TAM DEĞER ARDIŞIK TOPLAMLAR

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TAM DEĞER ARDIŞIK TOPLAMLAR"

Transkript

1 ÖZEL EGE LİSESİ TAM DEĞER VE ARDIŞIK TOPLAMLAR HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 01

2 İÇİNDEKİLER 1. PROJENİN AMACI.... GİRİŞ..YÖNTEM. ÖN BİLGİLER.. 5.ARDIŞIK TOPLAMLARIN TAM DEĞERİ.. 5 SONUÇ TEŞEKKÜR.. 11 KAYNAKLAR.. 11

3 1. PROJENİN AMACI Bu roje kasamında, 1 den k ya kadar olan ardışık tam sayıların n. dereceden köklerinin tam değerlerinin tolamını ve ardışık çift ile ardışık tek tam sayıların kareköklerinin tam değerlerinin tolamını ifade eden formüllerin bulunması hedeflenmiştir.. GİRİŞ Ulusal matematik olimiyat sınavlarına hazırlanırken tam değer konusundaki bazı soru tileri dikkatimi çekti. Bu sorularda genellikle ardışık sayıların tam değerlerinin tolamı üzerinde durulmuş olduğunu fark ettim. Bunun üzerine, Ardışık tam sayıların n. dereceden köklerinin tam değerlerinin tolamını ifade eden bir formül olu olmadığını merak ettim ve ilgili konuda bir literatür çalışması yatım. Sonuç olarak, amaçlanan tolama işlemlerini ifade eden bir formül üzerinde daha önce çalışılmadığını satadım. Böyle bir formül bulabilmek için kuramsal çalışmalar yatım ve bunların ışığında bazı genellemeler üretebildim. İşlerliğini gösterebilmek için bu genellemeleri çeşitli örneklere uyguladım.. YÖNTEM Bu roje boyunca doğrudan isat yöntemi kullanılmıştır.. ÖN BİLGİLER Bu bölümde roje kasamında kullanılacak olan temel tanım ve teoremlere yer verilmiştir. TANIM.1 x R için x ten büyük olmayan en büyük x tam sayısına x in tam değeri denir ve x ile gösterilir (Özdemir,010; Yücesan, 007). TEOREM. x R olmak üzere x x < x + 1 dir ( Yücesan, 007). TEOREM. Aşağıdaki eşitlikler sağlanır ( Yücesan, 007). a. n n (n + 1) k = k=1 b. n k = k=1 n (n + 1) (n + 1) 6

4 c. ÖNERME. n k n (n + 1) = [ k=1 ] x bir gerçel sayı ve x = m olsun. Bu durumda, a. m çift ise m x < (m + 1) aralığında m tane tek tam sayı vardır. b. m çift ise m x < (m + 1) aralığında m + 1 tane çift tam sayı vardır. c. m tek ise m x < (m + 1) aralığında m + 1 tane tek tam sayı vardır. d. m tek ise m x < (m + 1) aralığında m tane çift tam sayı vardır. İSPAT x = m olsun. Teorem. den m x < (m + 1) elde edilir. Buradan m x < (m + 1) olduğu açıktır. a. m çift tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki tek tam sayılar, O halde bu aralıkta, m + 1, m +,, (m + 1) tane tek tam sayı vardır. (m + 1) (m + 1) + 1 = m + m + 1 m = m b. m çift tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki çift tam sayılar, O halde bu aralıkta, m, m +,, (m + 1) 1 tane çift tam sayı vardır. (m + 1) 1 m + 1 = m + m m + 1 = m + 1 c. m tek tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki tek tam sayılar, m, m +,, (m + 1) 1 Bu aralıkta b şıkkında gösterildiği gibi m + 1 tane tek tam sayı vardır. d. m tek tam sayı olsun. Bu durumda, m x < (m + 1) aralığındaki çift tam sayılar,

5 m + 1, m +,, (m + 1) Bu aralıkta a şıkkında gösterildiği gibi m tane çift tam sayı vardır. 5. ARDIŞIK TOPLAMLARIN TAM DEĞERİ Bu bölümde ardışık tolamların. dereceden köklerinin tam değerlerini ve ardışık çift ile tek tam sayıların kareköklerinin tam değerlerinin tolamını ifade eden formüller bulunu isatlanmıştır. Ayrıca elde edilen formüller çeşitli örnekler üzerinde uygulanmıştır. ÖNERME 5.1 üzere Z +, t, k Z ve t k < (t + 1) olsun. f : N N, f (m) = (m + 1) m olmak k = t (k t + 1) + n f (n) t 1 İSPAT: x R olmak üzere x = m ise m x < (m + 1) Bu aralıktaki tam sayıların sayısı f (m) = (m + 1) m olduğu açıktır. Şimdi t k < (t + 1) şeklinde bir t tam sayısı alalım. t x k aralığında k t + 1 tane tam sayı vardır ve bu tam sayıların. dereceden köklerinin tam değeri t olur. O halde, k = t 1 + t + + k = 1 f (1) + f () + + (t 1) f (t 1) + t (k t + 1) olarak bulunur. ÖRNEK 5. 1 t 1 = t (k t + 1) + n f (n) tolamını elde ettiğimiz formülle bulalım. ÇÖZÜM: < 6 olduğundan t = 5 olduğu açıktır. Diğer taraftan, Şimdi Teorem. ve Önerme 5.1 den f (n) = (n + 1) n = n + n + 1 5

6 = 5 ( ) + n (n + n + 1) = 10 + (n + n + n) = 10 + n + n + n = 5 = ÖNERME 5. t, k Z ve t k + 1 < (t + 1) olmak üzere k 1 1 (t t k + 1 t t + ) + t, t tek ise = 1 1 (t t k t + t) + t, t çift ise İSPAT: k+1 t t, k Z ve t k + 1 < (t + 1) olsun. 1. DURUM t tek sayı olsun. Bu durumda t x (k + 1) aralığında tane tek sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den t + t + + k = k + 1 t = (t ) (t 1) + (t 1) (t 1) + t k + 1 t = (t ) (t 1) + t t 1 = ((n 1) n) + t k + 1 t 6

7 t 1 t 1 = 8 n n k + 1 t + t ( + 1) = 8 t 1 t + 1 t (t 1 ) (t + 1 ) 6 k + 1 t + t ( + 1) = 8 6 t 1 t t t t t + t k = t 1 t t t 1 + t k = t 1 t + 1 t + 1 t + t k = 1 1 (t t k + 1 t t + ) + t. DURUM t çift sayı olsun. Bu durumda, t x (k + 1) aralığında k+1 t = k t tane tek sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den (t 1) + + t 1 + t + + k = k t = (t ) (t ) + (t ) (t ) + (t 1) t + t ( + 1) k t = (t 5) (t ) + t (t 1) + t ( + 1) t k t = ( (n 1) n) + t (t 1) + t ( + 1) t = (8n n) t = 8 n n k t + t (t 1) + t ( + 1) t k t + t (t 1) + t ( + 1) = 8 t t ( t + 1) t (t + 1) 6 = t t (t 1) t (t t ) + t (t 1) + t (k + 1) = t t [ t (t 1) 1] + t (t 1) + t (k + 1) k t + t (t 1) + t ( + 1) 7

8 = t t (t 7 t ) + t (t 1) + t (k + 1) = 1 1 (t 15t k t + 1t) + t (t 1) + t ( + 1) = 1 1 (t t k t + t) + t ( + 1) ÖRNEK tolamını bulalım. ÇÖZÜM: 191 = ve < 1 olduğundan k = 95 ve t = 1 bulunur. Teorem 5. den = 1 1 ( (1) ) + 1 = 8 olarak bulunur. ÖRNEK: tolamını bulalım. ÇÖZÜM: 1 17 < 1 olduğundan t = 1 olduğu bulunur. O halde Teorem 5. den = 1 1 ( ) + 1 = 566 elde edilir. ÖNERME 5.6 t, k Z ve t k < (t + 1) olmak üzere k t t + t 1 = t t t 1 + t k t 1, t tek ise k t + t, t çift ise 8

9 İSPAT: t, k Z ve t k < (t + 1) olsun. 1. DURUM t tek sayı olsun. Bu durumda, t x k aralığında k t tane çift tam sayı vardır ve bu sayıların kareköklerinin tam değeri t Buradan ve Önerme. den k = = (t ) (t ) + (t 1) t + t ( k t 1 + 1) = (t ) (t 5) + (t 1) t + t k t 1 t = (1 + (n + 1) (n + 1) + (t 1) t) + t = (1 + (8 n + 6 n + 1) + (t 1) t) + t = (1 + 8 n + 6 ( n) + 1 t t t k t 1 t k t 1 + (t 1) t) + t k t 1 = t t 1 t (t ) + 6 t 1 + t + t (t 1) + t k t 1 = 1 + t t 1 (t ) + 9 t t 1 + t + t (t 1) + t k t 1 = t t 1 t ( (t ) + 9) + + t (t 1) + t k t 1 = 1 + t t + (t + 1) + t 1 + t (t 1) + t k t 1 = 1 + t 15t + 8t + + t 1 + t (t 1) + t k t 1 = t t + t 1 + t k t 1 9

10 . DURUM t çift sayı olsun. Bu durumda, t x k aralığında k t vardır. O halde Önerme. den + 1 tane çift tam sayı k = k t = (t ) (t 1) + (t 1) (t 1) + t ( + 1) k t = (t 1) (t ) + t t = 1 + (n + 1) (n + 1) + t = 1 + (8n + 6n + 1) + t t k t t k t t = n + 6 ( n) + 1 t k t + t = t t (t 1) + 6 t (t ) + t t + t k 6 = t t t t (t + 9) + + t k = 1 + t t t t (t + 5) + + t k 1 = t t t 1 k t + t ÖRNEK tolamını bulalım. ÇÖZÜM: < 18 olduğundan t = 17 olarak bulunur. Önerme 5.6 dan = = 165 olarak bulunur

11 ÖRNEK tolamını bulalım. ÇÖZÜM: < 11 olduğundan t = 10 olarak bulunur. Önerme 5.6 dan = = 85 olarak bulunur. SONUÇ Sonuç olarak, a) k b) k c) k tolamlarını ifade eden formülleri buldum. TEŞEKKÜR Proje çalışmamın her aşamasında yakın ilgi ve desteğini gördüğüm; çalışmalarımın yönlendirilmesi ve sonuçlandırılmasında büyük emeği geçen roje danışmanım Dr. Gizem GÜNEL e, bugüne dek yetişmemde katkısı olan değerli öğretmenlerime, her zaman yanımda olan ve beni destekleyen, yüreklendiren aileme teşekkür ederim. KAYNAKLAR Özdemir,M.,(010), Matematik Olimiyatlarına Hazırlık, Altın Nokta Yayınları, İzmir. Yücesan,R., (007), Meraklısına Lise Matematik, Zambak Yayınları, İzmir. 11

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3

Detaylı

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ

NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ ÖZEL EGE LİSESİ NAPOLEON PROBLEMİNE FARKLI BİR BAKIŞ HAZIRLAYAN ÖĞRENCİLER: Fatma Gizem DEMİRCİ Hasan Atakan İŞBİLİR DANIŞMAN ÖĞRETMEN: Gülşah ARACIOĞLU İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2.

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

FONKSYONLARI FONKSYONLARA GÖTÜREN FONKSYONLAR ÜZERNDE ANT-MONOTONLUK VE DEMPOTENTLK

FONKSYONLARI FONKSYONLARA GÖTÜREN FONKSYONLAR ÜZERNDE ANT-MONOTONLUK VE DEMPOTENTLK ÖZEL EGE LSES FONKSYONLARI FONKSYONLARA GÖTÜREN FONKSYONLAR ÜZERNDE ANT-MONOTONLUK VE DEMPOTENTLK HAZIRLAYAN ÖRENC: Kıvanç Ararat (10B) DANIMAN ÖRETMEN: Emel Ergönül ZMR 2011 ÇNDEKLER PROJENN ADI 2 PROJENN

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ

TAKSİ DÜZLEMİNDE FINSLER-HADWIGER EŞİTSİZLİĞİ ÖZEL EGE LİSESİ KSİ DÜZLEMİNDE FINSLER-HDWIGER EŞİSİZLİĞİ HZIRLYN ÖĞRENCİ: Eray ÖZER DNIŞMN ÖĞREMEN: Gizem GÜNEL İZMİR 0 İÇİNDEKİLER. PROJENİN MCI... GİRİŞ............. YÖNEM.... 4. ÖN BİLGİLER..... 4

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR

ÖZEL EGE LĠSESĠ. ġeklġndekġ ĠFADELERĠN. SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR ÖZEL EGE LĠSESĠ ġeklġndekġ ĠFADELERĠN SADELEġTĠRĠLEMEZ VEYA SADELEġTĠRĠLEBĠLĠR OLMASI ĠÇĠN GEREKEN KOġULLAR HAZIRLAYAN ÖĞRENCĠ: Ersin ĠSTANBULLU DANIġMAN ÖĞRETMEN: Defne TABU ĠZMĠR 2013 ĠÇĠNDEKĠLER 1.

Detaylı

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ

ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ ÖZEL EGE LİSESİ ELEMANLARI DENK KÜMELER OLAN VE HER FARKLI İKİ ELEMANININ SİMETRİK FARKINI İÇEREN KÜMELERİN ELEMAN SAYILARININ EN BÜYÜK DEĞERİ HAZIRLAYAN ÖĞRENCİ: ATAHAN ÖZDEMİR DANIŞMAN ÖĞRETMEN: DEFNE

Detaylı

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ

PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ PROJE ADI BİR POLİNOMUN KÖKLERİNİN KUVVETLER TOPLAMININ VEKTÖRASYON YÖNTEMİ İLE HESAPLANMASI AHSEN EKİNCİ IRMAK DAİ Özel Bahçeşehir Fen Teknoloji Lisesi Başakşehir/İSTANBUL Projenin Adı: Bir Polinomun

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

Nesbitt Eşitsizliğine Farklı Bir Bakış

Nesbitt Eşitsizliğine Farklı Bir Bakış ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI Nesbitt Eşitsizliğine Farklı Bir Bakış Muhammed Osman Çorbalı Danışman Öğretmen: Yüksel Demir PROJE RAPORU 2014 PROJENİN AMACI:

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez.

BÖLÜM IV. olsa r s(mod p) bulunur ki, bu mümkün değildir. Ayrıca bu sayı takımındaki hiçbir sayı p tarafından bölünmez. BÖLÜM IV (KÜÇÜK FERMAT VE WİLSON TEOREMLERİ Teorem 4. (Fermat Teoremi F a olan bir asal sayı olsun. Bu durumda a (mod İsat: a sayısının a a a K ( a gibi ilk ( katından oluşan sayı takımını gözönüne alalım.

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER

Örnek...6 : Örnek...1 : Örnek...7 : Örnek...2 : Örnek...3 : Örnek...4 : Örnek...8 : Örnek...5 : MANTIK 2 MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER MANTIK MATEMATİKSEL ARAÇLAR AÇIK ÖNERMELER İçerisinde değişken olan ve değişkenin değerlerine göre doğru ya da yanlış olabilen önermelere açık önerme denir. Açık önermeler değişkenine göre P( x), Q( a)

Detaylı

PROJENİN ADI NAPOLEON TEOREMİNİN DİKDÖRTGENE UYGULANMASI PROJEYİ HAZIRLAYANLAR ECEM OBUROĞLU, PELİN ÖZKAN OKUL ADI VE ADRESİ

PROJENİN ADI NAPOLEON TEOREMİNİN DİKDÖRTGENE UYGULANMASI PROJEYİ HAZIRLAYANLAR ECEM OBUROĞLU, PELİN ÖZKAN OKUL ADI VE ADRESİ PROJENİN ADI NAPOLEON TEOREMİNİN DİKDÖRTGENE UYGULANMASI PROJEYİ HAZIRLAYANLAR ECEM OBUROĞLU, PELİN ÖZKAN OKUL ADI VE ADRESİ ÖZEL KÜLTÜR LİSESİ Ataköy 9.-10. Kısım,34156 Bakırköy-İstanbul DANIŞMAN ÖĞRETMEN

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE

ARDIŞIK SAYILAR. lab2_pc32 BERRIN_ESMA_OZGE 2011 ARDIŞIK SAYILAR lab2_pc32 BERRIN_ESMA_OZGE 29.11.2011 İçindekiler bu konu 4. Sınıf müfredatında yer almaktadır... 2 ardisik sayılarda dört işlem... Hata! Yer işareti tanımlanmamış. ardisik sayilarda

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI

ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI ÖZEL EGE LİSESİ ÇEŞİTLİ GEOMETRİK ŞEKİLLERİN İÇERDİĞİ MAKSİMUM KAFES NOKTASI SAYILARININ BULUNMASI HAZIRLAYAN ÖĞRENCİ: Toygar Çaparoğlu DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 01 İÇİNDEKİLER 1. PROJENİN AMACI...

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ MATEMATİK YARIŞMASI PROJENİN ADI: EULERİN PEDAL ÜÇGEN FORMÜLÜNÜ KULLANARAK PEDAL DÖRTGENLER İÇİN YENİ BİR FORMÜL GELİŞTİRME MEVKOLEJİ ÖZEL BASINKÖY ANADOLU LİSESİ DANIŞMAN:ELİF

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER

ÜNİTE. MATEMATİK-1 Doç.Dr.Erdal KARADUMAN İÇİNDEKİLER HEDEFLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER HEDEFLER İÇİNDEKİLER ÖZDEŞLİKLER, DENKLEMLER VE EŞİTSİZLİKLER Özdeşlikler Birinci Dereceden Bir Bilinmeyenli Denklemler İkinci Dereceden Bir Bilinmeyenli Denklemler Yüksek Dereceden Denklemler Eşitsizlikler

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi Bil101 Bilgisayar Yazılımı I Bilgisayar Yüksek Mühendisi Sözde kod, algoritmalar ve programlar oluşturulurken kullanılan, günlük konuşma diline benzer ve belli bir programlama dilinin detaylarından uzak

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR

ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR ULUSAL LİSE ÖĞRENCİLERİ ARASI 6.SALİH ZEKİ MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI RAPORU HADARİZM SHORTCUT (MATEMATİK) PROJEYİ HAZIRLAYANLAR SELİM HADAR DANIŞMAN ÖĞRETMEN SANDRA GÜNER ULUS ÖZEL MUSEVİ

Detaylı

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim.

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim. 1 2 sayısını en yakın onda birliğe kadar tahmin edelim. 3 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. 4 sayısını en yakın onda birliğe kadar

Detaylı

İSTEK ÖZEL KAŞGARLI MAHMUT ORTAOKULU EKİM 2015

İSTEK ÖZEL KAŞGARLI MAHMUT ORTAOKULU EKİM 2015 İSTEK ÖZEL KAŞGARLI MAHMUT ORTAOKULU EKİM 2015 TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ SİSTEMİ PSİKOLOJİK DANIŞMA ve REHBERLİK BÖLÜMÜ İçindekiler TEOG Modelinin Amaçları TEOG Modelinin Uygulanması TEOG Modelinde

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

Soyut Cebir. Prof. Dr. Dursun TAŞCI

Soyut Cebir. Prof. Dr. Dursun TAŞCI Soyut Cebir Prof. Dr. Dursun TAŞCI Ankara 2007 674 ÖNSÖZ Bu kitap; Selçuk Üniversitesi ve Gazi Üniversitesinde uzun yıllar okutmuş olduğum Soyut Cebir ve Cebire Giriş ders notlarının düzenlenmesi ve daha

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

Matrisler ve matris işlemleri

Matrisler ve matris işlemleri 2.Konu Matrisler ve matris işlemleri Kaynaklar: 1.Uygulamalı lineer cebir. 7.baskıdan çeviri.bernhard Kollman, David R.Hill/çev.Ed. Ömer Akın, Palma Yayıncılık, 2002 2.Lineer Cebir. Feyzi Başar.Surat Universite

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

7 Mayıs 2006 Pazar,

7 Mayıs 2006 Pazar, TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 14. ULUSAL MATEMATİK OLİMPİYATI - 2006 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 7 Mayıs 2006 Pazar, 13.00-15.30

Detaylı

TEOREMLER İSPATLAR SONUÇLAR

TEOREMLER İSPATLAR SONUÇLAR TEOREMLER İSPATLAR SONUÇLAR TANIM: Birer kenarları ortak ve iç bölgeleri ayrık iki açıya KOMŞU AÇILAR denir. TANIM: Komşu iki açının ortak olmayan kenarları zıt ışınlar ise bu iki açıya DOĞRUSAL AÇI ÇİFTİ

Detaylı

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.

3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır. 0.1 GRUPLAR Tanım 1 A kümesi boştan farklıolmak üzere işlemine göre aşağıdaki koşulları gerçekliyorsa (A, ) ikilisine bir Grup denir. 1. kapalılık özelliğine sahiptir, yani her x, y A için x y A olur.

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen

5. Salih Zeki Matematik Araştırma Projeleri Yarışması. PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen 5. Salih Zeki Matematik Araştırma Projeleri Yarışması PROJE ADI Düzensizlikten Düzene: Çeşitkenar Üçgen Üzerinde Eşkenar Üçgen Eslem Nur KELEŞOĞLU Muhammet Enes ÖRCÜN ÖZEL BAŞAKŞEHİR ÇINAR FEN LİSESİ İSTANBUL,

Detaylı

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi

Onur NURTAN. Danışman Öğretmen: Mustafa YAZAGAN. Özel Atacan Anadolu Lisesi KAĞIT KATLAMA YOLUYLA KESİRLERİN BELİRLENMESİ Onur NURTAN Danışman Öğretmen: Mustafa YAZAGAN Özel Atacan Anadolu Lisesi Özet: Kare biçimindeki kağıdı tam iki eş parçaya ayıran kırışığına kağıdımızı katlayarak

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ

LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ LİSE 1 MANTIK KONU ANLATIM FASİKÜLÜ 1 ÖNERMELER Kesin olarak doğru ya da yanlış hüküm bildiren ifadelere önerme denir. Önermeler p ve q gibi harflerle ifade edilirler.bir önerme doğru ise, doğruluk değeri

Detaylı

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

YGS - LYS SAYILAR KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI YGS - LYS SAYILAR KONU ÖZETLİ LÜ SORU BANKASI ANKARA ÖN SÖZ Sevgili Öğrenciler, ÖSYM nin son yıllarda yaptığı sınavlardaki matematik sorularının eski sınav sorularından çok farklı olduğu herkes tarafından

Detaylı

DRC = x denirse. 7. Üç basamaklı doğal sayı abc olsun. Deneme - 5 / Mat a 9b = 6a + 6b = 4ab. = x+ x + 1. Cevap B.

DRC = x denirse. 7. Üç basamaklı doğal sayı abc olsun. Deneme - 5 / Mat a 9b = 6a + 6b = 4ab. = x+ x + 1. Cevap B. Deneme - / Mat MTEMTİK DENEMESİ. 988 denirse... + + + 0, - 00, - 0, - 00, ( 00) 0 - - 0 - - 8 - bulunur. + + + + +. + ^ + h + + 989 olur. + +. ^+ + h - - - + + -. ^+ + h + bulunur. + h! - nn.! 0 - h! +

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI. LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA

TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI. LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA TÜBİTAK BİDEB LİSE ÖĞRETMENLERİ FİZİK, KİMYA, BİYOLOJİ, MATEMATİK- PROJE DANIŞMANLIĞI EĞİTİMİ ÇALIŞTAYI LİSE2 (Çalıştay 2012) MATEMATİK GRUP HYPTIA PROJE ADI KATLAMA YÖNTEMİ İLE EŞKENAR ÜÇGEN VEALTIGENDE

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal I / 18 Kasım 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Sonbahar / Sayısal I / 18 Kasım 2007 Matematik Soruları ve Çözümleri 1. Bir sayının 0,02 ile çarpılmasıyla elde edilen sonuç, aynı sayının aşağıdakilerden

Detaylı

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun.

için doğrudur. olmak üzere tüm r mertebeli gruplar için lemma nın doğru olduğunu kabul edelim. G grubunun mertebesi n olsun. ve olsun. 11. Cauchy Teoremi ve p-gruplar Bu bölümde Lagrange teoreminin tersinin doğru olduğu bir özel durumu inceleyeceğiz. Bu teorem Cauchy tarafından ispatlanmıştır. İlk olarak bu teoremi sonlu değişmeli gruplar

Detaylı

ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ

ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ T.C MİLLİ EĞİTİM BAKANLIĞI ÖZEL EGE LİSESİ TÜRKÇE YILLIK PROJE ÇALIŞMASI ÖZEL EGE LİSESİ KÜTÜPHANESİ VE HİZMETLERİ HAZIRLAYANLAR Dilay BİÇER Engin YAZAR Aslı SAĞGÜL Sınıf/ Şube : 4/B Rehber Öğretmen :

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ - MANTIK İÇİNDEKİLER Safa No Test No ÖNERMELER...-... - BİLEŞİK ÖNERMELER...-... -6 AÇIK ÖNERMELER...-6... 7-8 İSPAT YÖNTEMLERİ...7-8... 9-9 - KÜMELER KÜMELERDE TEMEL KAVRAMLAR...9-4... - KÜMELERDE İŞLEMLER...5-6...

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir. KANUNLAR : Elektrik ve elektronikle ilgili konuları daha iyi anlayabilmek için, biraz hesap biraz da kanun bilgisine ihtiyaç vardır. Tabii bunlar o kadar zor hasaplar değil, yalnızca Aritmetik düzeyinde

Detaylı

Tek Değişkenli Kalkülüs (MATH 104) Ders Detayları

Tek Değişkenli Kalkülüs (MATH 104) Ders Detayları Tek Değişkenli Kalkülüs (MATH 104) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Tek Değişkenli Kalkülüs MATH 104 Bahar 3 2 0 4 6 Ön Koşul Ders(ler)i MATH

Detaylı

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR?

MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? MERDİVENİN EN ÜST BASAMAĞINA KAÇ FARKLI YOLLA ÇIKILIR? Amaç: n basamaklı bir merdivenin en üst basamağına her adımda 1, 2, 3, veya m basamak hareket ederek kaç farklı şekilde çıkılabileceğini bulmak. Giriş:

Detaylı

1- Matematik ve Geometri

1- Matematik ve Geometri GEOMETRİ ÖĞRETİMİ 1- Matematik ve Geometri Matematik ve Geometri Bir çok matematikçi ve matematik eğitimcisi matematiği «cisimler, şekiller ve sembollerle ilişkiler ve desenler inşa etme etkinliği» olarak

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

GEOMETRİ SORU BANKASI KİTABI

GEOMETRİ SORU BANKASI KİTABI LİSE ÖĞRENCİLERİNİN ÜNİVERSİTE SINAVLARINA HAZIRLANMALARI İÇİN GEOMETRİ SORU BANKASI KİTABI HAZIRLAYAN Erol GEDİKLİ Matematik Öğretmeni SUNUŞ Sevgili öğrenciler! Bu kitap; hazırlandığınız üniversite sınavlarında,

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU

ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU ÖZEL DARÜŞŞAFAKA LİSESİ SALİH ZEKİ V. MATEMATİK ARAŞTIRMA PROJELERİ YARIŞMASI GEOMETRİDE ÖZEL DURUMDAN YARARLANARAK PROBLEM ÇÖZME METODU ENES KOCABEY HALİL İBRAHİM GÜLLÜK 2014 DANIŞMAN ÖĞRETMEN : YÜKSEL

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c) TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2005 Soru kitapçığı türü A 1. Hem % 15 i, hem de % 33

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Değerlendirme Sınavı 2-5. Sınıf CEVAP ANAHTARI

Değerlendirme Sınavı 2-5. Sınıf CEVAP ANAHTARI Değerlendirme Sınavı 2-5. Sınıf Türkçe C C B B A D B D A C A B A C D Matematik C D B D A D C A A D D C B A B Fen Bilimleri C D A B B C A D B C C D A D B Sosyal Bilgiler D C A C B A C D B B D D A B B İngilizce

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

DANIŞMAN ÖĞRETMEN İlknur ÖZDEMİR ÖZEL EGE LİSESİ İLKÖĞRETİM OKULU 5/C SINIFI BİLGİSAYAR YILLIK PROJESİ

DANIŞMAN ÖĞRETMEN İlknur ÖZDEMİR ÖZEL EGE LİSESİ İLKÖĞRETİM OKULU 5/C SINIFI BİLGİSAYAR YILLIK PROJESİ ÖZEL EGE LİSESİ İLKÖĞRETİM OKULU 5/C SINIFI BİLGİSAYAR YILLIK PROJESİ PROJE KONUSU BİLGİSAYARIN KULLANIM ALANLARI VE TÜRKİYEDE BİLGİSAYAR KULLANIMINI NASIL GELİŞTİREBİLİRİZ? HAZIRLAYANLAR Buket TAŞBAŞ

Detaylı

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER

Sunum ve Sistematik 1. BÖLÜM: ÖNERMELER Sunum ve Sistematik. ÜNİTE: MANTIK KONU ÖZETİ Bu başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde konu özeti olarak sunulmuştur..

Detaylı

Hangi onluğa daha yakın dan limite doğru

Hangi onluğa daha yakın dan limite doğru Aldemir, S. (004). Hangi onluğa daha yakın dan limite doğru, İlköğretim-Online, 3(), 4-47, [Online]: http://ilkogretim-online.org.tr Hangi onluğa daha yakın dan limite doğru Salih ALDEMİR salihaldemir65@mynet.com

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Matematik I BIL

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Matematik I BIL DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Matematik I BIL131 1 4+0 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin Koordinatörü

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 1.KONU Sembolik Mantık; Önermeler, Niceyiciler, Olumsuzluk, İspat yöntemleri KAYNAKLAR 1. Akkaş, S., Hacısalihoğlu, H.H., Özel, Z., Sabuncuoğlu, A.,

Detaylı

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10.

8. 2 x+1 =20 x. 9. x 3 +6x 2-4x-24=0 10. MAT-1 EK SORULAR-2 1. 6. A)7 B)8 C)15.D)56 E)64 Olduğuna göre x.a)1 B)2 C)3 D)4 E)6 7. 2. Birbirinden farklı x ve y gerçek A)5.B)6 C)7 D)8 E)9 sayıları için; x 2 +2009y=y 2 +2009x eşitliği sağlandığına

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: POLİNOMLAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın sınıf

Detaylı