 den n e kadar numaralandırın. Uzunluğu a(i, j)>0 olarak verilen

Detaylı

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1)

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1) KONU 8: SİMPLEKS ABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx AX b X (8.) biçiminde tanımlı d.p.p. nin en ii çözüm değerinin elde edilmesinde,

Detaylı

OPTİMİZASYON maksimizasyon ve minimizasyon optimizasyon

OPTİMİZASYON maksimizasyon ve minimizasyon optimizasyon OPTİMİZASYON Bir işletmede, tasarımda, işletilmesinde, fabrika makina ve techizatların analizinde, endüsstriyel proseslerde, üretimin planlanmasında, herhangi bir harcamanın yapılmasında ve gelirin sağlanmasında

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

KONU 13: GENEL UYGULAMA

KONU 13: GENEL UYGULAMA KONU : GENEL UYGULAMA Kahve üretimi apan bir şirket anı zamanda cezve ve fincan üretmektedir. Üretilen cezveler ve fincanlar boama kısmında işlem görmekte ve arıca fincanlar kaplanmaktadır. Bir cezve apımı

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

SİMPLEKS METODU simpleks metodu

SİMPLEKS METODU simpleks metodu 3 SİMPLEKS METODU Önceki bölümlerde doğrusal programlamanın temel kavramlarını ve prensiplerini öğrendik. İşletmenin üretim seçeneklerinin, eşitlikler sistemi ile ifade edildiğini gördük. Daha kârlı olan

Detaylı

GAMS Kullanım Notları

GAMS Kullanım Notları GAMS Kullanım Notları Dilay Çelebi İstanbul Teknik Üniversitesi 1. Giriş Aşağıdaki DP problemini ele aldığımızı varsayalım. Z min = 4x 1 + 2x 2 + 33x 3 (1) x 1 4x 2 + x 3 12 (2) 9x 1 + 6x 2 = 15 (3) 5x

Detaylı

Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu

Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu Dersin Adı Dersin Kodu Dersin Yarıyılı Yöneylem Araştırması BWL315 5 ECTS Ders Uygulama Laboratuar Kredisi (saat/hafta)

Detaylı

Applied Management Science: Modeling, Spreadsheet Analysis, and Communication for Decision Making

Applied Management Science: Modeling, Spreadsheet Analysis, and Communication for Decision Making YÖNEYLEM ARAŞTIRMASI (Ders Akış Programı) Ders Sorumlusu : Y.Doç. Dr. Fazıl GÖKGÖZ, İletişim Bilgileri : 595 13 37, e-posta: fgokgoz@politics.ankara.edu.tr tr Applied Management Science: Modeling, Spreadsheet

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/71 İçerik n Bulunması Kuzey-Batı Köşe Yöntemi En Küçük Maliyetli Göze Yöntemi Sıra / Sütun En Küçüğü Yöntemi Vogel Yaklaşım Metodu (VAM) Optimum Çözümün Bulunması Atlama Taşı

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

Birinci Mertebeden Adi Diferansiyel Denklemler

Birinci Mertebeden Adi Diferansiyel Denklemler Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

GAMS Kurulumu ve Temel Özellikleri GAMS ile Modellemeye Giriş, Örnek Problemler

GAMS Kurulumu ve Temel Özellikleri GAMS ile Modellemeye Giriş, Örnek Problemler 2017-2018 Bahar Yarıyılı Balıkesir Üniversitesi Endüstri Mühendisliği Bölümü GAMS Kurulumu ve Temel Özellikleri GAMS ile Modellemeye Giriş, Örnek Problemler Yrd. Doç. Dr. İbrahim Küçükkoç http://ikucukkoc.baun.edu.tr

Detaylı