TAM DEĞER ARDIŞIK TOPLAMLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TAM DEĞER ARDIŞIK TOPLAMLAR"

Transkript

1 ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01

2 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN TAM DEĞERİ.. 5 SONUÇ TEŞEKKÜR.. 11 KAYNAKLAR.. 11

3 1. PROJENİN AMACI Bu roje kasamında, 1 den k ya kadar olan ardışık tam sayıların n. dereceden köklerinin tam değerlerinin tolamını ve ardışık çift ile ardışık tek tam sayıların kareköklerinin tam değerlerinin tolamını ifade eden formüllerin bulunması hedeflenmiştir.. GİRİŞ Ulusal matematik olimiyat sınavlarına hazırlanırken tam değer konusundaki bazı soru tileri dikkatimi çekti. Bu sorularda genellikle ardışık sayıların tam değerlerinin tolamı üzerinde durulmuş olduğunu fark ettim. Bunun üzerine, Ardışık tam sayıların n. dereceden köklerinin tam değerlerinin tolamını ifade eden bir formül olu olmadığını merak ettim ve ilgili konuda bir literatür çalışması yatım. Sonuç olarak, amaçlanan tolama işlemlerini ifade eden bir formül üzerinde daha önce çalışılmadığını satadım. Böyle bir formül bulabilmek için kuramsal çalışmalar yatım ve bunların ışığında bazı genellemeler üretebildim. İşlerliğini gösterebilmek için bu genellemeleri çeşitli örneklere uyguladım.. YÖNTEM Bu roje boyunca doğrudan isat yöntemi kullanılmıştır.. ÖN BİLGİLER Bu bölümde roje kasamında kullanılacak olan temel tanım ve teoremlere yer verilmiştir. TANIM.1 x R için x ten büyük olmayan en büyük x tam sayısına x in tam değeri denir ve x ile gösterilir (Özdemir,010; Yücesan, 007). TEOREM. x R olmak üzere x x < x + 1 dir ( Yücesan, 007). TEOREM. Aşağıdaki eşitlikler sağlanır ( Yücesan, 007). a. n n (n + 1) k = k=1 b. n k = k=1 n (n + 1) (n + 1) 6

4 c. ÖNERME. n k n (n + 1) = [ k=1 ] x bir gerçel sayı ve x = m olsun. Bu durumda, a. m çift ise m x < (m + 1) aralığında m tane tek tam sayı vardır. b. m çift ise m x < (m + 1) aralığında m + 1 tane çift tam sayı vardır. c. m tek ise m x < (m + 1) aralığında m + 1 tane tek tam sayı vardır. d. m tek ise m x < (m + 1) aralığında m tane çift tam sayı vardır. İSPAT x = m olsun. Teorem. den m x < (m + 1) elde edilir. Buradan m x < (m + 1) olduğu açıktır. a. m çift tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki tek tam sayılar, O halde bu aralıkta, m + 1, m +,, (m + 1) tane tek tam sayı vardır. (m + 1) (m + 1) + 1 = m + m + 1 m = m b. m çift tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki çift tam sayılar, O halde bu aralıkta, m, m +,, (m + 1) 1 tane çift tam sayı vardır. (m + 1) 1 m + 1 = m + m m + 1 = m + 1 c. m tek tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki tek tam sayılar, m, m +,, (m + 1) 1 Bu aralıkta b şıkkında gösterildiği gibi m + 1 tane tek tam sayı vardır. d. m tek tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki çift tam sayılar,

5 m + 1, m +,, (m + 1) Bu aralıkta a şıkkında gösterildiği gibi m tane çift tam sayı vardır. 5. ARDIŞIK TOPLAMLARIN TAM DEĞERİ Bu bölümde ardışık tolamların. dereceden köklerinin tam değerlerini ve ardışık çift ile tek tam sayıların kareköklerinin tam değerlerinin tolamını ifade eden formüller bulunu isatlanmıştır. Ayrıca elde edilen formüller çeşitli örnekler üzerinde uygulanmıştır. ÖNERME 5.1 üzere Z +, t, k Z ve t k < (t + 1) olsun. f : N N, f (m) = (m + 1) m olmak k = t (k t + 1) + n f (n) t 1 İSPAT: x R olmak üzere x = m ise m x < (m + 1) Bu aralıktaki tam sayıların sayısı f (m) = (m + 1) m olduğu açıktır. Şimdi t k < (t + 1) şeklinde bir t tam sayısı alalım. t x k aralığında k t + 1 tane tam sayı vardır ve bu tam sayıların. dereceden köklerinin tam değeri t olur. O halde, k = t 1 + t + + k = 1 f (1) + f () + + (t 1) f (t 1) + t (k t + 1) olarak bulunur. ÖRNEK 5. 1 t 1 = t (k t + 1) + n f (n) tolamını elde ettiğimiz formülle bulalım. ÇÖZÜM: < 6 olduğundan t = 5 olduğu açıktır. Diğer taraftan, Şimdi Teorem. ve Önerme 5.1 den f (n) = (n + 1) n = n + n + 1 5

6 = 5 ( ) + n (n + n + 1) = 10 + (n + n + n) = 10 + n + n + n = 5 = ÖNERME 5. t, k Z ve t k + 1 < (t + 1) olmak üzere k 1 1 (t t k + 1 t t + ) + t, t tek ise = 1 1 (t t k t + t) + t, t çift ise İSPAT: k+1 t t, k Z ve t k + 1 < (t + 1) olsun. 1. DURUM t tek sayı olsun. Bu durumda t x (k + 1) aralığında tane tek sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den t + t + + k = k + 1 t = (t ) (t 1) + (t 1) (t 1) + t k + 1 t = (t ) (t 1) + t t 1 = ((n 1) n) + t k + 1 t 6

7 t 1 t 1 = 8 n n k + 1 t + t ( + 1) = 8 t 1 t + 1 t (t 1 ) (t + 1 ) 6 k + 1 t + t ( + 1) = 8 6 t 1 t t t t t + t k = t 1 t t t 1 + t k = t 1 t + 1 t + 1 t + t k = 1 1 (t t k + 1 t t + ) + t. DURUM t çift sayı olsun. Bu durumda, t x (k + 1) aralığında k+1 t = k t tane tek sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den (t 1) + + t 1 + t + + k = k t = (t ) (t ) + (t ) (t ) + (t 1) t + t ( + 1) k t = (t 5) (t ) + t (t 1) + t ( + 1) t k t = ( (n 1) n) + t (t 1) + t ( + 1) t = (8n n) t = 8 n n k t + t (t 1) + t ( + 1) t k t + t (t 1) + t ( + 1) = 8 t t ( t + 1) t (t + 1) 6 = t t (t 1) t (t t ) + t (t 1) + t (k + 1) = t t [ t (t 1) 1] + t (t 1) + t (k + 1) k t + t (t 1) + t ( + 1) 7

8 = t t (t 7 t ) + t (t 1) + t (k + 1) = 1 1 (t 15t k t + 1t) + t (t 1) + t ( + 1) = 1 1 (t t k t + t) + t ( + 1) ÖRNEK tolamını bulalım. ÇÖZÜM: 191 = ve < 1 olduğundan k = 95 ve t = 1 bulunur. Teorem 5. den = 1 1 ( (1) ) + 1 = 8 olarak bulunur. ÖRNEK: tolamını bulalım. ÇÖZÜM: 1 17 < 1 olduğundan t = 1 olduğu bulunur. O halde Teorem 5. den = 1 1 ( ) + 1 = 566 elde edilir. ÖNERME 5.6 t, k Z ve t k < (t + 1) olmak üzere k t t + t 1 = t t t 1 + t k t 1, t tek ise k t + t, t çift ise 8

9 İSPAT: t, k Z ve t k < (t + 1) olsun. 1. DURUM t tek sayı olsun. Bu durumda, t x k aralığında k t tane çift tam sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den k = = (t ) (t ) + (t 1) t + t ( k t 1 + 1) = (t ) (t 5) + (t 1) t + t k t 1 t = (1 + (n + 1) (n + 1) + (t 1) t) + t = (1 + (8 n + 6 n + 1) + (t 1) t) + t = (1 + 8 n + 6 ( n) + 1 t t t k t 1 t k t 1 + (t 1) t) + t k t 1 = t t 1 t (t ) + 6 t 1 + t + t (t 1) + t k t 1 = 1 + t t 1 (t ) + 9 t t 1 + t + t (t 1) + t k t 1 = t t 1 t ( (t ) + 9) + + t (t 1) + t k t 1 = 1 + t t + (t + 1) + t 1 + t (t 1) + t k t 1 = 1 + t 15t + 8t + + t 1 + t (t 1) + t k t 1 = t t + t 1 + t k t 1 9

10 . DURUM t çift sayı olsun. Bu durumda, t x k aralığında k t vardır. O halde Önerme. den + 1 tane çift tam sayı k = k t = (t ) (t 1) + (t 1) (t 1) + t ( + 1) k t = (t 1) (t ) + t t = 1 + (n + 1) (n + 1) + t = 1 + (8n + 6n + 1) + t t k t t k t t = n + 6 ( n) + 1 t k t + t = t t (t 1) + 6 t (t ) + t t + t k 6 = t t t t (t + 9) + + t k = 1 + t t t t (t + 5) + + t k 1 = t t t 1 k t + t ÖRNEK tolamını bulalım. ÇÖZÜM: < 18 olduğundan t = 17 olarak bulunur. Önerme 5.6 dan = = 165 olarak bulunur

11 ÖRNEK tolamını bulalım. ÇÖZÜM: < 11 olduğundan t = 10 olarak bulunur. Önerme 5.6 dan = = 85 olarak bulunur. SONUÇ Sonuç olarak, a) k b) k c) k tolamlarını ifade eden formülleri buldum. TEŞEKKÜR Proje çalışmamın her aşamasında yakın ilgi ve desteğini gördüğüm; çalışmalarımın yönlendirilmesi ve sonuçlandırılmasında büyük emeği geçen roje danışmanım Dr. Gizem GÜNEL e, bugüne dek yetişmemde katkısı olan değerli öğretmenlerime, her zaman yanımda olan ve beni destekleyen, yüreklendiren aileme teşekkür ederim. KAYNAKLAR Özdemir,M.,(010), Matematik Olimiyatlarına Hazırlık, Altın Nokta Yayınları, İzmir. Yücesan,R., (007), Meraklısına Lise Matematik, Zambak Yayınları, İzmir. 11

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ ÖZEL EGE LİSESİ NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ HAZIRLAYAN ÖĞRENCİLER: Fatma Gizem DEMİRCİ Hasan Atakan İŞBİLİR DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2.

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK

ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK ÖZEL EGE LİSESİ SİMEDYAN ÜÇGENİ VE NOKTADAŞLIK HAZIRLAYAN ÖĞRENCİLER: Barış BALKAN Meryem Nilsu ÇETİN DANIŞMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ İZMİR 2016 İçindekiler Sayfa 1. Giriş... 2 1.1 Projenin Amacı....

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ ÖZEL EGE LİSESİ KSİ DÜZLEMİNDE FINSLER-HDWIGER EŞİSİZLİĞİ HZIRLYN ÖĞRENCİ: Eray ÖZER DNIŞMN ÖĞREMEN: Gizem GÜNEL İZMİR 0 İÇİNDEKİLER. PROJENİN MCI... GİRİŞ............. YÖNEM.... 4. ÖN BİLGİLER..... 4

Detaylı

FONKSYONLARI FONKSYONLARA GÖTÜREN FONKSYONLAR ÜZERNDE ANT-MONOTONLUK VE DEMPOTENTLK

FONKSYONLARI FONKSYONLARA GÖTÜREN FONKSYONLAR ÜZERNDE ANT-MONOTONLUK VE DEMPOTENTLK ÖZEL EGE LSES FONKSYONLARI FONKSYONLARA GÖTÜREN FONKSYONLAR ÜZERNDE ANT-MONOTONLUK VE DEMPOTENTLK HAZIRLAYAN ÖRENC: Kıvanç Ararat (10B) DANIMAN ÖRETMEN: Emel Ergönül ZMR 2011 ÇNDEKLER PROJENN ADI 2 PROJENN

Detaylı

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak 7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

Nesbitt Eşitsizliğine Farklı Bir Bakış

Nesbitt Eşitsizliğine Farklı Bir Bakış ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI Nesbitt Eşitsizliğine Farklı Bir Bakış Muhammed Osman Çorbalı Danışman Öğretmen: Yüksel Demir PROJE RAPORU 2014 PROJENİN AMACI:

Detaylı

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR ÖZEL EGE LĠSESĠ ġeklġndekġ ĠFADELERĠN SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR HAZIRLAYAN ÖĞRENCĠ: Ersin ĠSTANBULLU DANIġMAN ÖĞRETMEN: Defne TABU ĠZMĠR 2013 ĠÇĠNDEKĠLER 1.

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4)

Köklü Sayılar ,1+ 0,1+ 1, 6= m 10 ise m kaçtır? ( 8 5 ) 2x 3. + a =? (4) Köklü Sayılar.,+ 0,+, 6= m 0 ise m kaçtır ( 8 5 ). a= ise a + a (). : :... = 8 0 0... eşitliğini sağlayan değeri nedir (). 99.0+.6+ (75) 5. + : + 8 7 8 () 6. > 0 ve = olduğuna göre ( ) + a+ b 7. a, b R

Detaylı

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ Özel Bahçeşehir Fen Teknoloji Lisesi Başakşehir/İSTANBUL Projenin Adı: Bir Polinomun

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ ÖZEL EGE LİSESİ ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ HAZIRLAYAN ÖĞRENCİ: ATAHAN ÖZDEMİR DANIŞMAN ÖĞRETMEN: DEFNE

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

ÖZEL EGE LİSESİ BENZER PİRAMİTLERİN HACİMLERİNİ BELİRLEYEN TOPLAM FORMÜLLERİ. Ege Onat ÖZSÜER. DANIŞMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ

ÖZEL EGE LİSESİ BENZER PİRAMİTLERİN HACİMLERİNİ BELİRLEYEN TOPLAM FORMÜLLERİ. Ege Onat ÖZSÜER. DANIŞMAN ÖĞRETMEN: Gizem GÜNEL AÇIKSÖZ ÖZ İSSİ NZR İRMİTRİN HİMRİNİ İRYN TOM ORMÜRİ HZIRYN ÖĞRNİR: da ROĞN ge Onat ÖZSÜR NIŞMN ÖĞRTMN: izem ÜN ÇISÖZ İZMİR 2014 İÇİNİR 1. ROJNİN MI.. 3 32. İRİŞ.... 3 3. ÖN İİR..... 4 4. NZR ÜÇNRİN NRINN NZR

Detaylı

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

PROJENİN ADI NAPOLEON TEOREMİNİN DİKDÖRTGENE UYGULANMASI PROJEYİ HAZIRLAYANLAR ECEM OBUROĞLU, PELİN ÖZKAN OKUL ADI VE ADRESİ

PROJENİN ADI NAPOLEON TEOREMİNİN DİKDÖRTGENE UYGULANMASI PROJEYİ HAZIRLAYANLAR ECEM OBUROĞLU, PELİN ÖZKAN OKUL ADI VE ADRESİ PROJENİN ADI NAPOLEON TEOREMİNİN DİKDÖRTGENE UYGULANMASI PROJEYİ HAZIRLAYANLAR ECEM OBUROĞLU, PELİN ÖZKAN OKUL ADI VE ADRESİ ÖZEL KÜLTÜR LİSESİ Ataköy 9.-10. Kısım,34156 Bakırköy-İstanbul DANIŞMAN ÖĞRETMEN

Detaylı

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1

ÇARPANLAR VE KATLAR. Başarı Başaracağım Diye Başlayanındır. 1 ÇARPANLAR VE KATLAR Başarı Başaracağım Diye Başlayanındır. 1 ÖRNEK 1 48 sayısının çarpanlarını bulalım. 1.Gökkuşağı yöntemi 48 sayısının çarpanlarını küçükten büyüğe sıralayarak eşleştiriniz. 48 çarpanlarını

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

ÜNİTE 1: TEMEL KAVRAMLAR

ÜNİTE 1: TEMEL KAVRAMLAR MATEMATİK ÜNİTE : TEMEL KAVRAMLAR Temel Kavramlar ADF 0 RAKAM Sayı oluşturmak için kullanılan sembollere... denir. 0 luk sayma düzenindeki rakamlar 0,,,... 8 ve 9 olup 0 tanedir. örnek a, b, c sıfırdan

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI

ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI ÖZEL EGE LİSESİ ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI HAZIRLAYAN ÖĞRENCİ: Toygar Çaparoğlu DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI...

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI PROJENİN ADI: EULERİN PEDAL ÜÇGEN FORMÜLÜNÜ KULLANARAK PEDAL DÖRTGENLER İÇİN YENİ BİR FORMÜL GELİŞTİRME MEVKOLEJİ ÖZEL BASINKÖY ANADOLU LİSESİ DANIŞMAN:ELİF

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen Eslem Nur KELEŞOĞLU Muhammet Enes ÖRCÜN ÖZEL BAŞAKŞEHİR ÇINAR FEN LİSESİ İSTANBUL,

Detaylı

Sevdiğim Birkaç Soru

Sevdiğim Birkaç Soru Sevdiğim Birkaç Soru Matematikte öyle sorular vardır ki, yanıtı bulmak önce çok zor gibi gelebilir, sonradan saatler, günler, aylar, hatta kimi zaman yıllar sonra yanıtın çok basit olduğu anlaşılır. Bir

Detaylı

9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR. Aşağıdaki teorem Homomorfizma teoremi olarak da bilinir.

9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR. Aşağıdaki teorem Homomorfizma teoremi olarak da bilinir. 9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR Aşağıdai teorem Homomorfizma teoremi olara da bilinir. Teoremi 9.. (.İzomorfizma Teoremi) f : G H bir grup homomorfizması olsun. Şu halde ( ) dir. Özel olara,

Detaylı

Tam Kare Sayıların Karekökleri - Çalışma Kağıdı Ortaokul Matematik Kafası Kerim Hoca ile 64 arasında kaç tane tam sayı vardır?

Tam Kare Sayıların Karekökleri - Çalışma Kağıdı Ortaokul Matematik Kafası Kerim Hoca ile 64 arasında kaç tane tam sayı vardır? 8.Sınıf Matematik Yayın No : 8- / Kazanım : 8.1.3.. KAREKÖKLÜ İFADELER Tam Kare Sayıların Karekökleri - Çalışma Kağıdı + 3 1 Alıştırmalar 3. Aşağıdaki eşitliklerde x in alabileceği değerleri bulunuz. 1.

Detaylı

Değerlendirme Sınavı 2-5. Sınıf CEVAP ANAHTARI

Değerlendirme Sınavı 2-5. Sınıf CEVAP ANAHTARI Değerlendirme Sınavı 2-5. Sınıf Türkçe C C B B A D B D A C A B A C D Matematik C D B D A D C A A D D C B A B Fen Bilimleri C D A B B C A D B C C D A D B Sosyal Bilgiler D C A C B A C D B B D D A B B İngilizce

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi Bil101 Bilgisayar Yazılımı I Bilgisayar Yüksek Mühendisi Sözde kod, algoritmalar ve programlar oluşturulurken kullanılan, günlük konuşma diline benzer ve belli bir programlama dilinin detaylarından uzak

Detaylı

Sayılar Kuramına Giriş (MATH325) Ders Detayları

Sayılar Kuramına Giriş (MATH325) Ders Detayları Sayılar Kuramına Giriş (MATH325) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati Sayılar Kuramına Giriş MATH325 Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i MATH 111

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

MATEMATİK BİLİM GRUBU III KURS PROGRAMI

MATEMATİK BİLİM GRUBU III KURS PROGRAMI MATEMATİK BİLİM GRUBU III KURS PROGRAMI 1.Kurumun Adı 2.Kurumun adresi 3.Kurucunun Adı 4.Programın Adı : OĞUZHAN ÖZKAYA ÖZEL ÖĞRETİM KURSU : Onur Mahallesi Leylak Sok.No:9 Balçova-İzmir : Oğuzhan Özkaya

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar Atatürk Anadolu Lisesi M A T E M A T İ K Temel Kavramlar Üzerine Kısa Çalışmalar KONYA \ SELÇUKLU 01 MATEMATİK 1. TEMEL KAVRAMLAR 1.1. RAKAM Sayıların yazılmasında kullanılan sembollere rakam denir. Onluk

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

12. = için bu ifadenin en küçük tam sayı değeri 301. y 500. Cevap B. = için en büyük tam sayı değeri 799 olup aradaki. Cevap E

12. = için bu ifadenin en küçük tam sayı değeri 301. y 500. Cevap B. = için en büyük tam sayı değeri 799 olup aradaki. Cevap E eneme - / Mat MTEMTİK ENEMESİ. 988 denirse + + +. < < 0.. 0 < < + + + + +. + ^ + h + + 989 olur. I. - için ( ) II. 0 < < 0 < < ( + ) III. 0 < < + 0 < < 0 < < ( + ) 6 + +. ^+ + h - -6 - + + -. ^+ + h +

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların

Detaylı

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim.

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim. 1 2 sayısını en yakın onda birliğe kadar tahmin edelim. 3 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. 4 sayısını en yakın onda birliğe kadar

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? Amaç: n basamaklı bir merdivenin en üst basamağına her adımda 1, 2, 3, veya m basamak hareket ederek kaç farklı şekilde çıkılabileceğini bulmak. Giriş:

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

8. SINIF MATEMATiK KAREKÖKLÜ SAYILAR

8. SINIF MATEMATiK KAREKÖKLÜ SAYILAR 0 8. SINIF MATEMATiK KAREKÖKLÜ SAYILAR KAREKÖKLÜ SAYI KAVRAMI Karekök ile gösterilir. karekökünün içi negatif bir sayıya eşit olamaz. ÖR: Aşağıda verilen eşitliklere göre x lerin alabileceği değerleri

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

THEVENİN VE NORTON TEOREMLERİ

THEVENİN VE NORTON TEOREMLERİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ THEVENİN VE NORTON TEOREMLERİ Dr. Öğr. Üyesi Ahmet ÇİFCİ THEVENİN TEOREMİ Bir elektrik devresi herhangi bir noktasına

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir. KANUNLAR : Elektrik ve elektronikle ilgili konuları daha iyi anlayabilmek için, biraz hesap biraz da kanun bilgisine ihtiyaç vardır. Tabii bunlar o kadar zor hasaplar değil, yalnızca Aritmetik düzeyinde

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Matrisler ve matris işlemleri

Matrisler ve matris işlemleri 2.Konu Matrisler ve matris işlemleri Kaynaklar: 1.Uygulamalı lineer cebir. 7.baskıdan çeviri.bernhard Kollman, David R.Hill/çev.Ed. Ömer Akın, Palma Yayıncılık, 2002 2.Lineer Cebir. Feyzi Başar.Surat Universite

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

İleri Analiz II (MATH252) Ders Detayları

İleri Analiz II (MATH252) Ders Detayları İleri Analiz II (MATH252) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS İleri Analiz II MATH252 Bahar 3 2 0 4 8 Ön Koşul Ders(ler)i Math 251 İleri Analiz

Detaylı

TEOREMLER İSPATLAR SONUÇLAR

TEOREMLER İSPATLAR SONUÇLAR TEOREMLER İSPATLAR SONUÇLAR TANIM: Birer kenarları ortak ve iç bölgeleri ayrık iki açıya KOMŞU AÇILAR denir. TANIM: Komşu iki açının ortak olmayan kenarları zıt ışınlar ise bu iki açıya DOĞRUSAL AÇI ÇİFTİ

Detaylı

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER Sunum ve Sistematik. ÜNİTE: MANTIK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur..

Detaylı

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c) TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2005 Soru kitapçığı türü A 1. Hem % 15 i, hem de % 33

Detaylı

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır. 0.1 GRUPLAR Tanım 1 A kümesi boştan farklıolmak üzere işlemine göre aşağıdaki koşulları gerçekliyorsa (A, ) ikilisine bir Grup denir. 1. kapalılık özelliğine sahiptir, yani her x, y A için x y A olur.

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: POLİNOMLAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın sınıf

Detaylı

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3 KARMAŞIK SAYININ ORJİN ETRAFINDA DÖNDÜRÜLMESİ z = a + bi karmaşık sayısını, uzunluğunu değiştirmeden orijin etrafında pozitif yönde β kadar döndürülmesiyle elde edilen yeni karm aşık sa yı w olsun. İm

Detaylı

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE 2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda

Detaylı

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU ENES KOCABEY HALİL İBRAHİM GÜLLÜK 2014 DANIŞMAN ÖĞRETMEN : YÜKSEL

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

KPSS ÖABT İLKÖĞRETİM MATEMATİK. Tamamı Çözümlü SORU BANKASI. 50 soruda SORU

KPSS ÖABT İLKÖĞRETİM MATEMATİK. Tamamı Çözümlü SORU BANKASI. 50 soruda SORU KPSS ÖABT 09 İLKÖĞRETİM MATEMATİK Tamamı Çözümlü SORU BANKASI 50 soruda SORU Komisyon ÖABT İLKÖĞRETİM MATEMATİK TAMAMI ÇÖZÜMLÜ SORU BANKASI ISBN 978-605--9-6 Kitapta yer alan bölümlerin tüm sorumluluğu

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ 1 ÖNERMELER Kesin olarak doğru ya da yanlış hüküm bildiren ifadelere önerme denir. Önermeler p ve q gibi harflerle ifade edilirler.bir önerme doğru ise, doğruluk değeri

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

DRC = x denirse. 7. Üç basamaklı doğal sayı abc olsun. Deneme - 5 / Mat a 9b = 6a + 6b = 4ab. = x+ x + 1. Cevap B.

DRC = x denirse. 7. Üç basamaklı doğal sayı abc olsun. Deneme - 5 / Mat a 9b = 6a + 6b = 4ab. = x+ x + 1. Cevap B. Deneme - / Mat MTEMTİK DENEMESİ. 988 denirse... + + + 0, - 00, - 0, - 00, ( 00) 0 - - 0 - - 8 - bulunur. + + + + +. + ^ + h + + 989 olur. + +. ^+ + h - - - + + -. ^+ + h + bulunur. + h! - nn.! 0 - h! +

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı