Self Organising Migrating Algorithm

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Self Organising Migrating Algorithm"

Transkript

1 OPTİMİZASYON TEKNİKLERİ Self Organising Migrating Algorithm Kendini Organize Eden Göç/Geçiş Algoritması MELİH HİLMİ ULUDAĞ Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği Bölümü İletişim: Proje Danışmanı Doç. Dr. BİLAL ALATAŞ 1. S a y f a

2 İçindekiler 1. Optimizasyon Algoritmaları Kendini Organize Eden Göç Algoritmasına Giriş Kendini Organize Eden Göç Algoritmasının İncelenmesi Popülasyon yaratılışı Göç Döngüsü Değerlendirme Kaynakça S a y f a

3 1. Optimizasyon Algoritmaları Analitik çözümler nadiren kullanılır çünkü hemen hemen tüm gerçek dünya optimizasyon problemleri, yinelemeli çözümler arar ve matematiksel bir algoritma kullanmak gereklidir. Bu nedenle, evrim algoritması, genetik algoritması, karınca algoritması ve parçacık sürüsü algoritması gibi algoritma metodolojileri geliştirilmiştir ve literatürde büyük ilgi görmüştür. Bu algoritmalar çeşitli optimizasyon alanlarında uygulanmıştır. Ancak, bu algoritmaların dezavantajlarından biri optimizasyon problemlerinin çözümünde problem boyutunun büyüdükçe çözümün oldukça düşük olmasıdır. 2. Kendini Organize Eden Göç Algoritmasına Giriş SOMA Ivan Zelinka tarafından geliştirilen Öz-Örgütlenme Geçiş Algoritması, bir stokastik optimizasyon algoritmasıdır. Genellikle evrimsel bir algoritma olarak bilinen SOMA, birçok optimizasyon problemini çözmek için kullanılabilir. Bu algoritma vahşi yabani hayvan gruplarının davranışlarından esinlenerek geliştirilmiştir. Bu bireyler sabit bir grup yerine, birbirini takip eden nesillerin geliştirilmesi yolu kullanarak göç etme fikrini amaçlıyor. Aynı zamanda genetik algoritmaya benzer bir yapıda olan SOMA, sınırlı parametreler alarak maliyet minimizasyonu sorununa cevap ararken yerel minumum u sağlayabiliyor. Dijkstra's, Floyd Warshall, Bellman Ford algoritmaları veya the A-star algoritması bilindiği üzere en kısa yol problemini bulmak için kullanılan algoritmalardır. Böyle problemlere de cevap verebilen SOMA, (Self Organising Migrating Algorithm) asenkron olarak paralel dağılımlı bir şekilde problemi ele alıyor. Kendini yöneten, organize eden göç algoritmasında yeni nesil, bireylerin göç etmesi ile oluşturulur. Bireyler kendi aralarında öz örgütlenmeli şekilde göç ederler. Dolayısıyla bireylerin sadece pozisyonları arama uzayında göç döngüsü olarak adlandırılan bir oluşum içerisine girer. 3. Kendini Organize Eden Göç Algoritmasının İncelenmesi İncelemeye başlamadan önce SOMA dan birkaç şey bahsedecek olursak : Bu algoritmanın farklı versiyonları mevcuttur. Öncelikle alacağı parametreleri belirtelim. Adım, yol uzunluğu PopSize, PRT ve Maliyet Fonksiyonu gibi parametrelerin tanımlanmış olması gerekir. Maliyet fonksiyonu skaler dönen bir değerdir. Ve uygunluk ölçüsü olarak kullanılır. Soma () fonksiyonu SOMA algoritması için bir arabirim sağlar. Bu, her parametre için minimum ve maksimum sınırlardan oluşan bir seçenekler listesidir ve isteğe bağlı bu listeyi en 3. S a y f a

4 aza indirmek için bir işlev çağrılır. Maliyet fonksiyonu ilk argüman olarak sayısal bir vektör alır ve ilgili maliyet değeri temsil eden bir sayısal skaler dönmelidir Popülasyon yaratılışı Bireylerin nüfusları rasgele oluşturulur. Her bir birey için her parametre verilen aralıktan rastgele <Düşük, Yüksek> seçilmelidir Göç Döngüsü Nufustaki her birey için maliyet fonksiyonu ve lider değer tanımlanır. Mevcut olan göç etme işlemi döngü için seçilir. Her birey döngü iterasyonunda maliyet fonksiyonu ve lider tarafından değerlendirilir. (parametre tanımındaki adıma göre) Bunun sonucunda bir atlama yapılır. Ve bu atlama değerlendirilip yol uzunluğu tarafından tanımlanan yeni bir konuma ulaşılıncaya kadar devam ettirilir. Ulaşılınca pathlength(yol uzunluğu) xi,j olur.yeni pozisyon xi, her atlamadan sonra j (1) hesaplanır. Sonuç olarak bireyler en iyi konumunu bulana kadar yörünge içerisinde dönerler. (Şekil1) ŞEKİL 1. PRTVEKTÖR ÜN BİREYLER ÜZERİNDEKİ HAREKETİ x mlyeni i, j = x ml i, j[ilk] + (x ml i, j x ml i, j[ilk]) t PRTVektör Gerekli şartlar t < 0 olacak ve yol uzunluğu (pathlegth) > Göç Döngüsü 4. S a y f a

5 Bir birey Liderlik için bir atlama başlatmadan önce Rasgele bir sayı oluşturulur. Ve oluşturulan sayı PRTVektör den daha büyük ise Bireysel bileşeni PRTVektör aracılığı ile 0 olarak ayarlanır. Dolayısıyla bireysel hareket N-k boyutlu alt uzayda alana sürekli dik olarak iner. SOMA globallikten ziyade yerel optimumu bulma eğilimindedir. Eğer göç döngülerinin sayısına ulaşıldıysa algoritma durur ve en iyi çözümü belirtir. Eğer rndj<prt ise PRTVektörj=1 Değilse PRTVektörj=0 Random olan sayı (rndj) <0,1> ve j=1,2,3,..n e kadardır. Örnek: PRTVektör e 4 parametre için PRT=0,3 olarak verilsin j rndj PRTVektör 1 0, , , ,012 1 J=1için rasgele üretilen rnd1 sayısı (0,234<0,3)? PRTVektör=1 J=2 için rasgele üretilen rnd2 sayısı (0,545<0,3)? PRTVektör=0 J=3 için rasgele üretilen rnd3 sayısı (0,865<0,3)? PRTVektör=0 J=4 için rasgele üretilen rnd4 sayısı (0,012<0,3)? PRTVektör=1 5. S a y f a

6 BAŞLAT RASGELE BİR POPÜLASYON OLUŞTUR ML=0 AKTİF LİDERİ SEÇ VE TÜM BİREYLERİN AMAÇ FONKSİYONLARINI DEĞERLENDİR KRİTER UYGUN MU? HAYIR ML=ML+1 AKTİF BİREYİN KONUMU İLE SEÇEBİLECEK EN İYİ KONUMU SEÇEREK YENİ POZİSYON ELDE ET EVET AKTİF LİDERİ SEÇ VE TÜM BİREYLERİN AMAÇ FONKSİYONLARINI DEĞERLENDİR HAYIR YENİ NOKTA AKTİF OLANDAN DAHA İYİ Mİ EVET AKTİF LİDERİ SEÇ VE TÜM BİREYLERİN AMAÇ FONKSİYONLARINI DEĞERLENDİR EN İYİ SONUCU RAPORLA BİTİR ŞEKİL 2. SELF ORGANİSİNG MİGRATİNG ALGORİTHM FLOW CHART 6. S a y f a

7 Örnek: # Rastrigin fonksiyonu yerel minumum içeren bir fonksiyon olsun. rastrigin <- function (a) 20 + a[1]^2 + a[2]^2-10*(cos(2*pi*a[1])+cos(2*pi*a[2])) # -5 ile 5 parametreleri aralığında global minumumu bulmaya çalışalım. x <- soma(rastrigin, list(min=c(-5,-5),max=c(5,5))) # Asgari olarak c(0,0) a çok yakın olmalıdır. Liderin konumunu bulacak olursak: print(x$population[,x$leader]) # Son olarak Liderlerin maliyet geçmişlerini çizelim plot(x) Şimdi her aşamayı teker teker izleyelim: rastrigin <- function(a) 20 + a[1]^2 + a[2]^2-10*(cos(2*pi*a[1])+cos(2*pi*a[2])) ŞEKİL 3. FONKSİYON YÜZEYİ [FUNCTİON] Sırada: minumum u araştıralım. x <- soma(rastrigin, list(min=c(-5.12,-5.12),max=c(5.12,5.12))) Burada SOMA optimizasyonunun başlangıcını belirttim. Eğer göç sınırı 20 ye ulaşırsa durdurulması gerekli olsun. Lider maliyet 1.67e-05 değerinde olacak. 7. S a y f a

8 Yani sıfır (asgari) değerine yakın 1.67e-05 a fonksiyon en iyi çalışma noktasının olduğunu fonksiyonun çıkışından gözlemleyeceğiz. Arama uzayının konumunu verelim: print(x$population[,x$leader]) e e-04 Bu konum (0,0) a çok yakın. Her tekrarda en iyi maliyet fonksiyonu değerini gösteren bir optimizasyon ilerleme düzeneği çizebiliriz. Şöyle ki: ŞEKİL 4. FONKSİYONUN OPTİMUM İLERLEME ÇİZENEĞİ Burada algoritmanın üzerinde çalıştığı fonksiyonu hızlıca aşağı düşürdüğünü ve sıfıra doğru en küçük değeri izleyerek yeni bireylere göç ettiğini gözlemliyoruz. Bu örneği resimlerle izleyelim: 8. S a y f a

9 1.Göç 2.Göç 3.Göç 4.Göç 5.Göç 6.Göç ŞEKİL 5. GÖÇ DÖNGÜSÜ 3.3. Değerlendirme SOMA özellikle yılları arasında çeşitli alanlarda kullanılmıştır. Örnek verecek olursam: Kaotik Sistemlerin Kontrolünde Sinir Ağı Sentezinde Elektrik ile bağlantılı olan optimizasyonlarda Vb. alanlarda kendine yer bulmuştur. Bu algoritma ile ilgili son güncelleme yılında yapılmıştır. 9. S a y f a

10 4. Kaynakça o https://github.com/jonclayden/soma o General-Purpose Optimisation With the Self-Organising Migrating Algorithm, Jon Clayden; based on the work of Ivan Zelinka o Self-Organizing Migrating Strategies Applied to Reliability-Redundancy Optimization of Systems Leandro dos Santos Coelho o SOMA Ivan Zelinka o International Journal of Soft Computing and Engineering (IJSCE) ISSN: , Volume-3, Issue-6, January 2014 o Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Advances in Engineering Software, 36(10), pp NOLLE, L., ZELINKA, I., HOPGOOD, A.A. and GOODYEAR, A., o An investigation on evolutionary identification of continuous chaotic systems, AIP Conference Proceedings 2011, pp ZELINKA, I., DAVENDRA, D., SENKERIK, R. and JASEK, R., 10. S a y f a

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

TEMEL MEKANİK 4. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü TEMEL MEKANİK 4 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:

Detaylı

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI A. Doğan 1 M. Alçı 2 Erciyes Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 1 ahmetdogan@erciyes.edu.tr 2 malci@erciyes.edu.tr

Detaylı

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması 1 Mehmet Eser * 1 Uğur Yüzgeç 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 111, Gülümbe, Bilecik 1. Giriş Abstract Differential

Detaylı

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri (nt lgorithm) Doç.Dr. M. li kcayol 996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki en kısa yolu bulmalarından

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm)

Zeki Optimizasyon Teknikleri. Karınca Algoritması (Ant Algorithm) Zeki Optimizasyon Teknikleri Karınca Algoritması (Ant Algorithm) Karınca Algoritması 1996 yılında Marco Dorigo tarafından ortaya atılmıştır. Temel olarak karıncaların yiyecek madde ile yuvaları arasındaki

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

Yrd. Doç. Dr.Yiğit Aksoy

Yrd. Doç. Dr.Yiğit Aksoy Yrd. Doç. Dr.Yiğit Aksoy ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Y. Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Doktora Celal

Detaylı

Altın Oran Arama Metodu(Golden Search)

Altın Oran Arama Metodu(Golden Search) Altın Oran Arama Metodu(Golden Search) Bir f(x) (tek değişkenli) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x) a x b

Detaylı

BİRİNCİ BASIMA ÖN SÖZ

BİRİNCİ BASIMA ÖN SÖZ BİRİNCİ BASIMA ÖN SÖZ Varlıkların kendilerinde cereyan eden olayları ve varlıklar arasındaki ilişkileri inceleyerek anlamak ve bunları bilgi formuna dökmek kimya, biyoloji, fizik ve astronomi gibi temel

Detaylı

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU *Yasin CANTAŞ 1, Burhanettin DURMUŞ 2 1 Sakarya Üniversitesi, Teknoloji Fakültesi, Elektrik-Elektronik

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

Deniz ERSOY Elektrik Yük. Müh.

Deniz ERSOY Elektrik Yük. Müh. Deniz ERSOY Elektrik Yük. Müh. AMACIMIZ Yenilenebilir enerji kaynaklarının tesis edilmesi ve enerji üretimi pek çok araştırmaya konu olmuştur. Fosil yakıtların giderek artan maliyeti ve giderek tükeniyor

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH)

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) Tabu Arama Algoritması, optimizasyon problemlerinin çözümü için F.Glover tarafından geliştirilmiş iteratif bir araştırma algoritmasıdır. Temel

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

Yrd.Doç. Dr. Tülin ÇETİN

Yrd.Doç. Dr. Tülin ÇETİN Yrd.Doç. Dr. Tülin ÇETİN ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Ege Üniversitesi Bilgisayar Mühendisliği 1987-1992 Lisans Celal Bayar Üniversitesi İnşaat Mühendisliği 2001-2004 Y. Lisans

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

Dr. Gönül Kemikler İ. Ü. Onkoloji Enstitüsü

Dr. Gönül Kemikler İ. Ü. Onkoloji Enstitüsü Dr. Gönül Kemikler İ. Ü. Onkoloji Enstitüsü Radyoaktif kaynakların Vücut boşluklarına Tümörün içine Tümörün yakınına kalıcı geçici olarak yerleştirilerek yapılan bir yakın mesafe tedavisidir. X.Ulusal

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA

Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA * 1 Nihan Kazak ve 2 Alpaslan Duysak * 1 Mühendislik Fakültesi, Bilgisayar Mühendisliği, Bilecik Şeyh Edebali Üniversitesi, Türkiye 2 Mühendislik Fakültesi,

Detaylı

Özetçe. Abstract. 1. Giriş. 2. Adaptif Gürültü Giderme. Nalân YĐĞĐT 1 Nurhan KARABOĞA 2 Burak GÜRER 3

Özetçe. Abstract. 1. Giriş. 2. Adaptif Gürültü Giderme. Nalân YĐĞĐT 1 Nurhan KARABOĞA 2 Burak GÜRER 3 Adaptif Süzgeçlerde Farksal Gelişim Algoritması Kullanılarak Gürültü Giderme Noise Cancellation Using Differential Evolution Algorithm For Adaptive Filters Nalân YĐĞĐT 1 Nurhan KARABOĞA 2 Burak GÜRER 3

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

5- AKIŞ DİYAGRAMLARI (FLOW- CHART) M.İLKUÇAR - 1

5- AKIŞ DİYAGRAMLARI (FLOW- CHART) M.İLKUÇAR - 1 5- AKIŞ DİYAGRAMLARI (FLOW- CHART) M.İLKUÇAR - imuammer@yahoo.com 1 Algoritma işlem adımlarının günlük konuşma diliyle adım adım yazılması idi. Algoritmayı anlamak için yazıldığı dilin bilinmesi ve açık

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı BİM618 Evrimsel Algoritmalar Öğretim Üyesi Prof. Dr. Derviş Karaboğa Görüşme Saatleri 8.00-17.00 E posta: karaboga@erciyes.edu.tr http://abis.erciyes.edu.tr/sorgu.aspx?sorgu=236 Erciyes Üniversitesi, Mühendislik

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması

Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması th International Advanced Technologies Symposium (IATS 11), 1-1 May 211, Elazığ, Turkey Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması M. Kesler

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

BİL-142 Bilgisayar Programlama II

BİL-142 Bilgisayar Programlama II BİL-142 Bilgisayar Programlama II (C/C++) Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon Tanımı Fonksiyon

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 SIRALAMA ALGORİTMALARI Sunu Planı Büyük O Notasyonu Kabarcık Sıralama (Bubble Sort) Hızlı Sıralama (Quick Sort) Seçimli Sıralama (Selection Sort) Eklemeli Sıralama (Insertion

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI TMMOB MAKİNA MÜHENDİSLERİ ODASI İİ DOĞAL GAZ & ENERJİ YÖNETİMİ KONGRE ve SERGİSİ BİLDİRİLER KİTABI GAZİANTEP EYLÜL 2001 TMMOB MAKİNA MÜHENDİSLERİ ODASİ Sümer Sok. 36/1-A Uemirtepc /ANKARA Tel : 0(312)231

Detaylı

Doç. Dr. Metin Özdemir Çukurova Üniversitesi

Doç. Dr. Metin Özdemir Çukurova Üniversitesi FİZİKTE SAYISAL YÖNTEMLER Doç. Dr. Metin Özdemir Çukurova Üniversitesi Fizik Bölümü 2 ÖNSÖZ Bu ders notları Fizik Bölümünde zaman zaman seçmeli olarak vermekte olduǧum sayısal analiz dersinin hazırlanması

Detaylı

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Çizge Algoritmaları. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Çizge Algoritmaları Bahar 201 Doç. Dr. Suat Özdemir 1 En Kısa Yol Problemi Çizgelerdeki bir diğer önemli problem de bir düğümden diğer bir düğüme olan en kısa yolun bulunmasıdır. Bu problem

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ Adı Soyadı E-posta İletişim Adresileri : Özge CAĞCAĞ YOLCU : ozge.cagcag_yolcu@kcl.ac.uk ozgecagcag@yahoo.com : Giresun Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği

Detaylı

Adana Toplu Taşıma Eğilimleri

Adana Toplu Taşıma Eğilimleri Adana Toplu Taşıma Eğilimleri Doç. Dr. Mustafa Gök Elektrik Elektronik Mühendisliği Bilgisayar Bilimleri Ana Bilim Dalı Başkanı 13.06.2014 Doç. Dr. Mustafa Gök (Ç. Ü.) Adana Toplu Taşıma Eğilimleri 13.06.2014

Detaylı

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU Fatih Karaçam ve Taner Tımarcı Trakya Üniversitesi, MMF Makine Mühendisliği Bölümü 030 Edirne e-mail: tanert@trakya.edu.tr Bu çalışmada

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ. Öğr. Gör. Mehmet Fatih Tefek Doç. Dr.

SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ. Öğr. Gör. Mehmet Fatih Tefek Doç. Dr. SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ Öğr. Gör. Mehmet Fatih Tefek Doç. Dr. Harun Uğuz * Rüzgâr kaynaklı enerji üretimi, yenilenebilir enerji kaynakları

Detaylı

Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması

Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması Doç. Dr. Ali Rıza YILDIZ 04.11.2014 Doç. Dr. Ali Rıza YILDIZ - "Hibrid Evrimsel Yöntemler İle Taşıt Elemanlarının

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Derse Giriş Ders Web Sitesi: www.canerozcan.net Ofis Saatleri: Salı 11:00-13:00 Perşembe 15:30-17:30 ya da email ile randevu alınız: canerozcan@karabuk.edu.tr Kaynak Kitaplar:

Detaylı

BÖLÜM-IV ÜRÜN GELİSTİRME İŞLEMİ Genel Problem Çözme İşlemi

BÖLÜM-IV ÜRÜN GELİSTİRME İŞLEMİ Genel Problem Çözme İşlemi BÖLÜM-IV ÜRÜN GELİSTİRME İŞLEMİ Genel Problem Çözme İşlemi Problem çözme yönteminin en önemli özelliği, adım adım analiz ve sentez içermesidir. Burada her yeni adımda bir öncekinden daha somut olarak nitelden

Detaylı

Gezgin Satıcı Probleminin Benzetilmiş Tavlama Yöntemiyle Çözümünde Paralel Hesaplamanın Kullanılması

Gezgin Satıcı Probleminin Benzetilmiş Tavlama Yöntemiyle Çözümünde Paralel Hesaplamanın Kullanılması Gezgin Satıcı Probleminin Benzetilmiş Tavlama Yöntemiyle Çözümünde Paralel Hesaplamanın Kullanılması E M R U L L A H S O N U Ç A K A D E M I K B I L I Ş I M Ş U B A T 2 0 1 5 E M R U L L A H S O N U Ç,

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler

Detaylı

Doç.Dr.Erkan ÜLKER, Selçuk Üniversitesi Mühendislik F, Bilgisayar Mühendisliği Bölümü

Doç.Dr.Erkan ÜLKER, Selçuk Üniversitesi Mühendislik F, Bilgisayar Mühendisliği Bölümü 17.05.2014 Sayfa 1 ÖZET Bu eser veri noktalarının bir yüzeyinin generasyonu olan yüzey rekonstrüksiyonu konusu ile ilgilenir. Yaklaşımımız metaheurestic algoritmaya dayalıdır. (Particle Swarm Optimization)

Detaylı

qscale I2 Low-End SLI

qscale I2 Low-End SLI Mobile Machine Control Solutions qscale I2 Low-End SLI Sadece Konfigure et! Programlamaya gerek yok qscale I2 2 4 5 Geleceğin orta ve küçük sınıf vinçleri için Yeni bir Standart 6 Uzunluk Mobil teleskopik

Detaylı

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ ÖZGEÇMİŞ 1. Adı Soyadı: İPEK EKER 2. Doğum Tarihi: 31.01.1980 3. Ünvanı: ÖĞRETİM GÖREVLİSİ 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans ENDÜSTRİ İSTANBUL KÜLTÜR 2003 MÜHENDİSLİĞİ ÜNİVERSİTESİ Y.Lisans

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE)

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) Yakıt sarfiyatı Ekonomik uçuş Yakıt maliyeti ile zamana bağlı direkt işletme giderleri arasında denge sağlanmalıdır. Özgül Yakıt Sarfiyatı (Specific

Detaylı

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü 322 Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü Nihat ÖZTÜRK *, Emre ÇELİK * Gazi Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği Bölümü, ANKARA ÖZET Anahtar Kelimeler:

Detaylı

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden

Genetik Algoritmalar (GA) Genetik Algoritmalar Đçerik Nesin Matematik Köyü E rim Ç lı l ş ı ta t yı Nisan, 2012 Mustafa Suphi Erden Genetik Algoritmalar Nesin Matematik Köyü Evrim Çalıştayı 20-23 Nisan, 202 Genetik Algoritmalar (GA Đçerik Biyolojiden esinlenme GA nın özellikleri GA nın unsurları uygulama Algoritma Şema teoremi Mustafa

Detaylı

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D.

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Ö Z G E Ç M İ Ş 1. Adı Soyadı: Mustafa GÖÇKEN 2. Doğum Tarihi: 12 Haziran 1976 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Derece Alan Üniversite Yıl Lisans Endüstri Mühendisliği Çukurova Üniversitesi

Detaylı

DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON ALGORİTMASININ KULLANILMASI ÖZET

DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON ALGORİTMASININ KULLANILMASI ÖZET Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 66-74 (26) http://fbe.erciyes.edu.tr/ ISSN 112-2354 DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

KOMBİNATORYAL OPTİMİZASYON

KOMBİNATORYAL OPTİMİZASYON KOMBİNATORYAL OPTİMİZASYON İnsanların, daha iyi nasıl olabilir ya da nasıl elde edilebilir?, sorusuna cevap aramaları, teknolojinin gelişmesini sağlayan en önemli etken olmuştur. Gerçek hayatı daha kolay

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI

ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI 1 ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI Erhan ÇETİN 1 *, Mehmet Fatih IŞIK 2, Halil AYKUL 1 1 Hitit Üniversitesi Mühendislik Fakültesi Makina Mühendisliği Bölümü,Çorum

Detaylı

Senkronizasyon Opsiyon Modülü. SV-IS7 Serisi. Kullanıcı Manueli

Senkronizasyon Opsiyon Modülü. SV-IS7 Serisi. Kullanıcı Manueli Senkronizasyon Opsiyon Modülü SV-IS7 Serisi Kullanıcı Manueli Ürün Standartları Madde Nasıl Montaj Yapılır Master Enkoder Girişi Slave Enkoder Girişi Master Enkoder Geridönüş Çıkışı Terminal Bloğu Çıkışı

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ. Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ. Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Yazılım Test Maliyet Fonksiyonlarının Otomatik Olarak Keşfedilmesi

Yazılım Test Maliyet Fonksiyonlarının Otomatik Olarak Keşfedilmesi Yazılım Test Maliyet Fonksiyonlarının Otomatik Olarak Keşfedilmesi Gülşen Demiröz ve Cemal Yılmaz {gulsend, cyilmaz}@sabanciuniv.edu Sabancı Üniversitesi, İstanbul 10. Ulusal Yazılım Mühendisliği Sempozyumu

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

Bireylerin yaşadığı çevreye uyum sağlaması durumunda ortaya çıkan olumsuzluklara PROBLEM denir.

Bireylerin yaşadığı çevreye uyum sağlaması durumunda ortaya çıkan olumsuzluklara PROBLEM denir. Bireylerin yaşadığı çevreye uyum sağlaması durumunda ortaya çıkan olumsuzluklara PROBLEM denir. Bu durumda bireylerin ortaya çıkan olumsuzluklara karşılık çözüm bulmak için yapacakları mücadeleye de PROBLEM

Detaylı

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği

Yrd. Doç. Dr. A. Burak İNNER Bilgisayar Mühendisliği Yrd. Doç. Dr. A. Burak İER Bilgisayar Mühendisliği Algoritma Analizi İçerik: Temel Kavramlar Yinelemeli ve Yinelemesiz Algoritma Analizi Asimptotik otasyonlar Temel Kavramlar Algoritma: Bir problemin çözümüne

Detaylı

DİFERANSİYEL GELİŞİM ALGORİTMASI

DİFERANSİYEL GELİŞİM ALGORİTMASI İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl: 5 Sayı: 9 Bahar 2006/1 s.85-99 DİFERANSİYEL GELİŞİM ALGORİTMASI Timur KESKİNTÜRK ÖZET Doğrusal olmayan problemlerin çözümüne yönelik olarak geliştirilmiş

Detaylı

BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ

BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ 16. ULUSAL MAKİNA TEORİSİ SEMPOZYUMU Atatürk Üniversitesi, Mühendislik Fakültesi, 12-13 Eylül, 2013 BULANIK MANTIK YÖNTEMİNİN PID DENETLEYİCİ PERFORMANSINA ETKİSİ 1 Mustafa ARDA, 2 Aydın GÜLLÜ, 3 Hilmi

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Termal Sistem Tasarımı (ME 408) Ders Detayları

Termal Sistem Tasarımı (ME 408) Ders Detayları Termal Sistem (ME 408) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Termal Sistem ME 408 Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i ME 303, ME 301 Dersin Dili

Detaylı

BMT 101 Algoritma ve Programlama I 11. Hafta. Yük. Müh. Köksal Gündoğdu 1

BMT 101 Algoritma ve Programlama I 11. Hafta. Yük. Müh. Köksal Gündoğdu 1 BMT 101 Algoritma ve Programlama I 11. Hafta Yük. Müh. Köksal Gündoğdu 1 C++ Fonksiyonlar Yük. Müh. Köksal Gündoğdu 2 C++ Hazır Fonksiyonlar Yük. Müh. Köksal Gündoğdu 3 C++ Hazır Fonksiyonlar 1. Matematiksel

Detaylı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı Erol Şahin Bilgisayar Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi Ankara, Türkiye 2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK,

Detaylı

OPTİMAL GÜÇ AKIŞI ÇÖZÜMLERİNDE LİNEER PROGRAMLAMA ve İÇ NOKTA ALGORİTMASI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ

OPTİMAL GÜÇ AKIŞI ÇÖZÜMLERİNDE LİNEER PROGRAMLAMA ve İÇ NOKTA ALGORİTMASI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ OPTİMAL GÜÇ AKIŞI ÇÖZÜMLERİNDE LİNEER PROGRAMLAMA ve İÇ NOKTA ALGORİTMASI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ Rengin İdil CABADAĞ, Belgin Emre TÜRKAY, Abdullah TUNÇ İstanbul Teknik Üniversitesi, Elektrik-Elektronik

Detaylı

2.3. MATRİSLER Matris Tanımlama

2.3. MATRİSLER Matris Tanımlama 2.3. MATRİSLER 2.3.1. Matris Tanımlama Matrisler girilirken köşeli parantez kullanılarak ( [ ] ) ve aşağıdaki yollardan biri kullanılarak girilir: 1. Elemanları bir tam liste olarak girmek Buna göre matris

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl Lisans. Görev Ünvanı Alan Görev Yeri Yıl Arş. Gör.

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl Lisans. Görev Ünvanı Alan Görev Yeri Yıl Arş. Gör. ÖZGEÇMİŞ 1. Adı Soyadı : Asım Gökhan YETGİN 2. Doğum Tarihi : 1979-Kütahya 3. Ünvanı : Yrd. Doç. Dr. 4. E-mail : gokhan.yetgin@dpu.edu.tr 5. Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Elektrik

Detaylı

Kimya Mühendisliğinde Uygulamalı Matematik

Kimya Mühendisliğinde Uygulamalı Matematik Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı Kimya Mühendisliğinde Uygulamalı Matematik DERS BİLGİ FORMU DERS BİLGİLERİ Dersin Adı Kodu Yarıyıl Kimya Mühendisliğinde Uygulamalı Matematik T

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı