Self Organising Migrating Algorithm

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Self Organising Migrating Algorithm"

Transkript

1 OPTİMİZASYON TEKNİKLERİ Self Organising Migrating Algorithm Kendini Organize Eden Göç/Geçiş Algoritması MELİH HİLMİ ULUDAĞ Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği Bölümü İletişim: Proje Danışmanı Doç. Dr. BİLAL ALATAŞ 1. S a y f a

2 İçindekiler 1. Optimizasyon Algoritmaları Kendini Organize Eden Göç Algoritmasına Giriş Kendini Organize Eden Göç Algoritmasının İncelenmesi Popülasyon yaratılışı Göç Döngüsü Değerlendirme Kaynakça S a y f a

3 1. Optimizasyon Algoritmaları Analitik çözümler nadiren kullanılır çünkü hemen hemen tüm gerçek dünya optimizasyon problemleri, yinelemeli çözümler arar ve matematiksel bir algoritma kullanmak gereklidir. Bu nedenle, evrim algoritması, genetik algoritması, karınca algoritması ve parçacık sürüsü algoritması gibi algoritma metodolojileri geliştirilmiştir ve literatürde büyük ilgi görmüştür. Bu algoritmalar çeşitli optimizasyon alanlarında uygulanmıştır. Ancak, bu algoritmaların dezavantajlarından biri optimizasyon problemlerinin çözümünde problem boyutunun büyüdükçe çözümün oldukça düşük olmasıdır. 2. Kendini Organize Eden Göç Algoritmasına Giriş SOMA Ivan Zelinka tarafından geliştirilen Öz-Örgütlenme Geçiş Algoritması, bir stokastik optimizasyon algoritmasıdır. Genellikle evrimsel bir algoritma olarak bilinen SOMA, birçok optimizasyon problemini çözmek için kullanılabilir. Bu algoritma vahşi yabani hayvan gruplarının davranışlarından esinlenerek geliştirilmiştir. Bu bireyler sabit bir grup yerine, birbirini takip eden nesillerin geliştirilmesi yolu kullanarak göç etme fikrini amaçlıyor. Aynı zamanda genetik algoritmaya benzer bir yapıda olan SOMA, sınırlı parametreler alarak maliyet minimizasyonu sorununa cevap ararken yerel minumum u sağlayabiliyor. Dijkstra's, Floyd Warshall, Bellman Ford algoritmaları veya the A-star algoritması bilindiği üzere en kısa yol problemini bulmak için kullanılan algoritmalardır. Böyle problemlere de cevap verebilen SOMA, (Self Organising Migrating Algorithm) asenkron olarak paralel dağılımlı bir şekilde problemi ele alıyor. Kendini yöneten, organize eden göç algoritmasında yeni nesil, bireylerin göç etmesi ile oluşturulur. Bireyler kendi aralarında öz örgütlenmeli şekilde göç ederler. Dolayısıyla bireylerin sadece pozisyonları arama uzayında göç döngüsü olarak adlandırılan bir oluşum içerisine girer. 3. Kendini Organize Eden Göç Algoritmasının İncelenmesi İncelemeye başlamadan önce SOMA dan birkaç şey bahsedecek olursak : Bu algoritmanın farklı versiyonları mevcuttur. Öncelikle alacağı parametreleri belirtelim. Adım, yol uzunluğu PopSize, PRT ve Maliyet Fonksiyonu gibi parametrelerin tanımlanmış olması gerekir. Maliyet fonksiyonu skaler dönen bir değerdir. Ve uygunluk ölçüsü olarak kullanılır. Soma () fonksiyonu SOMA algoritması için bir arabirim sağlar. Bu, her parametre için minimum ve maksimum sınırlardan oluşan bir seçenekler listesidir ve isteğe bağlı bu listeyi en 3. S a y f a

4 aza indirmek için bir işlev çağrılır. Maliyet fonksiyonu ilk argüman olarak sayısal bir vektör alır ve ilgili maliyet değeri temsil eden bir sayısal skaler dönmelidir Popülasyon yaratılışı Bireylerin nüfusları rasgele oluşturulur. Her bir birey için her parametre verilen aralıktan rastgele <Düşük, Yüksek> seçilmelidir Göç Döngüsü Nufustaki her birey için maliyet fonksiyonu ve lider değer tanımlanır. Mevcut olan göç etme işlemi döngü için seçilir. Her birey döngü iterasyonunda maliyet fonksiyonu ve lider tarafından değerlendirilir. (parametre tanımındaki adıma göre) Bunun sonucunda bir atlama yapılır. Ve bu atlama değerlendirilip yol uzunluğu tarafından tanımlanan yeni bir konuma ulaşılıncaya kadar devam ettirilir. Ulaşılınca pathlength(yol uzunluğu) xi,j olur.yeni pozisyon xi, her atlamadan sonra j (1) hesaplanır. Sonuç olarak bireyler en iyi konumunu bulana kadar yörünge içerisinde dönerler. (Şekil1) ŞEKİL 1. PRTVEKTÖR ÜN BİREYLER ÜZERİNDEKİ HAREKETİ x mlyeni i, j = x ml i, j[ilk] + (x ml i, j x ml i, j[ilk]) t PRTVektör Gerekli şartlar t < 0 olacak ve yol uzunluğu (pathlegth) > Göç Döngüsü 4. S a y f a

5 Bir birey Liderlik için bir atlama başlatmadan önce Rasgele bir sayı oluşturulur. Ve oluşturulan sayı PRTVektör den daha büyük ise Bireysel bileşeni PRTVektör aracılığı ile 0 olarak ayarlanır. Dolayısıyla bireysel hareket N-k boyutlu alt uzayda alana sürekli dik olarak iner. SOMA globallikten ziyade yerel optimumu bulma eğilimindedir. Eğer göç döngülerinin sayısına ulaşıldıysa algoritma durur ve en iyi çözümü belirtir. Eğer rndj<prt ise PRTVektörj=1 Değilse PRTVektörj=0 Random olan sayı (rndj) <0,1> ve j=1,2,3,..n e kadardır. Örnek: PRTVektör e 4 parametre için PRT=0,3 olarak verilsin j rndj PRTVektör 1 0, , , ,012 1 J=1için rasgele üretilen rnd1 sayısı (0,234<0,3)? PRTVektör=1 J=2 için rasgele üretilen rnd2 sayısı (0,545<0,3)? PRTVektör=0 J=3 için rasgele üretilen rnd3 sayısı (0,865<0,3)? PRTVektör=0 J=4 için rasgele üretilen rnd4 sayısı (0,012<0,3)? PRTVektör=1 5. S a y f a

6 BAŞLAT RASGELE BİR POPÜLASYON OLUŞTUR ML=0 AKTİF LİDERİ SEÇ VE TÜM BİREYLERİN AMAÇ FONKSİYONLARINI DEĞERLENDİR KRİTER UYGUN MU? HAYIR ML=ML+1 AKTİF BİREYİN KONUMU İLE SEÇEBİLECEK EN İYİ KONUMU SEÇEREK YENİ POZİSYON ELDE ET EVET AKTİF LİDERİ SEÇ VE TÜM BİREYLERİN AMAÇ FONKSİYONLARINI DEĞERLENDİR HAYIR YENİ NOKTA AKTİF OLANDAN DAHA İYİ Mİ EVET AKTİF LİDERİ SEÇ VE TÜM BİREYLERİN AMAÇ FONKSİYONLARINI DEĞERLENDİR EN İYİ SONUCU RAPORLA BİTİR ŞEKİL 2. SELF ORGANİSİNG MİGRATİNG ALGORİTHM FLOW CHART 6. S a y f a

7 Örnek: # Rastrigin fonksiyonu yerel minumum içeren bir fonksiyon olsun. rastrigin <- function (a) 20 + a[1]^2 + a[2]^2-10*(cos(2*pi*a[1])+cos(2*pi*a[2])) # -5 ile 5 parametreleri aralığında global minumumu bulmaya çalışalım. x <- soma(rastrigin, list(min=c(-5,-5),max=c(5,5))) # Asgari olarak c(0,0) a çok yakın olmalıdır. Liderin konumunu bulacak olursak: print(x$population[,x$leader]) # Son olarak Liderlerin maliyet geçmişlerini çizelim plot(x) Şimdi her aşamayı teker teker izleyelim: rastrigin <- function(a) 20 + a[1]^2 + a[2]^2-10*(cos(2*pi*a[1])+cos(2*pi*a[2])) ŞEKİL 3. FONKSİYON YÜZEYİ [FUNCTİON] Sırada: minumum u araştıralım. x <- soma(rastrigin, list(min=c(-5.12,-5.12),max=c(5.12,5.12))) Burada SOMA optimizasyonunun başlangıcını belirttim. Eğer göç sınırı 20 ye ulaşırsa durdurulması gerekli olsun. Lider maliyet 1.67e-05 değerinde olacak. 7. S a y f a

8 Yani sıfır (asgari) değerine yakın 1.67e-05 a fonksiyon en iyi çalışma noktasının olduğunu fonksiyonun çıkışından gözlemleyeceğiz. Arama uzayının konumunu verelim: print(x$population[,x$leader]) e e-04 Bu konum (0,0) a çok yakın. Her tekrarda en iyi maliyet fonksiyonu değerini gösteren bir optimizasyon ilerleme düzeneği çizebiliriz. Şöyle ki: ŞEKİL 4. FONKSİYONUN OPTİMUM İLERLEME ÇİZENEĞİ Burada algoritmanın üzerinde çalıştığı fonksiyonu hızlıca aşağı düşürdüğünü ve sıfıra doğru en küçük değeri izleyerek yeni bireylere göç ettiğini gözlemliyoruz. Bu örneği resimlerle izleyelim: 8. S a y f a

9 1.Göç 2.Göç 3.Göç 4.Göç 5.Göç 6.Göç ŞEKİL 5. GÖÇ DÖNGÜSÜ 3.3. Değerlendirme SOMA özellikle yılları arasında çeşitli alanlarda kullanılmıştır. Örnek verecek olursam: Kaotik Sistemlerin Kontrolünde Sinir Ağı Sentezinde Elektrik ile bağlantılı olan optimizasyonlarda Vb. alanlarda kendine yer bulmuştur. Bu algoritma ile ilgili son güncelleme yılında yapılmıştır. 9. S a y f a

10 4. Kaynakça o https://github.com/jonclayden/soma o General-Purpose Optimisation With the Self-Organising Migrating Algorithm, Jon Clayden; based on the work of Ivan Zelinka o Self-Organizing Migrating Strategies Applied to Reliability-Redundancy Optimization of Systems Leandro dos Santos Coelho o SOMA Ivan Zelinka o International Journal of Soft Computing and Engineering (IJSCE) ISSN: , Volume-3, Issue-6, January 2014 o Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Advances in Engineering Software, 36(10), pp NOLLE, L., ZELINKA, I., HOPGOOD, A.A. and GOODYEAR, A., o An investigation on evolutionary identification of continuous chaotic systems, AIP Conference Proceedings 2011, pp ZELINKA, I., DAVENDRA, D., SENKERIK, R. and JASEK, R., 10. S a y f a

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI A. Doğan 1 M. Alçı 2 Erciyes Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 1 ahmetdogan@erciyes.edu.tr 2 malci@erciyes.edu.tr

Detaylı

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması 1 Mehmet Eser * 1 Uğur Yüzgeç 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 111, Gülümbe, Bilecik 1. Giriş Abstract Differential

Detaylı

Yrd. Doç. Dr.Yiğit Aksoy

Yrd. Doç. Dr.Yiğit Aksoy Yrd. Doç. Dr.Yiğit Aksoy ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Y. Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Doktora Celal

Detaylı

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU *Yasin CANTAŞ 1, Burhanettin DURMUŞ 2 1 Sakarya Üniversitesi, Teknoloji Fakültesi, Elektrik-Elektronik

Detaylı

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ

GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ VI. Ulusal Temiz Enerji Sempozyumu UTES 2006 25 27 Mayıs 2006, Isparta Sf.756 764 GENETİK ALGORİTMA İLE RÜZGAR TÜRBİNİ KANAT SAYISI SEÇİMİ Nida Nurbay ve Ali Çınar Kocaeli Üniversitesi Tek. Eğt. Fak. Makine

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

Yrd.Doç. Dr. Tülin ÇETİN

Yrd.Doç. Dr. Tülin ÇETİN Yrd.Doç. Dr. Tülin ÇETİN ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Ege Üniversitesi Bilgisayar Mühendisliği 1987-1992 Lisans Celal Bayar Üniversitesi İnşaat Mühendisliği 2001-2004 Y. Lisans

Detaylı

Dr. Gönül Kemikler İ. Ü. Onkoloji Enstitüsü

Dr. Gönül Kemikler İ. Ü. Onkoloji Enstitüsü Dr. Gönül Kemikler İ. Ü. Onkoloji Enstitüsü Radyoaktif kaynakların Vücut boşluklarına Tümörün içine Tümörün yakınına kalıcı geçici olarak yerleştirilerek yapılan bir yakın mesafe tedavisidir. X.Ulusal

Detaylı

Özetçe. Abstract. 1. Giriş. 2. Adaptif Gürültü Giderme. Nalân YĐĞĐT 1 Nurhan KARABOĞA 2 Burak GÜRER 3

Özetçe. Abstract. 1. Giriş. 2. Adaptif Gürültü Giderme. Nalân YĐĞĐT 1 Nurhan KARABOĞA 2 Burak GÜRER 3 Adaptif Süzgeçlerde Farksal Gelişim Algoritması Kullanılarak Gürültü Giderme Noise Cancellation Using Differential Evolution Algorithm For Adaptive Filters Nalân YĐĞĐT 1 Nurhan KARABOĞA 2 Burak GÜRER 3

Detaylı

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME

EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME EXCEL DE BENZETİM ÖRNEKLERİ BMÜ-422 BENZETİM VE MODELLEME GİRİŞ Bu bölümde benzetim için excel örnekleri önerilmektedir. Örnekler excel ile yapılabileceği gibi el ile de yapılabilir. Benzetim örnekleri

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı BİM618 Evrimsel Algoritmalar Öğretim Üyesi Prof. Dr. Derviş Karaboğa Görüşme Saatleri 8.00-17.00 E posta: karaboga@erciyes.edu.tr http://abis.erciyes.edu.tr/sorgu.aspx?sorgu=236 Erciyes Üniversitesi, Mühendislik

Detaylı

Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması

Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması th International Advanced Technologies Symposium (IATS 11), 1-1 May 211, Elazığ, Turkey Güncel Sezgisel Arama Algoritmalarının Denetleyici Parametrelerinin Optimizasyonunda Başarım Kıyaslaması M. Kesler

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI TMMOB MAKİNA MÜHENDİSLERİ ODASI İİ DOĞAL GAZ & ENERJİ YÖNETİMİ KONGRE ve SERGİSİ BİLDİRİLER KİTABI GAZİANTEP EYLÜL 2001 TMMOB MAKİNA MÜHENDİSLERİ ODASİ Sümer Sok. 36/1-A Uemirtepc /ANKARA Tel : 0(312)231

Detaylı

Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA

Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA * 1 Nihan Kazak ve 2 Alpaslan Duysak * 1 Mühendislik Fakültesi, Bilgisayar Mühendisliği, Bilecik Şeyh Edebali Üniversitesi, Türkiye 2 Mühendislik Fakültesi,

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ Adı Soyadı E-posta İletişim Adresileri : Özge CAĞCAĞ YOLCU : ozge.cagcag_yolcu@kcl.ac.uk ozgecagcag@yahoo.com : Giresun Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği

Detaylı

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU Fatih Karaçam ve Taner Tımarcı Trakya Üniversitesi, MMF Makine Mühendisliği Bölümü 030 Edirne e-mail: tanert@trakya.edu.tr Bu çalışmada

Detaylı

Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması

Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması Yapay Zeka Yöntemlerinin Otomotiv Sektöründe Ürün Tasarımı Çalışmalarında Kullanılması Doç. Dr. Ali Rıza YILDIZ 04.11.2014 Doç. Dr. Ali Rıza YILDIZ - "Hibrid Evrimsel Yöntemler İle Taşıt Elemanlarının

Detaylı

SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ. Öğr. Gör. Mehmet Fatih Tefek Doç. Dr.

SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ. Öğr. Gör. Mehmet Fatih Tefek Doç. Dr. SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ Öğr. Gör. Mehmet Fatih Tefek Doç. Dr. Harun Uğuz * Rüzgâr kaynaklı enerji üretimi, yenilenebilir enerji kaynakları

Detaylı

Bireylerin yaşadığı çevreye uyum sağlaması durumunda ortaya çıkan olumsuzluklara PROBLEM denir.

Bireylerin yaşadığı çevreye uyum sağlaması durumunda ortaya çıkan olumsuzluklara PROBLEM denir. Bireylerin yaşadığı çevreye uyum sağlaması durumunda ortaya çıkan olumsuzluklara PROBLEM denir. Bu durumda bireylerin ortaya çıkan olumsuzluklara karşılık çözüm bulmak için yapacakları mücadeleye de PROBLEM

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ ÖZGEÇMİŞ 1. Adı Soyadı: İPEK EKER 2. Doğum Tarihi: 31.01.1980 3. Ünvanı: ÖĞRETİM GÖREVLİSİ 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans ENDÜSTRİ İSTANBUL KÜLTÜR 2003 MÜHENDİSLİĞİ ÜNİVERSİTESİ Y.Lisans

Detaylı

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü 322 Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü Nihat ÖZTÜRK *, Emre ÇELİK * Gazi Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği Bölümü, ANKARA ÖZET Anahtar Kelimeler:

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D.

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Ö Z G E Ç M İ Ş 1. Adı Soyadı: Mustafa GÖÇKEN 2. Doğum Tarihi: 12 Haziran 1976 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Derece Alan Üniversite Yıl Lisans Endüstri Mühendisliği Çukurova Üniversitesi

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl Lisans. Görev Ünvanı Alan Görev Yeri Yıl Arş. Gör.

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl Lisans. Görev Ünvanı Alan Görev Yeri Yıl Arş. Gör. ÖZGEÇMİŞ 1. Adı Soyadı : Asım Gökhan YETGİN 2. Doğum Tarihi : 1979-Kütahya 3. Ünvanı : Yrd. Doç. Dr. 4. E-mail : gokhan.yetgin@dpu.edu.tr 5. Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Elektrik

Detaylı

ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI

ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI 1 ENDÜSTRİYEL OTOMASYON SİSTEMLERİNDE OPTİMİZASYON: PARÇACIK SÜRÜSÜ ALGORİTMASI Erhan ÇETİN 1 *, Mehmet Fatih IŞIK 2, Halil AYKUL 1 1 Hitit Üniversitesi Mühendislik Fakültesi Makina Mühendisliği Bölümü,Çorum

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

Doç.Dr.Erkan ÜLKER, Selçuk Üniversitesi Mühendislik F, Bilgisayar Mühendisliği Bölümü

Doç.Dr.Erkan ÜLKER, Selçuk Üniversitesi Mühendislik F, Bilgisayar Mühendisliği Bölümü 17.05.2014 Sayfa 1 ÖZET Bu eser veri noktalarının bir yüzeyinin generasyonu olan yüzey rekonstrüksiyonu konusu ile ilgilenir. Yaklaşımımız metaheurestic algoritmaya dayalıdır. (Particle Swarm Optimization)

Detaylı

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme Kesikli Olay Benzetimi İlhan AYDIN KESİKLİ-OLAY BENZETİMİ Kesikli olay benzetimi, durum değişkenlerinin zaman içinde belirli noktalarda değiştiği sistemlerin modellenmesi

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method

Weight Optimization of a Dry Transformer by Genetic Algorithm and Validation by Finite Element Method KSÜ Mühendislik Bilimleri Dergisi, (), 9 3 KSU Journal of Engineering Sciences, (), 9 Genetik Algoritma ile Kuru Bir Trafonun Ağırlık Optimizasyonu ve Sonlu Elemanlar Metodu ile Analizi Mehmed ÇELEBĐ Atatürk

Detaylı

Özyineleme (Recursion)

Özyineleme (Recursion) C PROGRAMLAMA Özyineleme (Recursion) Bir fonksiyonun kendisini çağırarak çözüme gitmesine özyineleme (recursion), böyle çalışan fonksiyonlara da özyinelemeli (recursive) fonksiyonlar denilir. Özyineleme,

Detaylı

qscale I2 Low-End SLI

qscale I2 Low-End SLI Mobile Machine Control Solutions qscale I2 Low-End SLI Sadece Konfigure et! Programlamaya gerek yok qscale I2 2 4 5 Geleceğin orta ve küçük sınıf vinçleri için Yeni bir Standart 6 Uzunluk Mobil teleskopik

Detaylı

DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON ALGORİTMASININ KULLANILMASI ÖZET

DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON ALGORİTMASININ KULLANILMASI ÖZET Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1-2) 66-74 (26) http://fbe.erciyes.edu.tr/ ISSN 112-2354 DOĞRUSAL ANTEN DİZİLERİNDE OPTİMUM DEMET ŞEKİLLENDİRME AMACIYLA KARINCA KOLONİ OPTİMİZASYON

Detaylı

BÖLÜM-IV ÜRÜN GELİSTİRME İŞLEMİ Genel Problem Çözme İşlemi

BÖLÜM-IV ÜRÜN GELİSTİRME İŞLEMİ Genel Problem Çözme İşlemi BÖLÜM-IV ÜRÜN GELİSTİRME İŞLEMİ Genel Problem Çözme İşlemi Problem çözme yönteminin en önemli özelliği, adım adım analiz ve sentez içermesidir. Burada her yeni adımda bir öncekinden daha somut olarak nitelden

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

FARKSAL GELİŞİM ALGORİTMASI İLE KARMA YEM MALİYET OPTİMİZASYONU THE COST OPTIMIZATION OF MIXED FEED WITH DIFFERENTIAL EVOLUTION ALGORITHM

FARKSAL GELİŞİM ALGORİTMASI İLE KARMA YEM MALİYET OPTİMİZASYONU THE COST OPTIMIZATION OF MIXED FEED WITH DIFFERENTIAL EVOLUTION ALGORITHM FARKSAL GELİŞİM ALGORİTMASI İLE KARMA YEM MALİYET OPTİMİZASYONU *Yaşar YAŞAR 1 Burhanettin DURMUŞ 2 1 yasaartr@gmail.com 2 Dumlupınar Üniversites Mühendislik Fakültes Elektrik-Elektronik Mühendisliği Bölümü

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Evrimsel Algoritma Tabanlı FIR Filtre Tasarım Simülatörü The FIR Filter Simulator based on Evolutionary Algorithm

Evrimsel Algoritma Tabanlı FIR Filtre Tasarım Simülatörü The FIR Filter Simulator based on Evolutionary Algorithm Evrimsel Algoritma Tabanlı FIR Filtre Tasarım Simülatörü The FIR Filter Simulator based on Evolutionary Algorithm 1 Yigit Cagatay Kuyu, 1 Nedim Aktan Yalcin, * 1 Fahri Vatansever * 1 Faculty of Engineering,

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU KİŞİSEL BİLGİLER Adı Soyadı Tolga YÜKSEL Ünvanı Birimi Doğum Tarihi Yrd. Doç. Dr. Mühendislik Fakültesi/ Elektrik Elektronik Mühendisliği 23.10.1980

Detaylı

Kimya Mühendisliğinde Uygulamalı Matematik

Kimya Mühendisliğinde Uygulamalı Matematik Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı Kimya Mühendisliğinde Uygulamalı Matematik DERS BİLGİ FORMU DERS BİLGİLERİ Dersin Adı Kodu Yarıyıl Kimya Mühendisliğinde Uygulamalı Matematik T

Detaylı

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE)

YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) YATAY UÇUŞ SEYAHAT PERFORMANSI (CRUISE PERFORMANCE) Yakıt sarfiyatı Ekonomik uçuş Yakıt maliyeti ile zamana bağlı direkt işletme giderleri arasında denge sağlanmalıdır. Özgül Yakıt Sarfiyatı (Specific

Detaylı

Senkronizasyon Opsiyon Modülü. SV-IS7 Serisi. Kullanıcı Manueli

Senkronizasyon Opsiyon Modülü. SV-IS7 Serisi. Kullanıcı Manueli Senkronizasyon Opsiyon Modülü SV-IS7 Serisi Kullanıcı Manueli Ürün Standartları Madde Nasıl Montaj Yapılır Master Enkoder Girişi Slave Enkoder Girişi Master Enkoder Geridönüş Çıkışı Terminal Bloğu Çıkışı

Detaylı

DİFERANSİYEL GELİŞİM ALGORİTMASI KULLANILARAK ADAPTİF LİNEER TOPLAYICI TASARIMI

DİFERANSİYEL GELİŞİM ALGORİTMASI KULLANILARAK ADAPTİF LİNEER TOPLAYICI TASARIMI DİFERASİYEL GELİŞİM ALGORİTMASI KULLAILARAK ADAPTİF LİEER TOPLAYICI TASARIMI urhan KARABOĞA Canan Aslıhan KOYUCU 2 Elektrik Elektronik Mühendisliği Bölümü Mühendislik Fakültesi Erciyes Üniversitesi, 38090,

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Kromozom Seçim Metriğinin Yinelemeli İki-Aşamalı Evrimsel Programlamada Performansa Katkısı

Kromozom Seçim Metriğinin Yinelemeli İki-Aşamalı Evrimsel Programlamada Performansa Katkısı Çankaya University Journal of Science and Engineering Volume 10 (2013), No. 1, 79 90 Kromozom Seçim Metriğinin Yinelemeli İki-Aşamalı Evrimsel Programlamada Performansa Katkısı Turgut Önal1, ve Ulaş Beldek

Detaylı

Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması

Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Geniş Bantlı Log-Periyodik Anten Dizgelerinin Genetik Algoritmalar Kullanılarak Tasarlanması Levent Gürel ve Özgür Ergül Elektrik ve Elektronik Mühendisliği Bölümü Bilkent Üniversitesi, Ankara lgurel@bilkent.edu.tr

Detaylı

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ 3. İzmir Rüzgâr Sempozyumu // 8-10 Ekim 2015 // İzmir 29 GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ Gül Kurt 1, Deniz

Detaylı

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ Ege Akademik BakıĢ / Ege Academic Review 10 (1) 2010: 199-210 PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ EFFICIENCY OF MUTATION RATE FOR PARALLEL MACHINE SCHEDULING

Detaylı

GRİD ALTYAPISI ÜZERİNDE

GRİD ALTYAPISI ÜZERİNDE GRİD ALTYAPISI ÜZERİNDE BİR FÜZENİN PARALEL ŞEKİL OPTİMİZA ZASYONU Erdal Oktay EDA Tasarım Analiz Mühendislik Ltd. ODTÜ Teknokent, Ankara mail@eda-ltd.com.tr Osman Merttopcuoglu ROKETSAN Roket Sanayi ve

Detaylı

Ulaştırmada Talep Tahmin Modellerinde Harmoni Arama Yöntemi Uygulaması

Ulaştırmada Talep Tahmin Modellerinde Harmoni Arama Yöntemi Uygulaması Ulaştırmada Talep Tahmin Modellerinde Harmoni Arama Yöntemi Uygulaması Rasim Temur a, S. Cankat Tanrıverdi b a İstanbul Üniversitesi, İnşaat Mühendisliği Bölümü, Yapı A.D. İstanbul, Türkiye temur@istanbul.edu.tr

Detaylı

Hazırladığı Tezler Yüksek lisans tezi

Hazırladığı Tezler Yüksek lisans tezi ÖZGEÇMİŞ 1 Adı Soyadı : Dr. Serdar BİROĞUL Doğum Yeri ve Tarihi : İzmit, 10/09/1980 Yabancı Dil : İngilizce İş adresi : Muğla Üniversitesi Teknoloji Fakültesi Elektronik-Bilgisayar Teknolojisi Bölümü Cep

Detaylı

YÖK TEZLERİ PROJE KELİME TARAMASI

YÖK TEZLERİ PROJE KELİME TARAMASI YÖK TEZLERİ PROJE KELİME TARAMASI YÖK Tezleri Proje Kelimesi Taraması Sonuçları Toplam Çalışma Sayısı 1833 İncelenen 1673 İlgisiz 372 Toplam İncelenen 1301 X Projesi 720 Proje Yönetimi 123 Yatırım Projeleri

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008

Kablosuz Sensör Ağlar ve Eniyileme. Tahir Emre KALAYCI. 21 Mart 2008 Kablosuz Sensör Ağlar ve Eniyileme Tahir Emre KALAYCI 21 Mart 2008 Gündem Genel Bilgi Alınan Dersler Üretilen Yayınlar Yapılması Planlanan Doktora Çalışması Kablosuz Sensör Ağlar Yapay Zeka Teknikleri

Detaylı

Problemlerine Geliştirilmiş Parçacık

Problemlerine Geliştirilmiş Parçacık Çankaya University Journal of Science and Engineering Volume 9 (2012), No. 2, 89 106 Yasak İşletim Bölgeli Ekonomik Güç Dağıtım Problemlerine Geliştirilmiş Parçacık Sürü Optimizasyonu Yaklaşımı Serdar

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

COMPUTER AIDED OPTIMISATION OF MACHINING PARAMETERS IN MILLING OPERATIONS

COMPUTER AIDED OPTIMISATION OF MACHINING PARAMETERS IN MILLING OPERATIONS Niğde Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 7 Sayı1-2, (2003), 1-14 FREZELEME İŞLEMLERİNDE EKONOMİK İŞLEME ŞARTLARININ OPTİMİZASYONU Metin ZEYVELİ*, Mahmut GÜLESİN** *ZKÜ Karabük Teknik Eğitim

Detaylı

Elektromagnetizma-Like Algoritması ile Kablosuz Algılayıcı Ağların Olasılıksal Dinamik Dağıtımları

Elektromagnetizma-Like Algoritması ile Kablosuz Algılayıcı Ağların Olasılıksal Dinamik Dağıtımları Elektromagnetizma-Like Algoritması ile Kablosuz Ağların Olasılıksal Dinamik Dağıtımları *1 Recep ÖZDAĞ ve 2 Ali KARCI *1 Bilgisayar Bilimleri Araştırma ve Uygulama Merkezi, Yüzüncü Yıl Üniversitesi, Türkiye,

Detaylı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı

BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1. Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı BULANIK MANTIK VE SİSTEMLERİ 2014 2015 BAHAR DÖNEMİ ÖDEV 1 Müslüm ÖZTÜRK 148164001004 Bilişim Teknolojileri Mühendisliği ABD Doktora Programı Mart 2015 0 SORU 1) Bulanık Küme nedir? Bulanık Kümenin (fuzzy

Detaylı

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX XI İÇİNDEKİLER ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX 1. GİRİŞ... 1 2. PLANLAMANIN TARİHÇESİ... 7 2.1 Literatürdeki Planlayıcılar ve Kullandıkları Problem... Gösterimi

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı : Ömer AKGÖBEK Doğum Tarihi : 01.01.1970 Unvanı : Yardımcı Doçent Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Endüstri Mühendisliği İstanbul

Detaylı

DGridSim Gerçek Zamanlı Veri Grid Simülatörü. Kullanıcı Rehberi Dokümanı v 1.0.0 21.12.2011. Safai Tandoğan Mustafa Atanak Doç. Dr.

DGridSim Gerçek Zamanlı Veri Grid Simülatörü. Kullanıcı Rehberi Dokümanı v 1.0.0 21.12.2011. Safai Tandoğan Mustafa Atanak Doç. Dr. DGridSim Gerçek Zamanlı Veri Grid Simülatörü Kullanıcı Rehberi Dokümanı v 1.0.0 21.12.2011 Safai Tandoğan Mustafa Atanak Doç. Dr. Atakan Doğan 1. Giriş Araştırmacılar, DGridSim simülatörünün görsel arayüzü

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011)

GALATASARAY ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ ÖĞRETİM ÜYELERİ TARAFINDAN YÜRÜTÜLEN PROJELER (2008-2011) 08.401.001 08.401.002 08.401.003 Dikkat Seviyesindeki Değişimlerin Elektrofizyolojik Ölçümler İle İzlenmesi PFO(Patent Foramen Ovale) Teşhisinin Bilgisayar Yardımı İle Otomatik Olarak Gerçeklenmesi ve

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Gezgin Satıcı Problemi 9. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Gezgin Satıcı Problemi Soru n tane şehri olan bir

Detaylı

Aynı tipten çok sayıda değişken topluluğudur. X Y Score1 Score2 (0) (1) (2)...

Aynı tipten çok sayıda değişken topluluğudur. X Y Score1 Score2 (0) (1) (2)... Array (Diziler) Array Aynı tipten çok sayıda değişken topluluğudur. Birden fazla aynı tipteki değerle işlem yapmayı kolaylaştırır. X Y Score1 Score2 40 56 Grade 40 56 80 (0) (1) (2)... (13) Array tanımlama:

Detaylı

KAYNAK: Hüseyin (Guseinov), Oktay. 2007. "Skaler ve Vektörel Büyüklükler."

KAYNAK: Hüseyin (Guseinov), Oktay. 2007. Skaler ve Vektörel Büyüklükler. KAYNAK: Hüseyin (Guseinov), Oktay. 2007. "Skaler ve Vektörel Büyüklükler." Eğitişim Dergisi. Sayı: 15 (Mayıs 2007). SKALER VE VEKTÖREL BÜYÜKLÜKLER Prof. Dr. Oktay Hüseyin (Guseinov) Hayvanların en basit

Detaylı

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Tamer Eren Kırıkkale Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 71451,

Detaylı

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR

KAHKAHA TANIMA İÇİN RASSAL ORMANLAR KAHKAHA TANIMA İÇİN RASSAL ORMANLAR Heysem Kaya, A. Mehdi Erçetin, A. Ali Salah, S. Fikret Gürgen Bilgisayar Mühendisliği Bölümü Boğaziçi Üniversitesi / Istanbul Akademik Bilişim'14, Mersin, 05.02.2014

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ. Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ. Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü ENF102 TEMEL BİLGİSAYAR BİLİMLERİ VE C/ C++ PROGRAMLAMA DİLİ Gazi Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Konular Giriş math Kütüphane Fonksiyonları Çok Parametreyle Fonksiyon

Detaylı

Yazılım Nedir? 2. Yazılımın Tarihçesi 3. Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5. Yazılımın Önemi 6

Yazılım Nedir? 2. Yazılımın Tarihçesi 3. Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5. Yazılımın Önemi 6 ix Yazılım Nedir? 2 Yazılımın Tarihçesi 3 Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5 Yazılımın Önemi 6 Yazılımcı (Programcı) Kimdir? 8 Yazılımcı Olmak 9 Adım Adım Yazılımcılık 9 Uzman

Detaylı

Giriş: Temel Adımlar YAZILIM GELİŞTİRME YAŞAM DÖNGÜSÜ. Belirtim Yöntemleri. Belirtim Yöntemleri 09.07.2014

Giriş: Temel Adımlar YAZILIM GELİŞTİRME YAŞAM DÖNGÜSÜ. Belirtim Yöntemleri. Belirtim Yöntemleri 09.07.2014 Giriş: Temel Adımlar YAZILIM GELİŞTİRME YAŞAM DÖNGÜSÜ 1 2 Yukarıda belirtilen adımlar, yazılım yaşam döngüsünün çekirdek süreçleri olarak tanımlanır. Bu süreçlerin gerçekleştirilmesi amacıyla; -Belirtim

Detaylı

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ

HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ HACETTEPE ÜNİVERSİTESİ HACETTEPE ASO 1.OSB MESLEK YÜKSEKOKULU HMK 211 CNC TORNA TEKNOLOJİSİ Öğr. Gör. RECEP KÖKÇAN Tel: +90 312 267 30 20 http://yunus.hacettepe.edu.tr/~rkokcan/ E-mail_1: rkokcan@hacettepe.edu.tr

Detaylı

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015

GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 GEDİZ ÜNİVERSİTESİ SİSTEM MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI SMY 544 ALGORİTMALAR GÜZ 2015 Algoritmalar Ders 9 Dinamik Programlama SMY 544, ALGORİTMALAR, Güz 2015 Ders#9 2 Dinamik Programlama Böl-ve-fethet

Detaylı

NOHUT SAMANI HIZLI PİROLİZİNİN DENEY TASARIMI İLE MODELLENMESİ

NOHUT SAMANI HIZLI PİROLİZİNİN DENEY TASARIMI İLE MODELLENMESİ NOHUT SAMANI HIZLI PİROLİZİNİN DENEY TASARIMI İLE MODELLENMESİ Görkem Değirmen a, Ayşe E. Pütün a, Murat Kılıç a, Ersan Pütün b, * a Anadolu Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü,

Detaylı

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU*

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU* makale Ayşe KAHVEĐOĞLU * Yrd. Doç. Dr., Anadolu Üniversitesi ONAILABĐLĐ ELEMANLAA ÖNLEYĐĐ BAKIMIN EKĐSĐ VE OĐMĐZASYONU* GĐĐŞ Bakım faaliyetinin temel amacı, olabilecek muhtemel arızaların önlenmesi veya

Detaylı

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Bölümü oner@isikun.edu.tr 1. Adı Soyadı : Mustafa Mengüç ÖNER 2. Doğum Tarihi : 01.02.1977 3. Unvanı : Doçent Dr. 4. Öğrenim Durumu : ÖĞRENİM

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah KOPUZLU İÇİNDEKİLER HEDEFLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI

ÜNİTE. MATEMATİK-1 Prof.Dr.Abdullah KOPUZLU İÇİNDEKİLER HEDEFLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI HEDEFLER İÇİNDEKİLER LOGARİTMİK VE ÜSTEL FONKSİYONLARIN İKTİSADİ UYGULAMALARI Logaritmik ve Üstel Fonksiyonların İktisadi Uygulamaları Bileşik Faiz Problemleri Nüfus Problemleri MATEMATİK-1 ProfDrAbdullah

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

1 PROGRAMLAMAYA GİRİŞ

1 PROGRAMLAMAYA GİRİŞ İÇİNDEKİLER IX İÇİNDEKİLER 1 PROGRAMLAMAYA GİRİŞ 1 Problem Çözme 1 Algoritma 1 Algoritmada Olması Gereken Özellikler 2 Programlama Dilleri 6 Programlama Dillerinin Tarihçesi 6 Fortran (Formula Translator)

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Uygulamalı Yapay Zeka. Dr. Uğur YÜZGEÇ Ders 2: Prolog Giriş

Uygulamalı Yapay Zeka. Dr. Uğur YÜZGEÇ Ders 2: Prolog Giriş Uygulamalı Yapay Zeka Dr. Uğur YÜZGEÇ Ders 2: Prolog Giriş Prolog Yazılımı Bedava Prolog yorumlayıcıları var Linux, Windows, Mac OS Çok fazla sayıda Prolog yazılımı indirmek mümkün Bunlardan birkaçı SWI

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: SERDAR ÇARBAŞ 2. Doğum Tarihi: 04.06.1979 3. Ünvanı: Yardımcı Doçent Doktor 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: SERDAR ÇARBAŞ 2. Doğum Tarihi: 04.06.1979 3. Ünvanı: Yardımcı Doçent Doktor 4. Öğrenim Durumu: 1. Adı Soyadı: SERDAR ÇARBAŞ 2. Doğum Tarihi: 04.06.1979 3. Ünvanı: Yardımcı Doçent Doktor 4. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Lisans İnşaat Mühendisliği Atatürk Üniversitesi 2003 Y. Lisans

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

BİLGİSAYAR PROGRAMLAMA. Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642

BİLGİSAYAR PROGRAMLAMA. Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 BİLGİSAYAR PROGRAMLAMA Yrd. Doç. Dr. Beytullah EREN beren@sakarya.edu.tr 0264 295 5642 EXCEL DE GRAFİK UYGULAMA GRAFİKLER Grafikler, çok sayıda verinin ve farklı veri serileri arasındaki ilişkinin anlaşılmasını

Detaylı

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA BEYKENT ÜNİVERSİTESİ FEN VE MÜHENDİSLİK BİLİMLERİ DERGİSİ Sayı 7(1) 2014, 25-36 İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA Tuğba PİŞTOFOGLU (tugbapistofoglu@gmail.com)

Detaylı