TAM DEĞER ARDIŞIK TOPLAMLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TAM DEĞER ARDIŞIK TOPLAMLAR"

Transkript

1 ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01

2 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN TAM DEĞERİ.. 5 SONUÇ TEŞEKKÜR.. 11 KAYNAKLAR.. 11

3 1. PROJENİN AMACI Bu roje kasamında, 1 den k ya kadar olan ardışık tam sayıların n. dereceden köklerinin tam değerlerinin tolamını ve ardışık çift ile ardışık tek tam sayıların kareköklerinin tam değerlerinin tolamını ifade eden formüllerin bulunması hedeflenmiştir.. GİRİŞ Ulusal matematik olimiyat sınavlarına hazırlanırken tam değer konusundaki bazı soru tileri dikkatimi çekti. Bu sorularda genellikle ardışık sayıların tam değerlerinin tolamı üzerinde durulmuş olduğunu fark ettim. Bunun üzerine, Ardışık tam sayıların n. dereceden köklerinin tam değerlerinin tolamını ifade eden bir formül olu olmadığını merak ettim ve ilgili konuda bir literatür çalışması yatım. Sonuç olarak, amaçlanan tolama işlemlerini ifade eden bir formül üzerinde daha önce çalışılmadığını satadım. Böyle bir formül bulabilmek için kuramsal çalışmalar yatım ve bunların ışığında bazı genellemeler üretebildim. İşlerliğini gösterebilmek için bu genellemeleri çeşitli örneklere uyguladım.. YÖNTEM Bu roje boyunca doğrudan isat yöntemi kullanılmıştır.. ÖN BİLGİLER Bu bölümde roje kasamında kullanılacak olan temel tanım ve teoremlere yer verilmiştir. TANIM.1 x R için x ten büyük olmayan en büyük x tam sayısına x in tam değeri denir ve x ile gösterilir (Özdemir,010; Yücesan, 007). TEOREM. x R olmak üzere x x < x + 1 dir ( Yücesan, 007). TEOREM. Aşağıdaki eşitlikler sağlanır ( Yücesan, 007). a. n n (n + 1) k = k=1 b. n k = k=1 n (n + 1) (n + 1) 6

4 c. ÖNERME. n k n (n + 1) = [ k=1 ] x bir gerçel sayı ve x = m olsun. Bu durumda, a. m çift ise m x < (m + 1) aralığında m tane tek tam sayı vardır. b. m çift ise m x < (m + 1) aralığında m + 1 tane çift tam sayı vardır. c. m tek ise m x < (m + 1) aralığında m + 1 tane tek tam sayı vardır. d. m tek ise m x < (m + 1) aralığında m tane çift tam sayı vardır. İSPAT x = m olsun. Teorem. den m x < (m + 1) elde edilir. Buradan m x < (m + 1) olduğu açıktır. a. m çift tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki tek tam sayılar, O halde bu aralıkta, m + 1, m +,, (m + 1) tane tek tam sayı vardır. (m + 1) (m + 1) + 1 = m + m + 1 m = m b. m çift tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki çift tam sayılar, O halde bu aralıkta, m, m +,, (m + 1) 1 tane çift tam sayı vardır. (m + 1) 1 m + 1 = m + m m + 1 = m + 1 c. m tek tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki tek tam sayılar, m, m +,, (m + 1) 1 Bu aralıkta b şıkkında gösterildiği gibi m + 1 tane tek tam sayı vardır. d. m tek tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki çift tam sayılar,

5 m + 1, m +,, (m + 1) Bu aralıkta a şıkkında gösterildiği gibi m tane çift tam sayı vardır. 5. ARDIŞIK TOPLAMLARIN TAM DEĞERİ Bu bölümde ardışık tolamların. dereceden köklerinin tam değerlerini ve ardışık çift ile tek tam sayıların kareköklerinin tam değerlerinin tolamını ifade eden formüller bulunu isatlanmıştır. Ayrıca elde edilen formüller çeşitli örnekler üzerinde uygulanmıştır. ÖNERME 5.1 üzere Z +, t, k Z ve t k < (t + 1) olsun. f : N N, f (m) = (m + 1) m olmak k = t (k t + 1) + n f (n) t 1 İSPAT: x R olmak üzere x = m ise m x < (m + 1) Bu aralıktaki tam sayıların sayısı f (m) = (m + 1) m olduğu açıktır. Şimdi t k < (t + 1) şeklinde bir t tam sayısı alalım. t x k aralığında k t + 1 tane tam sayı vardır ve bu tam sayıların. dereceden köklerinin tam değeri t olur. O halde, k = t 1 + t + + k = 1 f (1) + f () + + (t 1) f (t 1) + t (k t + 1) olarak bulunur. ÖRNEK 5. 1 t 1 = t (k t + 1) + n f (n) tolamını elde ettiğimiz formülle bulalım. ÇÖZÜM: < 6 olduğundan t = 5 olduğu açıktır. Diğer taraftan, Şimdi Teorem. ve Önerme 5.1 den f (n) = (n + 1) n = n + n + 1 5

6 = 5 ( ) + n (n + n + 1) = 10 + (n + n + n) = 10 + n + n + n = 5 = ÖNERME 5. t, k Z ve t k + 1 < (t + 1) olmak üzere k 1 1 (t t k + 1 t t + ) + t, t tek ise = 1 1 (t t k t + t) + t, t çift ise İSPAT: k+1 t t, k Z ve t k + 1 < (t + 1) olsun. 1. DURUM t tek sayı olsun. Bu durumda t x (k + 1) aralığında tane tek sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den t + t + + k = k + 1 t = (t ) (t 1) + (t 1) (t 1) + t k + 1 t = (t ) (t 1) + t t 1 = ((n 1) n) + t k + 1 t 6

7 t 1 t 1 = 8 n n k + 1 t + t ( + 1) = 8 t 1 t + 1 t (t 1 ) (t + 1 ) 6 k + 1 t + t ( + 1) = 8 6 t 1 t t t t t + t k = t 1 t t t 1 + t k = t 1 t + 1 t + 1 t + t k = 1 1 (t t k + 1 t t + ) + t. DURUM t çift sayı olsun. Bu durumda, t x (k + 1) aralığında k+1 t = k t tane tek sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den (t 1) + + t 1 + t + + k = k t = (t ) (t ) + (t ) (t ) + (t 1) t + t ( + 1) k t = (t 5) (t ) + t (t 1) + t ( + 1) t k t = ( (n 1) n) + t (t 1) + t ( + 1) t = (8n n) t = 8 n n k t + t (t 1) + t ( + 1) t k t + t (t 1) + t ( + 1) = 8 t t ( t + 1) t (t + 1) 6 = t t (t 1) t (t t ) + t (t 1) + t (k + 1) = t t [ t (t 1) 1] + t (t 1) + t (k + 1) k t + t (t 1) + t ( + 1) 7

8 = t t (t 7 t ) + t (t 1) + t (k + 1) = 1 1 (t 15t k t + 1t) + t (t 1) + t ( + 1) = 1 1 (t t k t + t) + t ( + 1) ÖRNEK tolamını bulalım. ÇÖZÜM: 191 = ve < 1 olduğundan k = 95 ve t = 1 bulunur. Teorem 5. den = 1 1 ( (1) ) + 1 = 8 olarak bulunur. ÖRNEK: tolamını bulalım. ÇÖZÜM: 1 17 < 1 olduğundan t = 1 olduğu bulunur. O halde Teorem 5. den = 1 1 ( ) + 1 = 566 elde edilir. ÖNERME 5.6 t, k Z ve t k < (t + 1) olmak üzere k t t + t 1 = t t t 1 + t k t 1, t tek ise k t + t, t çift ise 8

9 İSPAT: t, k Z ve t k < (t + 1) olsun. 1. DURUM t tek sayı olsun. Bu durumda, t x k aralığında k t tane çift tam sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den k = = (t ) (t ) + (t 1) t + t ( k t 1 + 1) = (t ) (t 5) + (t 1) t + t k t 1 t = (1 + (n + 1) (n + 1) + (t 1) t) + t = (1 + (8 n + 6 n + 1) + (t 1) t) + t = (1 + 8 n + 6 ( n) + 1 t t t k t 1 t k t 1 + (t 1) t) + t k t 1 = t t 1 t (t ) + 6 t 1 + t + t (t 1) + t k t 1 = 1 + t t 1 (t ) + 9 t t 1 + t + t (t 1) + t k t 1 = t t 1 t ( (t ) + 9) + + t (t 1) + t k t 1 = 1 + t t + (t + 1) + t 1 + t (t 1) + t k t 1 = 1 + t 15t + 8t + + t 1 + t (t 1) + t k t 1 = t t + t 1 + t k t 1 9

10 . DURUM t çift sayı olsun. Bu durumda, t x k aralığında k t vardır. O halde Önerme. den + 1 tane çift tam sayı k = k t = (t ) (t 1) + (t 1) (t 1) + t ( + 1) k t = (t 1) (t ) + t t = 1 + (n + 1) (n + 1) + t = 1 + (8n + 6n + 1) + t t k t t k t t = n + 6 ( n) + 1 t k t + t = t t (t 1) + 6 t (t ) + t t + t k 6 = t t t t (t + 9) + + t k = 1 + t t t t (t + 5) + + t k 1 = t t t 1 k t + t ÖRNEK tolamını bulalım. ÇÖZÜM: < 18 olduğundan t = 17 olarak bulunur. Önerme 5.6 dan = = 165 olarak bulunur

11 ÖRNEK tolamını bulalım. ÇÖZÜM: < 11 olduğundan t = 10 olarak bulunur. Önerme 5.6 dan = = 85 olarak bulunur. SONUÇ Sonuç olarak, a) k b) k c) k tolamlarını ifade eden formülleri buldum. TEŞEKKÜR Proje çalışmamın her aşamasında yakın ilgi ve desteğini gördüğüm; çalışmalarımın yönlendirilmesi ve sonuçlandırılmasında büyük emeği geçen roje danışmanım Dr. Gizem GÜNEL e, bugüne dek yetişmemde katkısı olan değerli öğretmenlerime, her zaman yanımda olan ve beni destekleyen, yüreklendiren aileme teşekkür ederim. KAYNAKLAR Özdemir,M.,(010), Matematik Olimiyatlarına Hazırlık, Altın Nokta Yayınları, İzmir. Yücesan,R., (007), Meraklısına Lise Matematik, Zambak Yayınları, İzmir. 11

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ ÖZEL EGE LİSESİ NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ HAZIRLAYAN ÖĞRENCİLER: Fatma Gizem DEMİRCİ Hasan Atakan İŞBİLİR DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2.

Detaylı

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ ÖZEL EGE LİSESİ KSİ DÜZLEMİNDE FINSLER-HDWIGER EŞİSİZLİĞİ HZIRLYN ÖĞRENCİ: Eray ÖZER DNIŞMN ÖĞREMEN: Gizem GÜNEL İZMİR 0 İÇİNDEKİLER. PROJENİN MCI... GİRİŞ............. YÖNEM.... 4. ÖN BİLGİLER..... 4

Detaylı

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ ÖZEL EGE LİSESİ ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ HAZIRLAYAN ÖĞRENCİ: ATAHAN ÖZDEMİR DANIŞMAN ÖĞRETMEN: DEFNE

Detaylı

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ Özel Bahçeşehir Fen Teknoloji Lisesi Başakşehir/İSTANBUL Projenin Adı: Bir Polinomun

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI

ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI ÖZEL EGE LİSESİ ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI HAZIRLAYAN ÖĞRENCİ: Toygar Çaparoğlu DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI...

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen Eslem Nur KELEŞOĞLU Muhammet Enes ÖRCÜN ÖZEL BAŞAKŞEHİR ÇINAR FEN LİSESİ İSTANBUL,

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi Bil101 Bilgisayar Yazılımı I Bilgisayar Yüksek Mühendisi Sözde kod, algoritmalar ve programlar oluşturulurken kullanılan, günlük konuşma diline benzer ve belli bir programlama dilinin detaylarından uzak

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim.

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim. 1 2 sayısını en yakın onda birliğe kadar tahmin edelim. 3 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. 4 sayısını en yakın onda birliğe kadar

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

İSTEK ÖZEL KAŞGARLI MAHMUT ORTAOKULU EKİM 2015

İSTEK ÖZEL KAŞGARLI MAHMUT ORTAOKULU EKİM 2015 İSTEK ÖZEL KAŞGARLI MAHMUT ORTAOKULU EKİM 2015 TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ SİSTEMİ PSİKOLOJİK DANIŞMA ve REHBERLİK BÖLÜMÜ İçindekiler TEOG Modelinin Amaçları TEOG Modelinin Uygulanması TEOG Modelinde

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

Hangi onluğa daha yakın dan limite doğru

Hangi onluğa daha yakın dan limite doğru Aldemir, S. (004). Hangi onluğa daha yakın dan limite doğru, İlköğretim-Online, 3(), 4-47, [Online]: http://ilkogretim-online.org.tr Hangi onluğa daha yakın dan limite doğru Salih ALDEMİR salihaldemir65@mynet.com

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI. LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI. LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA PROJE ADI KATLAMA YÖNTEMİ İLE EŞKENAR ÜÇGEN VEALTIGENDE

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ

ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ T.C MİLLİ EĞİTİM BAKANLIĞI ÖZEL EGE LİSESİ TÜRKÇE YILLIK PROJE ÇALIŞMASI ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ HAZIRLAYANLAR Dilay BİÇER Engin YAZAR Aslı SAĞGÜL Sınıf/ Şube : 4/B Rehber Öğretmen :

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir. KANUNLAR : Elektrik ve elektronikle ilgili konuları daha iyi anlayabilmek için, biraz hesap biraz da kanun bilgisine ihtiyaç vardır. Tabii bunlar o kadar zor hasaplar değil, yalnızca Aritmetik düzeyinde

Detaylı

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? Amaç: n basamaklı bir merdivenin en üst basamağına her adımda 1, 2, 3, veya m basamak hareket ederek kaç farklı şekilde çıkılabileceğini bulmak. Giriş:

Detaylı

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ YÜKSEK LİSANS TEZİ Hakan TEMİZ Danışman Doç. Dr. Mustafa Kemal YILDIZ MATEMATİK ANABİLİM DALI Haziran, 2014 AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

DANIŞMAN ÖĞRETMEN İlknur ÖZDEMİR ÖZEL EGE LİSESİ İLKÖĞRETİM OKULU 5/C SINIFI BİLGİSAYAR YILLIK PROJESİ

DANIŞMAN ÖĞRETMEN İlknur ÖZDEMİR ÖZEL EGE LİSESİ İLKÖĞRETİM OKULU 5/C SINIFI BİLGİSAYAR YILLIK PROJESİ ÖZEL EGE LİSESİ İLKÖĞRETİM OKULU 5/C SINIFI BİLGİSAYAR YILLIK PROJESİ PROJE KONUSU BİLGİSAYARIN KULLANIM ALANLARI VE TÜRKİYEDE BİLGİSAYAR KULLANIMINI NASIL GELİŞTİREBİLİRİZ? HAZIRLAYANLAR Buket TAŞBAŞ

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

ÜÇ KENAR UZUNLUĞU BELLİ OLAN ÜÇGENLERDE İKİ BİLİNMEYENLİ DENKLEM UYGULAMALARI

ÜÇ KENAR UZUNLUĞU BELLİ OLAN ÜÇGENLERDE İKİ BİLİNMEYENLİ DENKLEM UYGULAMALARI PROJE RAPORU ÜÇ KENAR UZUNLUĞU BELLİ OLAN ÜÇGENLERDE İKİ BİLİNMEYENLİ DENKLEM UYGULAMALARI Geçmiştengünümüze Matematik anlaşılması zor bir bilim dalı olarak görülmüştür.oysa mantığını bir kez kavradığımızda

Detaylı

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN

KESİN PROJE RAPORU PROJENİN ADI PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ DANIŞMAN ÖĞRETMEN KESİN PROJE RAPORU PROJENİN ADI HANGİ ADAYI SEÇELİM? PROJEYİ HAZIRLAYANLAR BABÜR NEDİM ÇAĞATAY OKUL ADI VE ADRESİ ÖZEL KÜLTÜR FEN LİSESİ ATAKÖY 9.-10. KISIM, 34156 BAKIRKÖY - İSTANBUL DANIŞMAN ÖĞRETMEN

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Devre Teorisi EEE221 3 6+0 5 6

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Devre Teorisi EEE221 3 6+0 5 6 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Devre Teorisi EEE221 3 6+0 5 6 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin Koordinatörü

Detaylı

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN

Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Saygın KIRILMAZ, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK &

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

LİSE VE FEN LİSESİ BAŞARI BURSU YÖNETMELİĞİ

LİSE VE FEN LİSESİ BAŞARI BURSU YÖNETMELİĞİ LİSE VE FEN LİSESİ BAŞARI BURSU YÖNETMELİĞİ SON REVİZE TARİHİ: 28.08.2014 REVİZE SAYISI: 18 YAYIN TARİHİ: 28.08.2014 SAYFA SAYISI: 10 HAZIRLAYAN: TERAKKİ VAKFI ÖZEL ŞİŞLİ TERAKKİ LİSESİ ÖZEL ŞİŞLİ TERAKKİ

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: G, ve H, iki grup ve f : G H

Detaylı

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK

EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK EN AZ SAYIDA AĞIRLIKLA AĞIRLIKLARI TARTMAK Amaç: 1 den n ye kadar olan tamsayı ağırlıkları, toplamları n olan en az sayıda ağırlığı kullanarak tartmak. Giriş: Bu araştırmanın temelini Ulusal Bilgisayar

Detaylı

SU DALGALARINDA GİRİŞİM

SU DALGALARINDA GİRİŞİM SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini

Detaylı

Değerlendirme Sınavı 2-5. Sınıf CEVAP ANAHTARI

Değerlendirme Sınavı 2-5. Sınıf CEVAP ANAHTARI Değerlendirme Sınavı 2-5. Sınıf Türkçe C C B B A D B D A C A B A C D Matematik C D B D A D C A A D D C B A B Fen Bilimleri C D A B B C A D B C C D A D B Sosyal Bilgiler D C A C B A C D B B D D A B B İngilizce

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR

5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJENİN ADI DİZİ DİZİ ÜRETEÇ PROJEYİ HAZIRLAYAN ESRA DAĞ ELİF BETÜL ACAR ÖZEL BÜYÜKÇEKMECE ÇINAR KOLEJİ 19 Mayıs Mah. Bülent Ecevit Cad. Tüyap Yokuşu

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 1. AMAÇ Bütün bilim dallarının ve akademik branşların temelini oluşturan matematik alanında daha ileri çalışmalar yapabilecek potansiyele sahip gençlerin

Detaylı

PINAR KOLEJİ TEOG TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ SİSTEMİ

PINAR KOLEJİ TEOG TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ SİSTEMİ PINAR KOLEJİ TEOG TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ SİSTEMİ Temel Öğretimden Ortaöğretime Geçiş Modeli (TEOG) 2013-2014 eğitim-öğretim yılından başlayarak 6 temel ders için 8.sınıf öğretmenleri tarafından

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır?

Diğer sayfaya geçiniz. 2013 - YGS / MAT TEMEL MATEMATİK TESTİ. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? TEMEL MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 3. olduğuna göre, a kaçtır? olduğuna göre, m kaçtır? A)

Detaylı

Çemberin Çevresi, Dairenin Alanı, π nin Değeri

Çemberin Çevresi, Dairenin Alanı, π nin Değeri Çemerin Çevresi, Dairenin Alanı, π nin Değeri Ali Nesin B u yazıda, r yarıçaplı ir çemerin çevresinin neden 2πr, alanının neden πr 2 olduğunu göreceğiz. İlkokuldan eri ezerletilen u formüllerin kanıtlarını

Detaylı

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol:

EBOB - EKOK EBOB VE EKOK UN BULUNMASI. 2. Yol: En Büyük Ortak Bölen (Ebob) En Küçük Ortak Kat (Ekok) www.unkapani.com.tr. 1. Yol: EBOB - EKOK En Büyük Ortak Bölen (Ebob) İki veya daha fazla pozitif tamsayıyı aynı anda bölen pozitif tamsayıların en büyüğüne bu sayıların en büyük ortak böleni denir ve kısaca Ebob ile gösterilir. Örneğin,

Detaylı

Diğer sayfaya geçiniz. 2012 KPSS / GYGK CS 33. 31. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) B) C) A) B) C) 34. 32.

Diğer sayfaya geçiniz. 2012 KPSS / GYGK CS 33. 31. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) B) C) A) B) C) 34. 32. 31. 33. işleminin sonucu kaçtır? işleminin sonucu kaçtır? 32. 34. işleminin sonucu kaçtır? işleminin sonucu kaçtır? A) 84 B) 80 C) 72 64 60 9 35. 37. x ve y gerçel sayıları işleminin sonucu kaçtır? eşitsizliklerini

Detaylı

X. Ulusal İlköğretim Matematik Olimpiyatı

X. Ulusal İlköğretim Matematik Olimpiyatı X. Ulusal İlköğretim Matematik Olimpiyatı B 1. Bir kentten diğerine giden bir otobüs, yolun ilk yarısını 40 km/saat, ikinci yarısını ise 60 km/saat hızla gittiyse, otobüsün ortalama hızı kaç km/saat olmuştur?

Detaylı

Bu yaz girifle gereksinmiyor. Do rudan, kan tlayaca m z

Bu yaz girifle gereksinmiyor. Do rudan, kan tlayaca m z Yoksulun fians Bu yaz girifle gereksinmiyor. Do rudan, kan tlayaca m z sonuca geçelim: Teorem. Yoksulun zengine karfl flans yoktur. Bu çok bilinen teorem i kan tlayabilmek için her fleyden önce önermeyi

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

T.C. ERZİNCAN ÜNİVERSİTESİ

T.C. ERZİNCAN ÜNİVERSİTESİ T.C. ERZİNCAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ ESASLARI ERZİNCAN 2012 1 İÇİNDEKİLER 1. BİTİRME TEZİ DERS ESASLARI... 2 1.1. Dersin Alınması... 2 1.2. Tez Konularının Dağıtımı...

Detaylı

DynED AMACI VE KAPSAMI

DynED AMACI VE KAPSAMI DynED AMACI VE KAPSAMI Resmî örgün ilköğretim ve ortaöğretim kurumlarının 4, 5, 6, 7, 8, 9, 10, 11 ve 12. sınıflarında çoklu ortamda etkileşimli İngilizce dil eğitiminin gerçekleştirilmesi için DynEd İngilizce

Detaylı

T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ 27991225984. DANIŞMAN Doç. Dr.

T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ 27991225984. DANIŞMAN Doç. Dr. T.C. ANADOLU ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ÇİZGELERİ BOYAMAK HAZIRLAYAN FERHAN ÇİFTCİ 27991225984 DANIŞMAN Doç. Dr. EMRAH AKYAR MAT401 MATEMATİK UYGULAMALARI 2011 2012 GÜZ DÖNEMİ 1 Ön Bilgiler

Detaylı

TEOG Sınav Sistemi (Temel Eğitimden Ortaöğretime Geçiş) Meral ÖZTÜRK GÜNEL Uzm Psikolojik Danışman

TEOG Sınav Sistemi (Temel Eğitimden Ortaöğretime Geçiş) Meral ÖZTÜRK GÜNEL Uzm Psikolojik Danışman TEOG Sınav Sistemi (Temel Eğitimden Ortaöğretime Geçiş) Meral ÖZTÜRK GÜNEL Uzm Psikolojik Danışman UYGULAMA 2014-2015 eğitim - öğretim yılından altı ders için 8 inci sınıfta öğretmen tarafından dönemsel

Detaylı

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015 Sayılar ve Altın Oranı Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2015 16 Ağustos 2015 Ben kimim? Denizli nin Çal ilçesinin Ortaköy kasabasında 1958 yılında

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara

Detaylı

Eğitimin Finansmanındaki Reformların Temel Eğitimde Eşitlik Üzerindeki Etkisi Nedir?

Eğitimin Finansmanındaki Reformların Temel Eğitimde Eşitlik Üzerindeki Etkisi Nedir? Eğitimin Finansmanındaki Reformların Temel Eğitimde Eşitlik Üzerindeki Etkisi Nedir? UNICEF in bölgesel araştırmasından çıkan ön bulgular Philippe Testot-Ferry UNICEF ODA/BDT Bölge Ofisi Yulia Makarova

Detaylı

Pokerin Matematiği açık oyun renk

Pokerin Matematiği açık oyun renk Pokerin Matematiği atrançta bir oyuncunun bilip de öbür oyuncunun bilmediği bilgi yoktur. Bu tür oyunlara açık oyun diyelim. STavlada da bir oyuncunun bildiğini öbür oyuncu bilir. Birinin öbüründen gizlisi

Detaylı

ÖZEL EGE LİSESİ GRAFİKLER

ÖZEL EGE LİSESİ GRAFİKLER ÖZEL EGE LİSESİ GRAFİKLER HAZIRLAYANLAR Arda Can ÖZENSOY Kerem ERTEN Melis ÖZTÜRK Melis BALIOĞLU Burak KİŞİN Deniz ÖNER Rehber Öğretmen: H. Necmi YÜCEL 2002-2003 Öğretim Yılı TEŞEKKÜR Bu proje çalışmamızda

Detaylı

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK

Muhammed ERKUŞ. Sefer Ekrem ÇELİKBİLEK Hazırlayan: Sunan: Muhammed ERKUŞ Sefer Ekrem ÇELİKBİLEK 20047095 20043193 FİBONACCİ SAYILARI ve ALTIN ORAN Fibonacci Kimdir? Leonardo Fibonacci (1175-1250) Pisalı Leonardo Fibonacci Rönesans öncesi Avrupa'nın

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

2013-2014. Türkçe Testi 1-B 2-B 3-C 4-A 5-C 6-C 7-D 8-D 9-A 10-B 11-D 12-A 13-A 14-C 15-A. Matematik Testi (MEB)

2013-2014. Türkçe Testi 1-B 2-B 3-C 4-A 5-C 6-C 7-D 8-D 9-A 10-B 11-D 12-A 13-A 14-C 15-A. Matematik Testi (MEB) A 4. SINIF MERKEZİ SİSTEM YAZILIYA HAZIRLIK SINAVI - 3 kitapçığı 1-B 2-B 3-C 4-A 5-C 6-C 7-D 8-D 9-A 10-B 11-D 12-A 13-A 14-C 15-A Matematik Testi (MEB) 1-C 2-B 3-B 4-D 5-C 6-B 7-A 8-D 9-C 10-D 11-B 12-A

Detaylı

ÖZEL ANTALYA ENVAR ORTAOKULU. İLBAP ve TEOG BİLGİLENDİRME SUNUMU

ÖZEL ANTALYA ENVAR ORTAOKULU. İLBAP ve TEOG BİLGİLENDİRME SUNUMU ÖZEL ANTALYA ENVAR ORTAOKULU İLBAP ve TEOG BİLGİLENDİRME SUNUMU TÜRKİYE DE SINAV SİSTEMİ 1997-2004 Yılları Arasında Liselere Geçiş Sistemi (LGS) 2005-2008 Yılları Arasında Ortaöğretim Kurumları Sınavı

Detaylı

Değerlendirme Sınavı 3 2. Sınıf CEVAP ANAHTARI

Değerlendirme Sınavı 3 2. Sınıf CEVAP ANAHTARI Değerlendirme Sınavı 3 2. Sınıf Kitapçık A Türkçe A B C A B C C A C B C B C A A Matematik A C A B A B C B C C B A C A B Hayat C A B B C A B A C B C A B A C İngilizce B B C C A Türkçe B C A A A B C A B

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Türev ve İntegralin Yaşam İçindeki Uygulamaları

Türev ve İntegralin Yaşam İçindeki Uygulamaları TÜRKİYE BİLİMSEL ve TEKNİK ARAŞTIRMA KURUMU (TUBİTAK) LİSE ÖĞRENCİLERİ ARASI ARAŞTIRMA PROJELERİ YARIŞMASI Türev ve İntegralin Yaşam İçindeki Uygulamaları Hazırlayan: Uğur KILIÇ - Z. Efşan BAŞER Danışman:

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

EXCEL FORMÜL ÖRNEKLERİ

EXCEL FORMÜL ÖRNEKLERİ 1. AY FONKSİYONU A EXEL FORMÜL ÖRNEKLERİ 1 30 1 30 gün 1 ay olduğundan 1 hücresine 1 yazıldı 2 99 4 99 gün 3+1 ay olduğundan 2 hücresine 4 yazıldı 3 125 5 Özet olarak Ay fonksiyonu seçilen hücrede yazılan

Detaylı

T.C. KAYSERİ VALİLİĞİ

T.C. KAYSERİ VALİLİĞİ T.C. KAYSERİ VALİLİĞİ Kayseri İl Milli Eğitim Müdürlüğü BİR FİKRİM VAR LİSE ÖĞRENCİLERİNE YÖNELİK BİR FİKRİM VAR PROJE ÇALIŞMASI UYGULAMA KILAVUZU 1 KAYSERİ 2014 İçindekiler 1. BÖLÜM...3 1. ÇALIŞMANIN

Detaylı