TEMEL DENKLEMLER. = a v. sin cos ) = = r h h = ( 1+ Uzayda eğrisel hareket (Kürsel takım) v= r. Doğrusal hareket. Sabit ivmeli doğrusal hareket

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TEMEL DENKLEMLER. = a v. sin cos ) = = r h h = ( 1+ Uzayda eğrisel hareket (Kürsel takım) v= r. Doğrusal hareket. Sabit ivmeli doğrusal hareket"

Transkript

1

2 Doğusal hak = = x a= a= = x ax= Sabi imli oğusal hak = + a = + a ( x- x o x = x + + a o o o o o o o Düzlm ğisl hak (Kazyn akım = s = xi+ y j a= i+ j= xi+ yj x y EMEL DENKLEMLER = x + y a= x + y Düzlm ğisl hak (Doğal akım = = s s a= + n = s + n a= a + a a = = s Eğilik = = = s s x y- yx = = 3 ( x + y a = = s n = a 3 s y = [ + ( y ] n 3 Düzlm ğisl hak (Kuupsal akım = + = = = = + = = = a= ( - + ( + a = - a = + a= a + a Uzaya ğisl hak (Siliniik akım = + + z k a= ( - + ( + + zk ağıl hak = + = + a = a + a Uzaya ğisl hak (Küsl akım = + sin + a= ( - sin - + ( sin+ sin+ cos + ( + - sincos ağıl hak (hakli ksn akımı = + ( xy + ω a = a + ( a + α + ω ( + ω ( ω Ku kül im F= ma xy xy İş Enji + U = ò x + y + z = m ( U F x F y F z Güç : P = F İmpuls-Momnum F= G G= m G + ò F = G M = H HO = m O O O O O ( H + ò M = ( H Çapışma ( -( = ( -( n n n n - = - m ( + m ( = m ( + m ( n n n n ( = ( ( = ( Gök mkaniği GM GM = + Ccos = ( + cos h h GM GM 4 a k = = = GM o a= + b= ( = m 3

3 . GİRİŞ Eğ hak n paçacığın imsi sıfıan faklı is bu bi inamik olay olup ancak ona kiyn bi akım nglnmmiş kul saysin gçklşbili. Ö yanan mühnislik öyl inamik uygulamala aı ki buaa hak nn olan kuln aha çok paçacığın izlycği yöüng hız im önmlii. Önğin; bilik çalışan işlil mafsallı bağlanıla blli hakl ayalanmış makin lmanlaı uzay aaçlaı okl gibi. u bnzi mühnislik poblmlini inclyn kinmaik sac hakin gomisiyl ilgilni. Yöüng: Paçacığın haki sıasına izliği yola yöüng ni. Eğ paçacık ya a cisim bi uzay ğisi üsün yol alıyosa buna üç boyulu hak ni. Eğ hak blli bi üzlmin ışına çıkmıyosa bu üzlmsl (iki boyulu hak olu. Eğ hak bi oğu boyunca gçklniyosa o zaman a buna oğusal (bi boyulu hak ni. Kooina akımı: Yöüng hsabı yapılıkn poblm uygun bi ksn akımının sçimi büyük önm aşı. Üç boyulu hakl için ikögn (Kazyn kooinala x yz siliniik kooinala z ya a küsl kooinala kullanılabili. Düzlm hall için Kazyn akımın yanı sıa kuupsal kooinala ya a yöüngnin ğ nomal oğululaı il ilişkili oğal kooinala kullanılabili. Dinamik bi köl büyüklük faklı ksn akımlaına ifa ilbili. Faka; bu uuma bi kaışıklığa nn olmamak için h faklı kooina akımına sac ona özl olan biim köl kullanılı. Kazyn akım ışınaki üm kooina akımlaına ai biim köl yöüng üsün haklii (akınız Şkil.. Dinamik nn faklı ksn akımlaına gksinim uyuluğu konula illikç aha iyi anlaşılacak. Paçacığın haki bazn sabi bi nokaya ylşiilmiş bi ksn akımı kullanılaak blilnikn (mulak hak bazn hak n bi kayna-

4 DİNMİK ÖZE İLGİ Dinamik imli paçacık ya a cisimlin hakini incl. Kinmaik paçacığın ya a cismin yapığı hakin gomisiyl ilgilni. Konum hız im köl büyüklükli. Doğusal hak inclniğin skal büyüklükl üsünn yapılacak işlml hsaplaa salik sağla. Yalnız bu uuma kölin yin kullanılan şilin işalin ikka ilmlii. Paçacık poziif ksn oğulusuna gikn hızı a poziifi. ksi hal ngaif işalii. Paçacık hızlanıkn imsi poziif yaaşlakn ngaif işa alı. HESP ESSLRI Doğusal hak ksn akımı başlangıcı sabi bi nokaya ylşiili. Kinmaik ilişkil: hız konum : = x im hız ya a konum : a= = x im konum hız : ax= Dö ğişkn x a içinn hhangi ikisi aasına bi bağını biliniyosa üç ğişkni ilişkilnin yukaıaki üç kinmaik bağını il üçüncü ğişkn bulunu..örnek -. Şkil P. ki koşu banına koşan aam banın çalışmasını pogama bağlamışı. Eğ üici fima banın konum fonksiyonu 3 x( = 90-0 molacak biçimin ayalanmış is = 0 il = 6k aasına aamın hızı il imsinin zamana gö ğişimini gafik olaak çiziniz. yıca bu sü için aamın koşuğu msafyi ulaşığı n büyük hızı bulunuz. amın koşakn ban üsünki yini kaybmiğini asayınız. ÇÖZÜM: amın ayağını basığı koşu banı üsünki bi nokanın konumuna ai konum fonksiyonu 3 x( = 90-0 m (P. u. (.4 (P. ylşiilis aamın hız fonksiyonu x = [mk] = - = - (P. Hız : (

5 . PRÇCIĞIN KİNEMİĞİ 43 O oğulusuna gö + = = 0 Şkil P 6. n yaalanabilisiniz. İm köü: ( ( ( ( a= = = cm sn İmnin şii : a = ( = 8.79 cmsn İmnin oğulusu : ( = an = anım gği an = sin cos ı. Yukaıa sin > 0 cos < 0 oluğunan açı II. bölg ölçülü (akınız Şkil P 6.3. O oğulusuna gö + ( 80- = 55+ ( = 57 Şkil P 6.3 n yaalanabilisiniz..örnek -7. Şkil P 7. ki OP kolu için açılmış olan ayal yaıka sbsç hak biln P pimi alınaki üzlm y alan kapalı yöüngsi = a- bcos nklmiyl blilnmiş ğisl bi yaığa bağlı olaak hak mki. uaa a =.m b = 0.35m i. = 0 oluğuna pimin hızı = 6msn imsi a = 5 msn ğin ulaşıyo. u nokaa açısal hız il açısal im yı hsaplayınız. ÇÖZÜM: aşlangıç olaak hsaplaa kullanılacak olan ayal kooinaın zamana gö üli blilnmlii. Yalnız poblm kooinalaı zamanı cinsinn ilmmiş. unun yin limiz yöüng nklmi = ( a. O nnl ( nın zaman gö üini bulmak için zinci kualınan yaalanıkn bunlaın = 0 ki ğlini ya bağlı olaak blilylim: = cos = ( 0.35sin = ( 0.35cos + ( 0.35sin P = = =.375m 0 = = msn P = 0 = = msn P = 0

6 . PRÇCIĞIN KİNEMİĞİ 57 l ili. x ( y( nin zamanın fonksiyonlaı oluğuna ikka k (P 4. yi zamana gö üisk x x 0=- y + (P 4.3 x + h olu. akö balyalaan x = m uzaka ikn balyalaın yukaı çıkma hızı = y x = = 4msn h = 0m i. u büyüklükl (P 4.3 ylşiilis balyalaın yukaıya oğu hızı: x 4 = x + h İKİ PRÇCIK RSIND ĞIL HREKE uaya kaa bi paçacığın hakini sabi bi ksn akımı üsünn bliliğimiz için hsaplanan hız im köli mulak ğl olu. Şimi biaz aha iliy gilim iy iki an hak n paçacık üşünlim. Sabi ksn akımı x yz yi koukn Şkil.6 a göülüğü gibi ölnk hak n nokasına x yz iy onunla bilik hak n ( x x y y z z bi başka ksn akımı ylşiisk paçacığının hakini hm sabi O( x yz akımı hm ölnn ( x yz akımı üsünn izlybiliiz. Konum Vköü: u amaçla paçacığının konum köünü oğuan sabi O nokası üsünn yazabilcğimiz gibi O nokası üsünn hakli nokasına gçk yazabiliiz. Şöyl ki; = + (.0 uaa sabi O akıma gö nokalaının konum köli olup nokasının hakli nokasına gö konumu i. Hız: (.0 in zamana gö üi alınısa = = + (.03 olu. uaa: = : nokasınaki mulak hız = : nokasınaki mulak hız = : nokasının nokasına gö bağıl (lai hızı

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur.

kısıtlanmamış hareket radyal mesafe ve açısal konum cinsinden ölçüldüğünde polar koordinatları kullanmak uygun olur. Düzlmd ğisl haktin üçüncü tanımı pola koodinatlada yapılı; buada paçacık sabit bi başlangıç noktasından msaf uzaktadı bu adyal doğu açısıyla ölçülmktdi. Hakt adyal bi msaf açısal bi konum il kısıtlı olduğunda

Detaylı

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye Eğisel haekee çok sık kullanılan anımladan bii de yöünge değişkenleini içei. Bunla, haekein he bi anı için ele alınan bii yöüngeye eğe, diğei ona dik iki koodina eksenidi. Eğisel haekein doğal bi anımıdıla

Detaylı

SİSTEM DİNAMİĞİ VE KONTROL

SİSTEM DİNAMİĞİ VE KONTROL ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin

Detaylı

NOKTA TEMASLI TRANSĐSTÖR(Bipolar Junction Transistor-BJT) ÖZEĞRĐLERĐ ve KÜÇÜK SĐNYAL MODELLENMESĐ

NOKTA TEMASLI TRANSĐSTÖR(Bipolar Junction Transistor-BJT) ÖZEĞRĐLERĐ ve KÜÇÜK SĐNYAL MODELLENMESĐ DNY NO: NOKTA TMASL TRANSĐSTÖR(ipola Junction TansistoJT ÖZĞRĐLRĐ v KÜÇÜK SĐNYAL MODLLNMSĐ DNYĐN AMA: JT lin özğilinin dnysl olaak ld dilmsinin öğnilmsi v bu ğildn mlz paamtlinin çıkaılması. DNY MALZMSĐ

Detaylı

DERS 11. Belirsiz İntegral

DERS 11. Belirsiz İntegral DERS Blirsiz İnral.. Blirsiz İnral. B rs ürvi bilinn bir onksiyonn ynin inşasını l alacağız. Türvi bilinn bir onksiyonn ynin inşası işlmin rs ürv işlmi aniirniaion nir. v F onksiyonlar, F is, F y nin rs

Detaylı

Parçacıkların Kinetiği Impuls-Momentum Yöntemi: Çarpışma

Parçacıkların Kinetiği Impuls-Momentum Yöntemi: Çarpışma Paçacıklaın Kinetiği Impuls-Momentum Yöntemi: Çapışma İki kütle bibii ile kısa süe içeisinde büyük impulsif kuvvetlee yol açacak şekilde temas edese buna çapışma (impact) deni. Çapışma 1. Diekt mekezcil

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ BÖÜM IŞI VE GÖGE MODE SORU - DEİ SORURIN ÇÖZÜMERİ 4 B Z ayınlık yaı yaı Z T T aalığı e iki kaynaktan a ışık alabili Z aalığı yalnız kaynağınan ışık alabili Şekile göülüğü gibi, ve Z noktalaı e üç kaynaktan

Detaylı

z Hertz dipolü, çok küçük ve ince olduğu için üzerindeki akım sabit kabul edilir. jkr d R l / 2 l / 2 jkr z jkr z jkr z

z Hertz dipolü, çok küçük ve ince olduğu için üzerindeki akım sabit kabul edilir. jkr d R l / 2 l / 2 jkr z jkr z jkr z İnc Antnl Çaplaı boylaına gö küçük olan antnl inc antnl dni Alanlaın hsabında antnlin sonsu inc kabul dilmsi kolaylık sağla Ancak antn mpdansı bulunmak istndiğind kalınlığın iş katılması gki Ht Dipolü

Detaylı

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU Linee İmpuls-Momentum Denklemi Haeket halinde bulunan bi cismin hehangi bi andaki doğusal hızı, kütlesi m olsun. Eğe dt zaman aalığında cismin hızı değişiyosa,

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö İ İ Ş Ş ö İİ Şİİ İ İ ç Üİ ç ö İ ö ö ç ö ç İ

ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö İ İ Ş Ş ö İİ Şİİ İ İ ç Üİ ç ö İ ö ö ç ö ç İ İ İ İ İ Ö İ ç İ ö İ ö ö ç İ ö ç ç ö ö İç ö ç ö ö ö ö ç ç ö ö ç İ İ ç ö ç İ ç İ İ ö ö ö ö ç ç ö ö ç ö ç ö ç İ ç ç İ ö Ö ö ç İ İ Ö İ ç ç ç ç ç İ İ İİ İ ç İ ç ç ç ç ö ö ç ç İ İ ö İ Ş İ İ İ Ğ ö Ç İ Ö ç Ş ö

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY HİDROLİK-PNÖMATİK 3. BÖLÜM 3.1 PİSTON, SİLİNDİR MEKANİZMALARI Hiolik evelee piston-silini ikilisi ile oluşan oğusal haeket aha sona önel, yaı önel, oğusal önel haeket olaak çevilebili. Silinile: a) Tek

Detaylı

IŞIK VE GÖLGE BÖLÜM 24

IŞIK VE GÖLGE BÖLÜM 24 IŞI VE GÖLGE BÖLÜM 24 MODEL SORU 1 DE SORULARIN ÇÖÜMLER MODEL SORU 2 DE SORULARIN ÇÖÜMLER 1 1 Dünya Ay Günefl 2 2 Bu olay ışı ğın fak lı say am o la a fak lı hız la a yayıl ı ğı nı açık la ya maz Şe kil

Detaylı

ELEKTROSTATİK. 3. K kü re si ön ce L ye do kun - du rul du ğun da top lam yü kü ya rı çap la rıy la doğ ru oran tı lı ola rak pay la şır lar.

ELEKTROSTATİK. 3. K kü re si ön ce L ye do kun - du rul du ğun da top lam yü kü ya rı çap la rıy la doğ ru oran tı lı ola rak pay la şır lar. . BÖÜ EETROSTATİ AIŞTIRAAR ÇÖÜER EETROSTATİ. 3 olu. 3. kü e si ön ce ye o kun - u ul u ğun a top lam yü kü ya çap la y la oğ u oan t l ola ak pay la ş la. top 3 olu. Bu u um a, 3 6 ve olu. Da ha son a

Detaylı

KYM363 MÜHENDİSLİK EKONOMİSİ L17 KARLILIK ANALİZİ. İNDİRGENMİŞ NAKİT AKIMI ve NET BUGÜNKÜ DEĞER

KYM363 MÜHENDİSLİK EKONOMİSİ L17 KARLILIK ANALİZİ. İNDİRGENMİŞ NAKİT AKIMI ve NET BUGÜNKÜ DEĞER KYM363 MÜHENDİSLİK EKONOMİSİ L17 KARLILIK ANALİZİ İNDİRGENMİŞ NAKİT AKIMI v NET BUGÜNKÜ DEĞER Pof.D.Hasip Yniova E Blok 1.kat no.113 www.yniova.info yniova@ankaa.du.t yniova@gmail.com Poj Ömü Boyunca indignmiş

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet FİZ11 FİZİK-I Ankaa Üniesitesi Fen Fakültesi Kimya Bölümü B Gubu 3. Bölüm (Doğusal Haeket) Özet.1.14 Aysuhan Ozansoy Haeket Nedi? Mekanik; kuetlei e onlaın cisimle üzeine etkileini inceleyen fizik dalıdı

Detaylı

ANLIK BASINÇ YÜKÜ ETKİSİ ALTINDAKİ KONSOL BİR PLAĞIN DİNAMİK ANALİZİ

ANLIK BASINÇ YÜKÜ ETKİSİ ALTINDAKİ KONSOL BİR PLAĞIN DİNAMİK ANALİZİ Anlık Basınç Yükü Ekisi Alındaki Konsol Bi Plağın Dinamik Analizi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ OCAK 4 CİLT SAYI 3 (9-7 ANLIK BASINÇ YÜKÜ ETKİSİ ALTINDAKİ KONSOL BİR PLAĞIN DİNAMİK ANALİZİ Hayda

Detaylı

MODEL SORU - 2 DEKİ SORULARIN ÇÖZÜMLERİ MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ. Yalnız K anahtarı kapatılırsa;

MODEL SORU - 2 DEKİ SORULARIN ÇÖZÜMLERİ MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ. Yalnız K anahtarı kapatılırsa; 1. BÖÜ EESTROSTATİ ODE SORU - 1 DEİ SORUARIN ÇÖZÜERİ ODE SORU - DEİ SORUARIN ÇÖZÜERİ 1.. 1. Z. yatay üzlem 8 yatay üzlem ve küeleinin ve küeciğinin yükleinin işaeti I., II. ve III. satılaaki gibi olabili.

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi lkomanyk Dalga Tos Ds-1 Dfansyl Fomda awll Dnklml İngal Fomda awll Dnklml Fazöln Kullanımı Zamanda amonk Alanla alzm Oamı Dalga Dnklml B awll Dnklmlnn Dfansyl Fomu D. D ρ. B Faaday Kanunu Amp Kanunu Gauss

Detaylı

İ İ İ Ş İ İ ç ş İ İ İ ö İŞ Ö Ş İ İş ö ş ğ Ş ğ Ö İ İş Ö Ç ş ö ş İş ö ş ç Ü ş ö ş ç ğ ş ç ç ş ş çö ş ö ş ç ş ğ ç ç ç ş ş ş ç ş ş ş ç ş ş ç ş ş ş ğ ö ş ş ş ğ ğ ğ ş ğ ş ş ö ö ğ ç Ş ç ç ö ç ö ğ ş ç ö ş

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 4. Konu SABİT İVMELİ HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 4. Konu SABİT İVMELİ HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF ONU ANLATIMLI. ÜNİTE: UVVET VE HAREET. onu SABİT İVMELİ HAREET ETİNLİ VE TEST ÇÖZÜMLERİ Sabi İmeli Hareke. Ünie. onu (Sabi İmeli Hareke). (m/s) A nın Çözümleri. İme- grafiklerinde doğru ile ekseni

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş

Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş Ğ Ğ Ğ Ğ Ğ Ş Ğ ş ğ ç ş ö ğ ş ş Ş Ş Ş» ğ Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ö ğ ğ ş ş ö ş ğ ç ç ç ç ş ş ş ğ ö ö ğ ö ç ş ç ş ö ö ş ş ğ

Detaylı

Ğ Ş Ü Ç Ç Ş ş Ü ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç

Ğ Ş Ü Ç Ç Ş ş Ü ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç Ğ Ğ Ü Ğ Ğ Ü Ğ Ş Ğ ş ğ ç ş ö ğ ş ş Ş Ş ş ş ğ Ğ Ş Ü Ç Ç Ş ş Ü ş ğ ş ç ş ş ğ ş ğ ş ö ç ö ç ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ş ö ğ ğ ş ş ö ş ğ ç ç ç ç ş ş ş ğ ö ö ğ ö ç ş ç ş ğ

Detaylı

Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ

Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ Ğ Ğ Ü Ğ Ğ Ü Ğ Ş Ğ ş ğ ç ş ğ ş ş ğ Ş ş ğ Ğ Ğ Ü Ğ Ğ Ğ Ş Ğ Ş ş ğ Ğ Ş Ü Ç Ç Ş ş ş ğ ş ç ş ş ğ ş ğ ş ç ç ç ç ğ ş ş ç ş ğ ğ ş ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ ç ş ğ ğ ş ş ş ğ ç ç ç ç ş ş ş ğ ğ ç ş ç ç ş ş ş ç ç ç ğ

Detaylı

Ö Ç

Ö Ç Ğ Ö Ç Ç Ğ Ş Ş Ş Ç Ç Ç Ç Ş Ç Ç Ç Ş Ş Ç Ş ŞÇ Ş Ş Ö Ö Ş Ö Ö Ç Ç Ç Ç Ç Ş Ş Ş Ş Ç Ç Ş Ş Ö Ş Ç Ş Ş Ş Ö Ş Ç Ş Ş Ş Ç Ş Ş Ö Ş Ş Ş Ş Ş Ö Ç Ş Ç Ö Ç Ş Ç Ş Ö Ö Ç Ç Ş Ş Ö Ö Ş Ğ Ş Ş Ş Ö Ş Ş Ğ Ş Ç Ö Ş Ş Ç Ğ ÇÖ Ğ Ş Ğ Ö

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

Ü Ş Ü

Ü Ş Ü Ğ Ö Ü Ü Ğ Ü Ğ Ü Ş Ü Ç Ü ÇŞ Ç Ş Ş Ü Ö Ö Ş Ö Ş Ö Ö Ç Ş Ö Ö Ö Ü Ö Ş Ö Ç Ş Ş Ö Ğ Ş Ö Ö Ç Ş Ö Ş Ö Ş Ş Ü Ü Ş Ş Ö Ö Ö Ş Ö Ğ Ö Ş Ö Ü Ö Ş Ü Ş Ç Ö Ö Ö Ö Ü Ö Ş Ğ Ö Ü Ç Ö Ü Ş Ö Ü Ç ŞÇ Ş Ş Ç Ş Ö Ö Ö Ö Ö Ö Ö ŞÇ Ö Ö

Detaylı

Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç

Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç Ö Ğ Ç Ü Ü Ç Ç Ç Ö Ü Ü Ü Ü ÖÜ» Ç Ş Ş Ö Ç Ğ Ü Ü Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç Ş Ş «Ş Ö Ü Ü Ü Ş Ş Ş Ç Ç Ş Ç Ş Ç ŞÇ Ö Ü Ç Ç Ş Ç «Ö Ç Ğ Ç Ü Ç Ç Ş Ü Ğ Ş Ç Ş Ç Ö Ç «Ö Ö «Ö Ç Ç Ö Ş Ü Ç Ş Ş Ş Ş «Ç ŞÇ Ö Ü Ş Ş

Detaylı

v.t dir. x =t olup 2x =2t dir.

v.t dir. x =t olup 2x =2t dir. ) m/s hızla düşe olarak ükselen balondan, balona göre m/s hızla aa aılan cisim aıldığı nokanın düşeinden 5 m uzaka ere çarpıor. Buna göre cisim ere çarpığı anda balon erden kaç m üksekedir? A)5 B)5 C)6

Detaylı

SIFIR HÜCUM AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKIM HIZININ TESPİTİ. Doç. Dr. M. Adil YÜKSELEN

SIFIR HÜCUM AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKIM HIZININ TESPİTİ. Doç. Dr. M. Adil YÜKSELEN SIFIR HÜCU AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKI HIZININ TESPİTİ Doç. D.. Ail YÜKSELEN Temmuz 997 SIFIR HÜCU AÇILI BİR KONİ ÜZERİNDEKİ ŞOK AÇISINDAN HAREKETLE SÜPERSONİK AKI

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ ÖÜM TRİS UT TRİS N MD SRU - Dİ SRURIN ÇÖZÜMRİ uvveti bileşenleine ayılığına yatay ve üşey bileşenle bibiine eşit olu u uuma, 4 4 yü ü nün işa e ti ( ol ma lı ı yü ü nün yü ü ne uy gu la ığı ele ti sel

Detaylı

ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN

ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN . BÖÜ TRİS UVVT V TRİS IŞTIRR ÇÖZÜR TRİS UVVT V TRİS. v no ta sın a i yü ün no ta sın a bu lu nan yü e uy gu la ı ğı uv vet,.. 0. & 0 olu. b. 5 0.. 0. 0.. ( 6 olu... 5 0.. 0. 0.. ( 6 olu. uv vet le eşit

Detaylı

BTZ Kara Deliği ve Grafen

BTZ Kara Deliği ve Grafen BTZ Kaa Deliği ve Gafen Ankaa YEF Günlei 015 1-14 Şubat 015, ODTÜ Ümit Etem ve B. S. Kandemi BTZ Kaa Deliği Gafen ve Eği Uzay-zamanla Beltami Tompeti ve Diac Hamiltonyeni Eneji Değelei ve Gafen Paametelei

Detaylı

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t 3 Hareke Tes in Çözümleri X Y. cisminin siseme er- diği döndürme ekisi 3mgr olup yönü saa ibresinin ersinedir. cisminin siseme erdiği döndürme ekisi mgr olup yönü saa ibresi yönündedir. 3mgr daha büyük

Detaylı

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek...

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek... ÇEEE ÇEVE, İEE N 3 ( ÇEEİN ÇEVEİ İENİN, İE İİİNİN, İE EEİNİN VE HNIN NI ÇEEE ENZEİ EĞEENİE ) ÇEEİN ÇEVEİ VE İENİN NI İE İİİ NI VE YY UZUNUĞU mek ezli bi çembein çevesi, Çeve=2.π. mek ezli bi daienin alanı,

Detaylı

Optik Sorularının Çözümleri

Optik Sorularının Çözümleri Ünite 4 Optik Soulaının Çözümlei 1- Gölgele ve Ayınlanma 2- Işığın Yansıması ve Düzlem Aynala 3- üesel Aynala 4- Işığın ıılması 5- Renkle 6- ecekle 1 Gölgele ve Ayınlanma Testleinin Çözümlei 3 Test 1

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4 İÇİNDEKİLER 1. DÖNEL YÜZEYLER... 1 1.a Üreeç Eğrisi Paramerik Değilse... 1 1.b Üreeç Eğrisi Paramerik Olarak Verilmişse.... DÖNEL YÜZEYLERLE İLGİLİ ÖRNEKLER... 5.a α f,,0 Eğrisinin Dönel Yüzeyleri... 5.b

Detaylı

Dönerek Öteleme Hareketi ve Açısal Momentum

Dönerek Öteleme Hareketi ve Açısal Momentum 6 Döneek Ötelee Haeketi e Açısal Moentu Test 'in Çözülei.. R L P N yatay M Çebe üzeindeki bi noktanın yee göe hızı, o noktanın ekeze göe çizgisel hızı ile çebein ötelee hızının ektöel toplaına eşitti.

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER. GİRİŞ - Konu, Hız ve İve - Newon Kanunları. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal Hareke

Detaylı

Afyon Kocatepe Üniversitesi 8(1) Afyon Kocatepe University POİNCARÉ KONİKLERİNİN DENKLEMLERİ VE SINIFLANDIRILMASI. Nilgün SÖNMEZ

Afyon Kocatepe Üniversitesi 8(1) Afyon Kocatepe University POİNCARÉ KONİKLERİNİN DENKLEMLERİ VE SINIFLANDIRILMASI. Nilgün SÖNMEZ Afon Kop Ünivii 8() Afon Kop Univi FEN BİİMERİ DERGİSİ JOURNA OF SCIENCE POİNCARÉ KONİKERİNİN DENKEMERİ VE SINIFANDIRIMASI Nilgün SÖNMEZ Afon Kop Ünivii Fn Ebi Füli Mmi Bölümü AFYON ÖZET Poiné ü ı üzlm

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

Ğ Ğ Ğ Ğ Ğ Ğ Ş ğ ş ğ

Ğ Ğ Ğ Ğ Ğ Ğ Ş ğ ş ğ Ü Ğ Ğ Ğ Ü Ğ Ş Ğ ç ş ğ ç ş ç ö ğ ş ş ş ş ğ ş ç ğ Ğ Ğ Ğ Ğ Ğ Ğ Ş ğ ş ğ Ğ Ğ Ğ Ğ Ğ Ğ Ş Ş ğ Ş ğ Ğ ş ç ç «ş ş ş ş ğ ş ç ş ş Ü Ü Ö ğ ş ç ö ç ğ ş ö ö ç ö ç ğ ş ö ö ş ş ğ ğ ş ç ç ğ ğ ç ğ ş ç ş ç ç ş ğ ğ çö ç ş ğ

Detaylı

Ü«

Ü« İ İ İ Ş İ Ç İŞ İ İ İİ İ ş ş Ü« Ş çö Ü Ü ş ç ş ş ş ş ş Ü İ ç İş ş Ş ş İ Ş ğ Ö Ç ş Ö İ İŞ ş İş ş ç Ü ş ş ç ğ ş ç ç ş ş ç ş ş ç ş ğ ç ç ç ş ş ş ç ş ş ş ç ş ş ç ş ş ş ğ ş ş ş ğ ğ ğ ş ç ş ş ğ ğ Ş Ç ç ç ğ ş

Detaylı

Gravite alanı belirlemede modern yaklaşımlar

Gravite alanı belirlemede modern yaklaşımlar Gravite alanı belirlemede modern yaklaşımlar Lisansüstü Ders Notları Aydın ÜSTÜN Selçuk Üniversitesi Harita Mühendisliği austun@selcuk.edu.tr Konya, 2016 A. Üstün (Selçuk Üniversitesi) Gravite alanı belirleme

Detaylı

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No

Detaylı

= t. v ort. x = dx dt

= t. v ort. x = dx dt BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.

Detaylı

KANGAL AKIM OPTİMİZASYON YÖNETİMİ İLE GEMİNİN MANYETİK İZİNİN AZALTILMASI REDUCING SHIP S MAGNETIC SIGNATURE WITH METHOD OF COIL CURRENT OPTIMIZATION

KANGAL AKIM OPTİMİZASYON YÖNETİMİ İLE GEMİNİN MANYETİK İZİNİN AZALTILMASI REDUCING SHIP S MAGNETIC SIGNATURE WITH METHOD OF COIL CURRENT OPTIMIZATION KNGL K OPTİİZSYON YÖNETİİ İLE GEİNİN NYETİK İZİNİN ZLTLS REDUCNG SHP S GNETC SGNTURE WTH ETHOD OF COL CURRENT OPTZTON Yusuf İgi Edinç Çkli ua Kulu Ean Usal TÜİTK- Enji Ensiüsü Güç Elkoniği v Konol ölüü,

Detaylı

ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş

ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş İ Ğ İ Ş ç İ İ Ö ş ş Ş ş ç Ş ş ş ç ç ş ş ş Ö ş ç ş ç ç ş ş ş ş ş ç ş ş ş ş ş ş ş ç İ Ü ş ş ş ş ç ç ş ş ş ç ş Ü ç ş ş şç ş ş ş ş ç ş ç ş ç ş ş ç Ş ş İ ş Ş ş İ ç ş ş ş ç ş İİ İ İİ ç ş ş ç İ Ğİ İ İ Ş İ İ ş

Detaylı

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ 0. SNF ONU NTM 4. ÜNİTE: OPTİ. onu GÖGEER ve YDNNM ETİNİ ÇÖZÜMERİ Ünite 4 Optik. 5. Ünite. onu (yınlanma) nın Yanıtlaı pee. a. yaklaştıılmalıı. b. uzaklaştıılmalıı. B nin Yanıtlaı X Y. a. ekan. 3. şık

Detaylı

Ünite. Kuvvet ve Hareket. 1. Bir Boyutta Hareket 2. Kuvvet ve Newton Hareket Yasaları 3. İş, Enerji ve Güç 4. Basit Makineler 5.

Ünite. Kuvvet ve Hareket. 1. Bir Boyutta Hareket 2. Kuvvet ve Newton Hareket Yasaları 3. İş, Enerji ve Güç 4. Basit Makineler 5. 2 Ünie ue e Hareke 1. Bir Boyua Hareke 2. ue e Newon Hareke Yasaları 3. İş, Enerji e Güç 4. Basi Makineler. Dünya e Uzay 1 Bir Boyua Hareke Tes Çözümleri 3 Tes 1'in Çözümleri 3. 1. Süra skaler, hız ekörel

Detaylı

Yeryüzünde Hareket. Test 1 in Çözümleri. 3. I. yol. K noktasından 30 m/s. hızla düşen cismin L 50 noktasındaki hızı m/s, M noktasındaki 30

Yeryüzünde Hareket. Test 1 in Çözümleri. 3. I. yol. K noktasından 30 m/s. hızla düşen cismin L 50 noktasındaki hızı m/s, M noktasındaki 30 4 eryüzünde Hareke es in Çözümleri. nokasından serbes bırakılan cisim, 4 lik yolu e 3 olmak üzere iki eşi zamanda alır. Cismin 4 yolu sonundaki ızının büyüklüğü ise yolu sonundaki ızının büyüklüğü olur..

Detaylı

Ters Perspektif Dönüşüm ile Doku Kaplama

Ters Perspektif Dönüşüm ile Doku Kaplama KRDENİZ EKNİK ÜNİERSİESİ BİLGİSR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSR GRFİKLERİ LBORURI ers Perspekif Dönüşüm ile Doku Kaplama 1. Giriş Bu deneyde, genel haları ile paralel ve perspekif izdüşüm eknikleri, ers perspekif

Detaylı

HAREKET (Grafikler) Konum-zaman grafiğinde doğrunun eğimi hızı verir. 20 = 10 m/s. (0-2) s aralığında: V 1 = 2 = 0. (2-4) s aralığında: V 2

HAREKET (Grafikler) Konum-zaman grafiğinde doğrunun eğimi hızı verir. 20 = 10 m/s. (0-2) s aralığında: V 1 = 2 = 0. (2-4) s aralığında: V 2 AIŞTIRMAAR - 4. BÖÜM HAREET ÇÖZÜMER HAREET (Grafikler).. a) a) 4 6 onum-zaman grafiğinde doğrunun eğimi hızı verir. (-) s aralığında: m/s (-4) s aralığında: 6 4 (4-6) s aralığında: 3 m/s 6 4 Cismin hız-zaman

Detaylı

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ DİNMİK DERS NOTLRI Kaynaklar: Engineering Mechanics: Dynamics,, SI Version, 6th Edition, J. L. Meriam,, L. G. Kraige Vector Mechanics for Engineers: : Dynamics, Sith Edition, Beer and Johnston Doç.Dr.

Detaylı

IŞIK VE GÖLGE. 1. a) L ve M noktaları yalnız K 1. L noktası yalnız K 1. kaynağından, kaynağından, P ve R noktaları yalnız K 2

IŞIK VE GÖLGE. 1. a) L ve M noktaları yalnız K 1. L noktası yalnız K 1. kaynağından, kaynağından, P ve R noktaları yalnız K 2 BÖÜ IŞI VE GÖGE IŞTIRR ÇÖZÜER IŞI VE GÖGE a) c) N N O O P P R R pee pee ve noktalaı yalnız kaynağınan, P ve R noktalaı yalnız kaynağınan ışık alabili noktası yalnız kaynağınan, O ve P noktalaı yalnız kaynağınan

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

Ü ş ş ş ş ş Ü ş Ü ç ş Ö ç Ü ç ç ş ç ş ş ş ş ş Ç ş ş ş ş ş Ç Ö Ü Ö Ü Ü Ü ş ç ç ş ş ş ş ç ç ş ş ç ş ş ç ç ş ç ş ç ç ç ç ş ç ç ş ş ç ç ş ş ş ç ş ç ş Ç ş ş ç ş ç ş ç ş ş ş ç ş ç ş Ç ş ş ç ş ç ş ş ç ş ş ş ş

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş

İĞİ ğ ş. ğ ş ğ ğ ğ Ş İ. ş ş. ş ğ ğ. ş ş ğ ş ş ş. ğ ş ş İ İ İ. ş ş İĞİ ğ ş ğ ş ğ ğ ğ ğ ş ş ş Ş İ İ İ İ ş ş ş ğ ğ ş ş ğ ş ş ş ğ ş ş ş ğ ş ş ş ş ş İ İ İ ş ş ş ğ İ ş ş ş ğ ş ş ğ ş ş ş ğ ğ ş ş ş ğ ş ş ş ğ ğ ş ş ğ ş ğ ğ ğ ş ş ğ ğ ş ş ğ ş ğ ğ ş ğ İ ğ ğ ş ğ ğ ş ş ğ ş ğ ğ ş ş

Detaylı

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ

Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç ç ç ç İ ğ ç ğ ç ğ ç ç ğ İ Ü İ İ İ ç ğ ğ ç ç Ğ «Ö Ğ ğ ç ğ ç ğ ç ç ğ ğ ç ğ ç ğ ç ğ ç ğ ç ç Ö ğ Ö ğ ç Ğ ç ğ ç ç ğ ç ğ ç ç ğ ç ğ ğ ç ç ğ ç ç ğ ç ç ç ğ ç ç ğ ç ç ç İ ğ ğ ğ ç ğ ğ ç ğ ğ ğ ğ ğ ç ç ç ç ğ ç ğ ç ç ğ ğ ç ç ç ğ ğ ç ğ ğ ç

Detaylı

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö

ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç ü ö ğ ç ç ö ç ğ ğ ç ç ö ç ö ü ğ ü Ş Ü Ü ö ö Ş ü ö ü ö ğ ç ü Ç ç ü ğ ü ü ğ ç ö ğ ö ç ö ç ü ö ü ö ğ ü ç ö ğ ö ö ğ ğ ğ ç ö ğ ö ç ö «Ö ö ü ğ Ç ğ ğ ç ü ç ö ö ö ğ ç ö ü ü ö ö ü ö ü ü ğ ö ç ü Ç ğ ç ç ö ü ç ü ö Ş ğ üç ğ ç ü ö ç ç ç ç ğ ç ü ü ç ö ç ü ç

Detaylı

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ

ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ İ İ İ İ İ İ İ İ İ İ Ö İ İ İ Ö İ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ İ ğ ğ ğ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ Ö ğ ğ ğ Ö ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ İ ğ ğ ğ Ö ğ ğ Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ Ç ğ ğ

Detaylı

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö

ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ Ğ Ğ ş ş ş ş ş ş ş ş ş ş ş ç ç ş ş ç ö ş ö ö ş ö ö ş ö Ç ş ş ö ç ç ş ş ö ö ö Ç ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş ş ş ş ş ş ş ş ş ş ş ş ş ş ş ç ş ç ş ş ç ö ö ş ö ö ş ş ş ş ö ş ş ö Ğ Ğ Ğ Ğ ş Ğ ş Ğ ş ş ş ş ş ş

Detaylı

ö Ö ğ

ö Ö ğ Ü ö ö ö Ğ ğ Ü Ğ Ğ Ö ğ ö ö ğ «ö Ö ğ Ü Ü Ü Ğ Ö Ö Ü Ğ ğ ö ö Ö ğ ğ ğ ğ ö ğ ğ Ü ğ ğ ğ ö ğ Ü ğ ğ ö ğ ğ ğ ğ Ü Ü ö ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ö ğ ğ Ö ö ğ ğ ö ğ ğ ö» ğ ö ğ ğ ğ ğ ö ğ ğ ö ö ö ö ğ Ö ğ Ğ ğ ö

Detaylı

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü

Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü Ü Ü Ğ Ü Ğ Ü «Ğ Ğ» Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü ğ ğ ğ ğ ğ ğ Ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Detaylı

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ

ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö ö ö ö ö ö ö ö ö ö ö ö Ş Ş ö ö Ş Ç ö ö ö ö ö Ö ö Ö ö Ç ö ö ö Ö Ğ Ğ ö ö Ç Ş Ğ Ç Ş Ş Ğ ö Ü Ğ ö Ü ö ö Ü Ü Ç Ü Ç ö ö ö ö Ç ö ö ö ö Ö Ü Ö ö ö ö ö ö ö ö Ö Ü ö ö ö ö ö ö ö ö ö Ü ö ö Ö ö ö ö ö Ö ö ö ö ö Ş ö

Detaylı

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş

Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş İ İ Ğ Ğ İ İ ş Ğ Ğ «Ğ İ Ğ ş ş ş ş ş Ç ş ş İ ş Ç ş İ İ İ ş Ş Ğ ş Ğ İ Ğ İ ş ş Ü Ü Ş Ü İ ş ş ş Ğ İ İ Ş Ğ ş ş İ ş ş Ş ş İ İ ş Ğ ş ş ş Ü ş ş ş İ ş Ğ ş ş ş Ş ş İ ş İ İ ş İ İ ş İ İ Ö Ü ş Ö ş ş ş İ ş ş ş ş İ ş

Detaylı

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ

Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ğ İ Ü Ş İ İ Ş İ Ş Ğ Ç Ö İĞİ Ç Ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ Ç Ç Ç Ş İ ğ ğ ğ Ç Ş İ ğ Ç ğ ğ ğ Ç ğ Ş ğ ğ ğ Ç ğ Ş ğ ğ ğ ğ İ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ İ İ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ü Ü İŞ İ İ ğ İ

Detaylı

ç ç ç ç ç

ç ç ç ç ç Ğ Ö Ş ç ç ç ç ç ç ç Ç Ş Ü Ş Ü ç ç ç ç Ö ç ç ç ç ç ç ç Ş ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç Ö ç ç ç Ş ç ç ç Ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı