Türkçe Ses Sentezi için Süre Modellenmesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Türkçe Ses Sentezi için Süre Modellenmesi"

Transkript

1 Türkçe Ses Sentezi için Süre Modellenmesi Ömer Şayli 1, Levent M. Arslan 1 ve A. Sumru Özsoy 2 Boğaziçi Üniversitesi, Bebek, 80815,İstanbul 1 Elektrik-Elektronik Mühendisliği Bölümü 2 Batı Dilleri ve Edebiyatı Bölümü {sayliome, arslanle, Özetçe Bu çalışmada, Türkçe ses sentezi için harflerin (seslerin) sürelerini tahmin eden modeller oluşturuldu. Çalışmada modelleri çıkarmak için, yetişkin bir erkeğe ait, 16 khz ve 16-bit te örneklenmiş ve tamamı etiketlenmiş ses kayıtları kullanıldı. Öncelikle kullanılan ses kayıtlarının Türkçe nin ne kadarlık bir kısmını kapsadığı araştırıldı. Üçlü öbekler baz alındığında, kapsamanın %70 dan fazla olduğu görüldü. Harflerin sürelerine etki eden etmenler değişim (varyans) analizi ile bulundu. Seslerin sürelerini tahmin için, harflerin ortalama sürelerini kullanan model ile üçlü öbeklerin ortalama sürelerini kullanan modele ilaveten doğrusal bağlanım modeli denendi. Kayıtlar tüm harfler/modeller için işlendi ve yazıdan sese sentez için bahsedilen modellere dayalı süre tahmin ediciler bulundu. Denenen üç modelde, genel olarak üçlü öbeklerin ortalama sürelerini kullanan modelin en iyi performansı gösterdiği görüldü. Ortalama-süre tahminine dayalı model, basit olmakla beraber bazı harfler için iyi performans gösterdi. İstatistiksel olarak, doğrusal bağlanım modelinin bazı harflerin sürelerinin değişkenliklerinin %80 ninden fazlasını açıklayabildiği görüldü. 1. Giriş İnsan-makina arabağlarının önem kazanmaları ve popüler olmalarıyla son yıllarda çeşitli diller için ses sentezi üzerindeki çalışmalar oldukça büyük bir ivme kazanmıştır. Özellikle İngilizce ve bazı diğer diller için Fransızca, Almanca ve Çince gibi- oldukça başarılı ses sentez uygulamaları geliştirilmiştir. Dilimiz Türkçe için de yapılan başarılı ses sentez uygulamaları [1] bulunmaktadır. Bu uygulamalardaki en büyük eksiklik, henüz tam olarak doğal seslerin üretilememesidir. Prosodi özellikleri olan perde sıklığı, şiddet ayarı, vurgu, entonasyon ile ses süreleri sesin doğallığını etkileyen ve henüz tam olarak modellenememiş ses özellikleridir. Bu çalışmada Türkçe için ele aldığımız etmen Türkçede süre özelliğidir. Süre ile kastedilen, bitiştirmeli sentez sistemlerinde, bitiştirilen parçacıkların süreleridir. Seslerin süre özelliği, oldukça kompleks olup ne tamamen istatiksel etmenlere ne de tamamen grammer özelliklerine (kurallara) bağlıdır [4]. Aksine bunların etkileşimi oldukça karmaşık bir durum meydana getirmektedir. Bu çalışmada, ses süreleri istatistiksel yöntemlerle incelenmiş ve modeller çıkarılmıştır. 2. Kullanılan Veri Tabanı Süre modelleri çıkarılması için, 16 khz ve 16-bit te okunmuş ve etiketlenmiş 7898 (tek başına okunmuş) kelime ve 206 (toplam 1167 kelimeden oluşan) tümce kullanıldı [2]. Okunmuş kelimeler

2 ve tümcelerin Türkçe nin ne kadarını kapsadığı Türkçede en sık geçen üçlü öbeklerin oluşturduğu grup ele alınarak incelendi. Ü. Yapanel in [6] çalışmasında, yaklaşık iki milyon kelime kullanılarak Türkçe de en sık kullanılan üçlü öbekler bulunmuştur. Üçlü öbekleri bir örnekle açıklarsak, /Ali geldi/ tümcesindeki üçlü öbekler /ali/, /liz/, /izg/, /Zge/, /gel/, /eld/, /ldi/, /diz/ dir (Z boşluğu temsil etmekte). En sık geçen üçlü öbeklere göre, okunmuş kelimelerin Türkçe nin %82 sini, okunmuş tümcelerin ise Türkçe nin %76 sını kapsadığı bulundu. Bu veritabanı, bitiştirmeli ses sentezinde kullanılmak için etiketlendi. Dalga biçimlerinin etiketlenmesinde (her harf için sesin dalga biçiminde karşılık gelen kısmın işaretlenmesi) ses sentezi için uygunluk göz önünde bulunduruldu. Uygunluktan kastedilen, ses sentezinde kullanılan parçacıkların bir araya geldiklerinde dalga biçimlerinin uyuşmasıdır. Örneğin, patlamalı seslerde, dalga biçimde görünen yüksek şiddetli kısma ilaveten önceki düşük şiddetli bölüm de etikete dahil edilmektedir. 3. Harf Sürelerini Etkileyen Etmenlerin Bulunması Giriş kısmında da belirtildiği gibi, harf sürelerinini etkileyen bir çok etmen bulunmaktadır. Diğer bazı diller için yapılan çalışmalarda, harf sürelerini etkileyen temel etmenlerin şunlar olduğu bulunmuştur: harfin kimliği, harfin çevresindeki harflerin kimliği, harfin geçtiği kelimenin önemi (ne kadar yeni bilgi taşıdığı), harfin kelime ve tümce içindeki pozisyonu (baş, orta ve son gibi), konuşma hızı, vurgu ve entonasyon. Harf sürelerini etkileyen diğer bazı etmenler olmakla beraber, bunların etkileri bu etmenlere göre daha az ve belirsizdir. Amerikan ingilizcesinde, yukarıdaki etmenlerin ünlülerdeki süre değişiminin %94 ünü açıklayabildiği gösterilmiştir [5]. Bu olguladan hareketle, eldeki veritabanı her harf için aşağıdaki etmenleri bulmak üzere işlendi; 1) Sesin kelime içindeki pozisyonu (baş-orta-son olmak üzere 3 düzey) 2) Sesin tümce içindeki pozisyonu (baş-orta-son olmak üzere 3 düzey) ( için) 3) Sesten önceki ve sonraki ünsüz tipi (21+21 düzey) 4) Sesten önceki ve sonraki ünlü tipi (8+8 düzey) 5) Sesin içinde bulunduğu hece tipi (açık/kapalı olmak üzere 2 düzey) 6) Sesin içinde bulunduğu hece örüntüsü (10 düzey) 7) deki kelime sayısı (7 düzey) ( için) Elimizde şu an için yazıdan ve dalga biçiminden insan yardımı olmaksızın otomatik olarak konuşma hızı, vurgu ve entonasyon bilgisini bulabilecek araçlar olmadığından bu etmenler incelemeye dahil edilemedi. Yukarda bulunan etmenlerin harflerin sürelerini etkileyip etkilemediği değişinti (varyans) analizi yardımıyla araştırıldı. Bu analiz sonucu, 0.05 anlamlılık seviyesine göre tek-kelime nda tüm etmenlerin harf sürelerini etkilediği ortaya çıktı. nda ise, süreyi etkilemeyen etmen düzeyleri yalnızca ünlüler için ünlü harften önceki ve sonraki ünlüler olduğu görüldü [3]. 4. Süre Modelleme Eldeki veritabanının yeterince iyi kapsama sağladığı görüldükten ve harf sürelerini etkileyen etmenlerin bulunmasından sonra model çıkarma safhasına geçildi. Süre tahmini için denenen ilk model harflerin ortalama sürelerini kullanan modeldir. Veritabanı kullanılarak her harfin ortalama süresi bulunmuştur. Diğer ortalama süreye dayalı model, üçlü öbeklerin ortalama sürelerini kullanmaktadır. Üçlü öbeklerin ortalama sürelerini kullanan model, her ne kadar ortalama süre kullanıyor olsa da, üçlü öbeğin ortasındaki harf için komşu iki harfin bilgisini de kendiliğinden

3 içermektedir. Türkçe de en sık geçen 5000 üçlü öbeğin, veritabanı kullanılarak ortalama süreleri bulunmuştur. Ayrıca harf sürelerini tahmin için doğrusal bağlanım modeli uygulandı. bağlanım modelini, modeli çıkarılacak harfi ile temsil edersek, βˆ y = Xβ (1) T 1 T = (X X ) (X y ) (2) şeklinde göstermek mümkündür. Burada y vektörü harflerin süre değerlerini, X harfin vektörde geçen süreyi aldığı kelimedeki/tümcedeki etmen düzey değerlerini, β doğrusal bağlanım katsayı değerlerini, Sesin süresini etkilediği varsayılan ve βˆ veritabanıyla bulunan doğrusal bağlanım katsayı tahminlerini ifade etmektedir. X vektörüne kodlanan etmenler, harflerin sürelerine etki ettiği saptanan etmenlerdir. Fakat etmenlerin çarpım şeklinde etkileşimleri modele dahil edilmemiştir. Eldeki veritabanıyla, her harf için denklem (2) ile doğrusal bağlanım katsayı tahminleri elde edilmiştir. bağlanım modelinin verideki değişimin ne kadarını açıkladığı R 2 istatistik değeri ile bulunmaktadır. 5. Sonuçlar Uygulanan üç modeli kıyaslamak için ortalama hata yüzdeleri kullanıldı. Her harf için, ortalama hata yüzdesi denklem (3) e göre hesaplandı. Harfi, hesaplanan ortalama hata yüzdesini Y ile temsil edersek, ortalama hata yüzde bulma denklemi şu şekildedir; Gerçek Süre - Tahmin Y = Ortalama *100 (3) Gerçek Süre Ünlüler ve ünsüzler için hata yüzde hesapları, denenen üç model ve iki ortam için tablo 1, 2.1 ve 2.2 de belirtilmektedir. Ortalama hata yüzdeleri modeller için %10 ile %54 arasında değişmektedir. Harflerin ortalama süresini kullanan modelin ortalama hata yüzdesi ünlülerde %22 ile %50 arasında, ünsüzlerde ise %16 ile %54 arasındadır. Bu model oldukça basit olmakla beraber, hata yüzde performansı bazı harfler için iyidir (/ş/ için tümce nda %16). Basitliği diğer modellere göre avantaj oluşturmaktadır. Üçlü öbeklerin ortalama sürelerini kullanan modelin performansı diğer iki modeli çoğu yerde geçmektedir. Yalnızca tek kelime nda ünlülerin süre tahmininde doğrusal bağlanım modeli daha iyi sonuç vermektedir. Fakat şunu belirtmek gerekir ki, üçlü öbekler kullanılarak her harf için süre tahmini yapılamamaktadır, yalnızca veritabanında karşılığı olanlar için yapılmaktadır. Bu yüzden denklem (3) kullanılarak hata yüzdesi hesaplanırken, her veri kullanılmamıştır üçlü öbek modelinde. bağlanım modelinin ortalama hata yüzdesi üçlü öbek modeline yakındır ve her girilen yazı için süre tahmini yapılabilmektedir. Bu modelin karmaşıklığı da üçlü öbek modeline göre azdır çünkü süre tahmini için tek gereken yalnızca doğrusal bağlanım katsayı tahminlerinin veritabanında saklanmasıdır. Bu da üçlü öbekleri saklamak için gereken yere göre oldukça azdır. Tablo 4.1 ve 4.2 de seslerin süre değişimlerinin ne kadarının doğrusal bağlanım modeliyle açıklanabildiği R 2 istatistik değerleri verilerek belirtilmiştir. Pratik olarak, 0.75 in altındaki değerler için doğrusal bağlanım modelinin başarılı olduğu söylenemez. Çoğu harf için R 2 değeri bu değerin

4 altındadır. Denediğimiz doğrusal bağlanım modeli etmenlerin etkileşimini (çarpımları) içermemektedir. Bu etkileşimlerin de eklenmesi halinde doğrusal bağlanım modelinin başarısının artacağı düşünülmektedir. Tüm etmenler göz önüne alındığında, doğrusal bağlanım modeli her durum içim süre tahmini yapabilmesi ve hata yüzdesinin az olmasından dolayı en iyi model seçilebilir. Harflerin süre tahmini için halen yeni modeller geliştirilmeye çalışılmaktadır. Bu çalışmanın ilginç sonuçlarından biri de Türkçede ünlülerin ve ünsüzlerin özelliklerinin bulunmasında süre bilgisinin kullanılabileceğini gösterilmesi oldu [3]. Tablo 1. Ünlüler için elde edilen hata yüzdeleri Ortam Model a e ı i o ö u ü Harf ortalama Üçlü öbek Kelime Ortamı Harf ortalama Üçlü öbek Tablo 2.1 Ünsüzler (b-k) için elde edilen hata yüzdeleri Ortam Model b c ç d f g ğ h j k Harf ortalama Üçlü öbek Kelime Ortamı Harf ortalama Üçlü öbek Tablo 2.2 Ünsüzler (l-z) için elde edilen hata yüzdeleri Ortam Model l m n P r s ş t v y z Harf kelime ortalama Üçlü öbek Harf ortalama Üçlü öbek

5 Tablo 3 Ünlüler için elde edilen R 2 değerleri a e ı i o ö u ü kelime kelime Tablo 4.1 Ünsüzler (b-m) için elde edilen R 2 değerleri b c ç d f g ğ h j k l m Tablo 4.2 Ünsüzler (n-z) için elde edilen R 2 değerleri n p r s ş t v y z kelime Kaynakça [1] Arslan, L. M., Sürekli Konuşma Tanıma ve Konuşma Sentezi Uygulamalarında En Uygun Fonetik Dizgenin Otomatik Seçimi, S.İ.U. Konferansı, Bilkent, Ankara, Haziran, [2] GVZ Ses nolojileri Yazılım Hizmetleri A.Ş., [3] Şayli, Ö., Duration Modelling for Turkish Text-to-Speech Synthesis, Yüksek Lisans Tez Çalışması, Boğaziçi Üniversitesi. [4] Van Santen, J., ''Chapter 5: Timing'', Multilingual Text-to-Speech Synthesis: The Bell Labs Approach, Kluwer Academic Publishers, Richard Sproat, editör, s , [5] Van Santen, J.P.H., Contextual Effects on Vowel Duration, Speech Communication, Cilt 11, s , [6] Yapanel, Ü., Garbage Modeling Techniques for a Turkish Keyword Spotting System, Yüksek Lisans Tezi, Boğaziçi Üniversitesi, 2000.

Biyo-Medikal Mühendisliği Enstitüsü. Bbatı Dilleri ve Edebiyatı Bölümü. Elektrik-Elektronik Mühendisliği Bölümü {sayliome, arslanle}@boun.edu.

Biyo-Medikal Mühendisliği Enstitüsü. Bbatı Dilleri ve Edebiyatı Bölümü. Elektrik-Elektronik Mühendisliği Bölümü {sayliome, arslanle}@boun.edu. Şayli, Ö., Levent M. Arslan and A. Sumru Özsoy, Türkçe'de Ses Sürelerine Etki Eden Etmenler ve Etkileri (Factors Effecting Durations of Turkish Phonemes and Their Effects), XVII. Dilbilim Kurultayı, Anadolu

Detaylı

Türkçe de Ünlülerin Formant Analizi

Türkçe de Ünlülerin Formant Analizi Türkçe de Ünlülerin Formant Analizi Oytun Türk*, Ömer Şayli**, A. Sumru Özsoy***, Levent M. Arslan* Boğaziçi Üniversitesi *Elektrik-Elektronik Mühendisliği Bölümü **Biyomedikal Mühendisliği Enstitüsü ***Batı

Detaylı

Türkçe de Ünlülerin FormantĐncelemesi

Türkçe de Ünlülerin FormantĐncelemesi Türk, O., Şayli, Ö., Özsoy, S., Arslan, L., Türkçede Ünlülerin Formant Frekans Đncelemesi, 18. Ulusal Dilbilim Kurultayı, Ankara Üniversitesi, 20-21 Mayıs 2004 (Sözel sunum) Türkçe de Ünlülerin FormantĐncelemesi

Detaylı

Ömer Şayi i ve Levent M. A ıslan Boğaziçi Üniversitesi

Ömer Şayi i ve Levent M. A ıslan Boğaziçi Üniversitesi Türkçe deki sesierin süre özellikleri Ömer Şayi i ve Levent M. A ıslan Boğaziçi Üniversitesi Durations of the Tıırkish phonemes are investigated in t'nis study using the high quality digital records of

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ

PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJE ADI: TEKRARLI PERMÜTASYONA BİNOM LA FARKLI BİR BAKIŞ PROJENİN AMACI: Projede, permütasyon sorularını çözmek genellikle öğrencilere karışık geldiğinden, binom açılımı kullanmak suretiyle sorulara

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Güç Elektroniği I EEE441 7 3+0 3 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Güç Elektroniği I EEE441 7 3+0 3 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Güç Elektroniği I EEE441 7 3+0 3 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr. Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 4 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA)

MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA) MOCKUS HİDROGRAFI İLE HAVZA & TAŞKIN MODELLENMESİNE BİR ÖRNEK: KIZILCAHAMAM(ANKARA) Tunç Emre TOPTAŞ Teknik Hizmetler ve Eğitim Müdürü, Netcad Yazılım A.Ş. Bilkent, Ankara, Öğretim Görevlisi, Gazi Üniversitesi,

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Doğu Anadolu Bölgesi'ndeki Bazı İllerin Hava Şartları ve Rüzgar Gücünün Modellenmesi

Doğu Anadolu Bölgesi'ndeki Bazı İllerin Hava Şartları ve Rüzgar Gücünün Modellenmesi Tesisat Mühendisliği Dergisi Sayı: 89, s. 58-64, 2005 Doğu Anadolu Bölgesi'ndeki Bazı İllerin Hava Şartları ve Rüzgar Gücünün Modellenmesi Ebru KAVAK AKPINAR* Yaşar BİÇER BeytuIIah ERDOĞAN Özet Bu çalışmada,

Detaylı

Tahminleme Yöntemleri-2

Tahminleme Yöntemleri-2 PAU ENDÜSTRİ MÜHENDİSLİĞİ IENG 318 - Üretim Planlama ve Kontrolü 1 Tahminleme Yöntemleri-2 İçerik 1. Mevsimsel Değişim Bazlı Teknik 2. Box-Jenkins Modelleri 3. Tahmin Yöntemlerini Uygulamada Dikkat Edilmesi

Detaylı

ORTAÖĞRETİME ÖĞRETMEN YETİŞTİRMEDE "MESLEK BİLGİSİ" BAKIMINDAN FEN-EDEBİYAT VE EĞİTİM FAKÜLTELERİNİN ETKİLİLİĞİ

ORTAÖĞRETİME ÖĞRETMEN YETİŞTİRMEDE MESLEK BİLGİSİ BAKIMINDAN FEN-EDEBİYAT VE EĞİTİM FAKÜLTELERİNİN ETKİLİLİĞİ ORTAÖĞRETİME ÖĞRETMEN YETİŞTİRMEDE "MESLEK BİLGİSİ" BAKIMINDAN FEN-EDEBİYAT VE EĞİTİM FAKÜLTELERİNİN ETKİLİLİĞİ Prof. Dr. Nuray SENEMOĞLU ve Prof. Dr. Durmuş Ali ÖZÇELİK Eğitim, geçerli öğrenmeleri oluşturma

Detaylı

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT

YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ. Umut FIRAT YAPAY SİNİR AĞI KULLANARAK DEPREM EĞİLİMİNİN KESTİRİMİ Umut FIRAT ufirat@yahoo.com Öz: Depremler yeryüzünde en çok yıkıma neden olan doğal afetlerdir. Bu durum, depremlerin önceden tahmin edilmesi fikrini

Detaylı

İÇİNDEKİLER. ÖN SÖZ.v ÖZ GEÇMİŞ vii I. BÖLÜM İLK OKUMA VE YAZMA ÖĞRETİMİNİN TARİHSEL GELİŞİMİ 1

İÇİNDEKİLER. ÖN SÖZ.v ÖZ GEÇMİŞ vii I. BÖLÜM İLK OKUMA VE YAZMA ÖĞRETİMİNİN TARİHSEL GELİŞİMİ 1 İÇİNDEKİLER ÖN SÖZ.v ÖZ GEÇMİŞ vii I. BÖLÜM İLK OKUMA VE YAZMA ÖĞRETİMİNİN TARİHSEL GELİŞİMİ 1 İlk Okuma ve Yazma Öğretiminin Tarihsel Gelişimi... 1 İlk Okuma ve Yazma Öğretiminde Kullanılan Öğretim Yöntemlerine

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

First Discoveries Seviyesi Kullanım Kılavuzu

First Discoveries Seviyesi Kullanım Kılavuzu First Discoveries Seviyesi Kullanım Kılavuzu FIRST DİSCOVERİES SEVİYESİNE HOŞ GELDİNİZ FIRST DISCOVERIES-BAŞLANGIÇ First Discoveries, seviyesine ulaşmak için ComLearning Online English ana sayfasından

Detaylı

TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ DEĞİŞKENLER AÇISINDAN İNCELENMESİ

TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ DEĞİŞKENLER AÇISINDAN İNCELENMESİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ VERİ ANALİZİ, İZLEME VE DEĞERLENDİRME DAİRE BAŞKANLIĞI TEMEL EĞİTİMDEN ORTAÖĞRETİME GEÇİŞ ORTAK SINAV BAŞARISININ ÇEŞİTLİ

Detaylı

Bilgisayar Destekli Eğitimin Gelişimi ve Kuramsal Dayanakları

Bilgisayar Destekli Eğitimin Gelişimi ve Kuramsal Dayanakları Bilgisayar Destekli Eğitimin Gelişimi ve Kuramsal Dayanakları Bir Önceki Ders Çağdaş Eğitim Gereksinimleri Bilgisayarların Eğitime Girişi Bilgisayarların Eğitime Etkisi Öğrencinin ve Öğretmenin Değişen

Detaylı

Yeni Sınav Sistemi. Yeni Sınav Sistemi (YGS-LYS) 1-YGS (YÜKSEKÖĞRETİME GEÇİŞ SINAVI) Sevgili Öğrenciler:

Yeni Sınav Sistemi. Yeni Sınav Sistemi (YGS-LYS) 1-YGS (YÜKSEKÖĞRETİME GEÇİŞ SINAVI) Sevgili Öğrenciler: Sevgili Öğrenciler: Yeni Sınav Sistemi 2010 Yılında uygulanacak yeni ÖSS sistemi konusunda sizi bilgilendirmek için bu kitapçığı hazırladık. SAY, EA, SÖZ, DİL puan türlerindeki sayı ve içerik olarak artışları,

Detaylı

Fiziksel Veritabanı Modelleme

Fiziksel Veritabanı Modelleme Fiziksel Veritabanı Modelleme Fiziksel Veritabanı VTYS, verileri yan bellekte tutar. Bu yüzden VTYS lerde sıklıkla READ (yan bellekten okuma) ve WRITE (yan belleğe yazma) işlemi meydana gelir. READ ve

Detaylı

Deneysel Verilerin Değerlendirilmesi. Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR. Prof. Dr. Murat ELİBOL FİNAL SINAVI

Deneysel Verilerin Değerlendirilmesi. Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR. Prof. Dr. Murat ELİBOL FİNAL SINAVI Deneysel Verilerin Değerlendirilmesi Dersi Veren Öğretim Üyeleri: Yrd. Doç. Dr. Özge ANDİÇ ÇAKIR Prof. Dr. Murat ELİBOL FİNAL SINAVI Ödevi Hazırlayan: Özge AKBOĞA 91100019124 (Doktora) Güz,2012 İzmir 1

Detaylı

Deney 1: Transistörlü Yükselteç

Deney 1: Transistörlü Yükselteç Deneyin Amacı: Deney 1: Transistörlü Yükselteç Transistör eşdeğer modelleri ve bağlantı şekillerinin öğrenilmesi. Transistörün AC analizi yapılarak yükselteç olarak kullanılması. A.ÖNBİLGİ Transistörün

Detaylı

İSTATİSTİK EXCEL UYGULAMA

İSTATİSTİK EXCEL UYGULAMA İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

BASEL II. RİSK AĞIRLIK FONKSİYONLARI (Beklenmeyen Kayıplar)

BASEL II. RİSK AĞIRLIK FONKSİYONLARI (Beklenmeyen Kayıplar) BASEL II RİSK AĞIRLIK FONKSİYONLARI (Beklenmeyen Kayıplar) Temerrüde düşmemiş krediler için Basel II düzenlemelerinde Korelasyon Katsayısı, Vade ayarlaması, Sermaye Yükümlülüğü oranı, Sermaye yükümlülüğü

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

VERİ TABANI I. Yrd.Doç.Dr. İlker ÜNAL. Teknik Bilimler Meslek Yüksekokulu

VERİ TABANI I. Yrd.Doç.Dr. İlker ÜNAL. Teknik Bilimler Meslek Yüksekokulu VERİ TABANI I Yrd.Doç.Dr. İlker ÜNAL Teknik Bilimler Meslek Yüksekokulu Veri Tabanı Bileşenleri Tablolar : Veritabanının temel nesnesi tablolardır. Bilgilerin asıl tutulduğu yer tablodur. Diğer veritabanı

Detaylı

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D)

TEST-8. Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) TEST-8 Matematik Yarışmalarına Hazırlık 1 Yandaki at resminin bir bölümü silinmiştir. Aşağıdaki şekillerden hangisi bu resmi tamamlar? A) B) C) D) 2 Yandaki kareden çizgiler boyunca kesilerek çeşitli şekiller

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

İÇİNDEKİLER 1: DİL VE DÜŞÜNCE ARASINDAKİ İLİŞKİ...

İÇİNDEKİLER 1: DİL VE DÜŞÜNCE ARASINDAKİ İLİŞKİ... İÇİNDEKİLER Bölüm 1: DİL VE DÜŞÜNCE ARASINDAKİ İLİŞKİ... 1 1.1. Bir İleti Kodu Olarak Dil... 1 1.1.1. Dilin Bireysel ve Toplumsal Yönü / Uzlaşımsal Niteliği... 4 1.1.2. Dilin Yapısal Yönü / Dizge Olma

Detaylı

EXCEL DE ARİTMETİKSEL İŞLEMLER

EXCEL DE ARİTMETİKSEL İŞLEMLER EXCEL DE ARİTMETİKSEL İŞLEMLER Toplama İşlemi. Bu İşlemleri yapmadan önce ( toplama- Çıkarma Çarpma-Bölme ve formüllerde) İlk önce hücre İçerisine = (Eşittir) işareti koyman gerekir. KDV HESAPLARI ÖRNEK;

Detaylı

Siirt Üniversitesi Eğitim Fakültesi. Halil Coşkun ÇELİK

Siirt Üniversitesi Eğitim Fakültesi. Halil Coşkun ÇELİK Siirt Üniversitesi Eğitim Fakültesi Halil Coşkun ÇELİK 15 Mayıs 2008 Hemen hemen her bilim alanındaki gelişmeler, yapılmış sistematik araştırmaların katkılarına bağlıdır. Bu yüzden genel olarak araştırma,

Detaylı

Üst düzey dillerden biri ile yazılmış olan bir programı, makine diline çeviren programa derleyici denir. C++ da böyle bir derleyicidir.

Üst düzey dillerden biri ile yazılmış olan bir programı, makine diline çeviren programa derleyici denir. C++ da böyle bir derleyicidir. İST 205 Bilgisayar Programlama III C Programlamaya Giriş ve Matematiksel-İstatistiksel Uygulamalar Y.Doç.Dr. Levent Özbek Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Tel: 0.312.2126720/1420 ozbek@science.ankara.edu.tr

Detaylı

BAŞAK ÇOBAN MERVE SARITAŞ AZİME AKÇAÖZ BÜŞRA AYDEMİR

BAŞAK ÇOBAN MERVE SARITAŞ AZİME AKÇAÖZ BÜŞRA AYDEMİR VERİ MADENCİLİĞİ İSİMLER BAŞAK ÇOBAN MERVE SARITAŞ AZİME AKÇAÖZ BÜŞRA AYDEMİR MOLEKÜLER BİYOLOJİ ve GENETİK GEBZE TEKNİK ÜNİVERSİTESİ ARALIK 2015 İçindekiler ÖZET... iii 1.GİRİŞ... 1 1.1 Veri Ambarı, Veri

Detaylı

Dosya Sıkıştırma (File Compression) Kütük Organizasyonu 1

Dosya Sıkıştırma (File Compression) Kütük Organizasyonu 1 Dosya Sıkıştırma (File Compression) Kütük Organizasyonu İçerik Dosya sıkıştırma nedir? Dosya sıkıştırma yöntemleri nelerdir? Run-Length Kodlaması Huffman Kodlaması Kütük Organizasyonu 2 Dosya Sıkıştırma

Detaylı

İçindekiler. İçindekiler... vii 1. BÖLÜM SES TEMELLİ CÜMLE YÖNTEMİ VE YAPILANDIRMACILIK. Yrd. Doç. Dr. Meral GÖZÜKÜÇÜK

İçindekiler. İçindekiler... vii 1. BÖLÜM SES TEMELLİ CÜMLE YÖNTEMİ VE YAPILANDIRMACILIK. Yrd. Doç. Dr. Meral GÖZÜKÜÇÜK İçindekiler Önsöz... iii İçindekiler... vii 1. BÖLÜM SES TEMELLİ CÜMLE YÖNTEMİ VE YAPILANDIRMACILIK Yrd. Doç. Dr. Meral GÖZÜKÜÇÜK Giriş... 1 Dil ve Anadili Tanımı... 2 Türkçenin Özellikleri... 4 İlkokul

Detaylı

Otomatik Düzelt. Otomatik düzelt penceresinin anlatılması. Otomatik Düzelt penceresine iki yoldan ulaşabiliriz.

Otomatik Düzelt. Otomatik düzelt penceresinin anlatılması. Otomatik Düzelt penceresine iki yoldan ulaşabiliriz. Otomatik Düzelt Otomatik düzelt penceresinin anlatılması OTOMATİK DÜZELT Otomatik Düzelt penceresine iki yoldan ulaşabiliriz. 1. Microsoft Office Düğmesi > Word Seçenekleri > Yazım Denetleme > Otomatik

Detaylı

TÜRKÇE MODÜLÜ BİREYSEL EĞİTİM PLANI (TÜRKÇE DERSİ) (1.ÜNİTE) GÜZEL ÜLKEM TÜRKİYE

TÜRKÇE MODÜLÜ BİREYSEL EĞİTİM PLANI (TÜRKÇE DERSİ) (1.ÜNİTE) GÜZEL ÜLKEM TÜRKİYE (1.ÜNİTE) GÜZEL ÜLKEM TÜRKİYE KISA DÖNEMLİ MATERYAL YÖNTEM- i doğru kullanır. 1 2 3 4 Söylenen sözcüğü tekrar eder. Gösterilen ve söylenen nesnenin adını söyler. Gösterilen nesnenin adını söyler. Resmi

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Microsoft Excel Uygulaması 2

Microsoft Excel Uygulaması 2 Microsoft Excel Uygulaması 2 Dört Temel İşlem: MS Excel hücrelerinde doğrudan değerlere ya da hücre başvurularına bağlı olarak hesaplamalar yapmak mümkündür. Temel aritmetik işlemlerin gerçekleştirilmesi

Detaylı

BİYOLOJİ DERSLERİNDE VERİMLİLİK VE TEKNOLOJİ KULLANIMI

BİYOLOJİ DERSLERİNDE VERİMLİLİK VE TEKNOLOJİ KULLANIMI BİYOLOJİ DERSLERİNDE VERİMLİLİK VE TEKNOLOJİ KULLANIMI Arzu YILDIRIM, Rıdvan KETE Dokuz Eylül Üniversitesi, Buca Eğitim Fakültesi, OFMAE Bölümü, Biyoloji Eğitimi A.B.D., İZMİR ÖZET: Bu araştırmada, orta

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

T. C. TRAKYA ÜNİVERSİTESİ SOSYAL BİLİMLER DERGİSİ YAYIN İLKELERİ

T. C. TRAKYA ÜNİVERSİTESİ SOSYAL BİLİMLER DERGİSİ YAYIN İLKELERİ T. C. TRAKYA ÜNİVERSİTESİ SOSYAL BİLİMLER DERGİSİ YAYIN İLKELERİ T.Ü. Sosyal Bilimler Dergisi nde, aşağıda belirtilen şartlara uyan eserler yayınlanır. 1. Makalelerin, Trakya Üniversitesi Sosyal Bilimler

Detaylı

GANTT ÇİZELGESİ PERT DİYAGRAMI

GANTT ÇİZELGESİ PERT DİYAGRAMI GANTT ÇİZELGESİ PERT DİYAGRAMI SİSTEM ANALİZİ VE TASARIMI DERSİ YILDIZ TEKNIK ÜNIVERSITESI BİLGİSAYAR MÜHENDİSLİĞİ 1 Gantt Çizelgesi... 2 Giriş... 2 Faaliyetler Arası Öncelik İlişkisi... 3 Kritik Yol...

Detaylı

FTR 331 Ergonomi. yrd. doç. dr. emin ulaş erdem

FTR 331 Ergonomi. yrd. doç. dr. emin ulaş erdem FTR 331 Ergonomi yrd. doç. dr. emin ulaş erdem ERGONOMİDE KULLANILAN MODELLER Modelleme, farklı öğeler arasındaki ilişkilerin tanımlanmasında kullanılan bir yöntemdir. Modeller, kullanıldıkları alanlara

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

PROSTEEL 2015 STATİK RAPORU

PROSTEEL 2015 STATİK RAPORU PROSTEEL 2015 STATİK RAPORU Bu rapor çelik yapıların yaygınlaşması anlamında yarışma düzenleyerek önemli bir teşvik sağlayan Prosteel in 2016 Çelik Yapı Tasarımı Öğrenci Yarışması için hazırlanmıştır.

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Veri Organizasyonu ve Yönetimi BIL303 5 3+0 3 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Veri Organizasyonu ve Yönetimi BIL303 5 3+0 3 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Veri Organizasyonu ve Yönetimi BIL303 5 3+0 3 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz

Detaylı

Uluslararası Öğrencilerin Ülke ve Üniversite Seçimlerini Etkileyen Faktörler

Uluslararası Öğrencilerin Ülke ve Üniversite Seçimlerini Etkileyen Faktörler Uluslararası Öğrencilerin Ülke ve Üniversite Seçimlerini Etkileyen Faktörler İSTANBUL AYDIN ÜNİVERSİTESİ Yüksek Öğretim Çalışmaları Uygulama ve Araştırma Merkezi Eğitim Fakültesi 2 Giriş Dünyadaki hızlı

Detaylı

LYS ye başvurmak için geçmemiz gereken baraj puan kaçtır? Geçtiğimiz baraj puanına uygun LYS ye mi katılmamız gerekir?

LYS ye başvurmak için geçmemiz gereken baraj puan kaçtır? Geçtiğimiz baraj puanına uygun LYS ye mi katılmamız gerekir? SIKÇA SORULAN SORULAR LYS ye başvurmak için geçmemiz gereken baraj puan kaçtır? Geçtiğimiz baraj puanına uygun LYS ye mi katılmamız gerekir? LYS ye başvurmak için, adayın YGS de hesaplanan 6 puandan herhangi

Detaylı

İÇİNDEKİLER BİRİNCİ BÖLÜM BİLGİSAYARDA BELGE AÇMAK VE TEMEL İŞLEMLER YAPMAK

İÇİNDEKİLER BİRİNCİ BÖLÜM BİLGİSAYARDA BELGE AÇMAK VE TEMEL İŞLEMLER YAPMAK İÇİNDEKİLER BİRİNCİ BÖLÜM BİLGİSAYARDA BELGE AÇMAK VE TEMEL İŞLEMLER YAPMAK 1. BELGE İŞLEMLERİ... 1 1.1. Arayüz ve Görünüm Ayarları... 1 1.1.1. Genel Görünüm... 1 1.1.2. Belge Görünümleri... 2 1.1.3. Yakınlaştırma...

Detaylı

Ders Adı : TÜRK DİLİ I: SES VE YAPI BİLGİSİ Ders No : Teorik : 2 Pratik : 0 Kredi : 2 ECTS : 3. Ders Bilgileri.

Ders Adı : TÜRK DİLİ I: SES VE YAPI BİLGİSİ Ders No : Teorik : 2 Pratik : 0 Kredi : 2 ECTS : 3. Ders Bilgileri. Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : TÜRK DİLİ I: SES VE YAPI BİLGİSİ Ders No : 03040004 Teorik : Pratik : 0 Kredi : ECTS : 3 Ders Bilgileri Ders Türü Öğretim

Detaylı

YÜZEYSULARI ÇALIŞMA GRUBU

YÜZEYSULARI ÇALIŞMA GRUBU 1/23 HEDEFLER Mühendislerimiz ve akademisyenlerimiz ile birlikte gelişmiş yöntem ve teknikleri kullanarak; su kaynaklarımızın planlama, inşaat ve işletme aşamalarındaki problemlere çözüm bulmak ve bu alanda

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Deprem Merkezi Bulma Uygulamasının JDL İş Akışları ile Paralelleştirilmesi

Deprem Merkezi Bulma Uygulamasının JDL İş Akışları ile Paralelleştirilmesi Deprem Merkezi Bulma Uygulamasının JDL İş Akışları ile Paralelleştirilmesi M.Yilmazer, R. Arikan, M. S. Geden, C. Ozturan, B. Bektas Bogazici University İÇERİK Giriş Deprem Merkezi Bulma Yöntemi Paralelleştirme

Detaylı

İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI

İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI TMMOB TÜRKİYE VI. ENERJİ SEMPOZYUMU - KÜRESEL ENERJİ POLİTİKALARI VE TÜRKİYE GERÇEĞİ İNTERNET TARAYICISI ÜZERİNDE ÇALIŞABİLEN ELEKTRİK TALEP TAHMİNİ ANALİZ PROGRAMI Barış Sanlı Dünya Enerji Konseyi Türk

Detaylı

Sensör Birleştirme Eğitimi. Hızlı jet uçağa monte görev sistemlerinin geliştirilmiş operasyonel performansı vasıtasıyla avantaj sağlayın

Sensör Birleştirme Eğitimi. Hızlı jet uçağa monte görev sistemlerinin geliştirilmiş operasyonel performansı vasıtasıyla avantaj sağlayın Sensör Birleştirme Eğitimi Hızlı jet uçağa monte görev sistemlerinin geliştirilmiş operasyonel performansı vasıtasıyla avantaj sağlayın Operasyonel verimliliği en üst düzeye çıkarma Hızlı jet platformlar,

Detaylı

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz ÖNEKLEME HATALAI EK C A. Sinan Türkyılmaz Örneklem araştırmalarından elde edilen kestirimler (estimates) iki tip dan etkilenirler: (1) örneklem dışı lar ve (2) örneklem ları. Örneklem dışı lar, veri toplama

Detaylı

İspanyol Alfabesi 27 harf ve 2 digraf, yani tek ses veren ikili harf kombinasyonundan oluşur.

İspanyol Alfabesi 27 harf ve 2 digraf, yani tek ses veren ikili harf kombinasyonundan oluşur. İspanyolcaya Giriş 2 İspanyolca Latince kökenli bir dil. Alfabesi Latin Alfabesine ufak eklemeler yapılarak oluşturulmuştur. Diğer Latin kökenli dillerle doğal olarak benzerlikler taşır. İtalyanca ile

Detaylı

Tablo Hazırlama. Öğr.Gör.Volkan Altıntaş

Tablo Hazırlama. Öğr.Gör.Volkan Altıntaş Tablo Hazırlama Öğr.Gör.Volkan Altıntaş Tablolar Tablolar veri tabanlarında bilgilerin tutulduğu veri gruplarıdır. Tablo içerisinde yer alan her bilgi kayıt, sütunlar ise alan olarak adlandırılır. Kayıtlar

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

25.10.2011. Arayüz Nedir? Arayüz Çeşitleri Arayüz Tasarım Yöntemleri Arayüz Tasarım Hataları. Ömer Faruk MIZIKACI 2008639402

25.10.2011. Arayüz Nedir? Arayüz Çeşitleri Arayüz Tasarım Yöntemleri Arayüz Tasarım Hataları. Ömer Faruk MIZIKACI 2008639402 Arayüz Tasarımı ve Programlama Neleri Konuşacağız Arayüz Nedir? Arayüz Çeşitleri Arayüz Tasarım Yöntemleri Arayüz Tasarım Hataları Ömer Faruk MIZIKACI 2008639402 Arayüz Nedir? Bilgisayar ve uygulamalarının

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

MICROSOFT OFFİCE WORD PROGRAMI DOSYA İŞLEMLERİ

MICROSOFT OFFİCE WORD PROGRAMI DOSYA İŞLEMLERİ MICROSOFT OFFİCE WORD PROGRAMI Ms Word bir kelime işlemci programıdır. İçinde bulunan detaylı metin biçimlendirme seçenekleri, ayrıntılı tablo, şekil ve grafik oluşturma başarıları nedeniyle, kendi türünde

Detaylı

Döner Sermaye İşletmesi İşleri İle İlgili Şube Müdürlüğü EK ÖDEME, SABİT EK ÖDEME, ASGARİ (TABAN) EK ÖDEME HESAPLAMA USULLERİ. 06/06/11 Eren ERCAN 1

Döner Sermaye İşletmesi İşleri İle İlgili Şube Müdürlüğü EK ÖDEME, SABİT EK ÖDEME, ASGARİ (TABAN) EK ÖDEME HESAPLAMA USULLERİ. 06/06/11 Eren ERCAN 1 Döner Sermaye İşletmesi İşleri İle İlgili Şube Müdürlüğü EK ÖDEME, SABİT EK ÖDEME, ASGARİ (TABAN) EK ÖDEME HESAPLAMA USULLERİ 06/06/11 Eren ERCAN 1 HEKİM SABİT ÖDEME En Yüksek Devlet Memuru Aylığı (Ek

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

PATENT ARAŞTIRMASI VE ÖNEMİ

PATENT ARAŞTIRMASI VE ÖNEMİ PATENT ARAŞTIRMASI VE ÖNEMİ İstanbul, 26 Ekim 2010 A. Bülent DALOĞLU Patent Uzmanı bdaloglu@turkpatent.gov.tr PATENT VERİTABANLARININ KULLANIMI İşimizde karşılaştığınız teknik problemlerin çözümünü bulmayı,

Detaylı

SÜRELİ YAYIN KAYITLARININ ENTEGRASYONU

SÜRELİ YAYIN KAYITLARININ ENTEGRASYONU SÜRELİ YAYIN KAYITLARININ ENTEGRASYONU Uzman küt. Kemal ÖZTÜRK İstanbul Üniversitesi Merkez Kütüphanesi E-posta: kozturk@istanbul.edu.tr Tanım Bu bildiri başlığındaki entegrasyon terimi, İstanbul Üniversitesi

Detaylı

Bİ LGİ SAYARDA, JEODEZİ VE FOTOGRAMETRİ MESLEKİ TERİ MLERİ SÖ ZLÜĞ Ü

Bİ LGİ SAYARDA, JEODEZİ VE FOTOGRAMETRİ MESLEKİ TERİ MLERİ SÖ ZLÜĞ Ü Bİ LGİ SAYARDA, JEODEZİ VE FOTOGRAMETRİ MESLEKİ TERİ MLERİ SÖ ZLÜĞ Ü İ.Bülent GÜNDOĞ DU Yabancı bir dilde oluşturulmuş yayınları mümkün olduğ unca incelemek ve içeriğ i hakkında bilgi sahibi olmak, çok

Detaylı

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek KAPASİTE FAKTÖRÜ VE ENERJİ TAHMİNİ Kapasite faktörü (KF) bir santralin ne kadar verimli kullanıldığını gösteren bir parametredir. Santralin nominal gücü ile yıllık sağladığı enerji miktarı arasında ilişki

Detaylı

Terör Olayları ve Enerji Zinciri : İstatistiksel bir İnceleme

Terör Olayları ve Enerji Zinciri : İstatistiksel bir İnceleme Terör Olayları ve Enerji Zinciri : İstatistiksel bir İnceleme Giriş Dünyadaki terör olaylarının ne kadarının enerji kaynaklarına yönelik olduğu veya bu olayların temelinde kaynak kontrol etme kaygılarının

Detaylı

* - - * 100 2014-119. 2014100-119. - -- a - 101 2014-119. 2014100-119. - - - 2 2 ÖMER sebebiyle 102 2014-119. 2014100-119. - 3 Bu bölümden sonra. 4 tümce 103 2014-119. 2014100-119. 104 2014-119. 2014100-119.

Detaylı

İİİ Ş Ş ç ç ç ç ç ç ç İ Ö İ İ Ğ ç ç ç Ö ç ç Ş ç ç ç ç ç ç ç ç ç ç ç ç İ ç Ş İ İ Ü İ Ş İ ç ç ç İ ç İ İ İç ç İ ç ç ç ç İ İ İ İ İ İ İİ İ Ç ç Ş İ Ş İ İ ç ç ç İ Ç ç Ö İ Ü İ İŞ ç ç İ Ğ Ş Ü İ ç ç Ş Ş ç İ İ Ö

Detaylı

İ İ İ ç çi İ İ İ ç İ İ ç Ş İ Ç Ş İ ç Ş ç İ İ İ ç İ Ç ç İ İ İ İ İ İĞİ İ İ İ İ Ş Ş Ş Ş ç Ş Ş Ş İ İ İ Ğ İ İ İ İ Ş Ç Ş Ç Ş İ İ İ ç Ç Ş Ç Ş ç İ Ç Ş İ ç ç Ö Ç ç Ü İ ç Ç İ İ ç ç İ İ ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

İ İ İ İ İ Ö Ü İ İ İ İ Ğ Ö Ö Ö İ Ö Ç İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ «Ü İ İ Ü İ İ İÇİ İ İ Ü İ İ İ İ İ Ö Ü İ Ö İ Ü İ İ İ İ İ Ü Ö İ İ İ İ İ Ö İ İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ İ Ç»«İ Ü İ İ Ü Ç İ İ İİ İ İ Ü

Detaylı

Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı

Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı Başkent Üniversitesi Bilgisayar Mühendisliği Yönetim Bilişim Sistemleri (Bil 483) 20394676 - Ümit Burak USGURLU Veritabanı Veri tabanı düzenli bilgiler

Detaylı

TTB-HUV SUNUMU. Dr. RAİF KAYA

TTB-HUV SUNUMU. Dr. RAİF KAYA TTB-HUV SUNUMU Dr. RAİF KAYA TTB-AÜT Neden HUV Oldu? Asgari Ücret Tarifesi (AÜT), yıllardan beri Türk Tabipleri Birliği tarafından 6023 sayılı TTB yasası ile belirlenen yetkiler kapsamında hazırlanan ve

Detaylı

R ile Programlamaya Giriş ve Uygulamalar

R ile Programlamaya Giriş ve Uygulamalar R ile Programlamaya Giriş ve Uygulamalar İçerik R ye genel bakış R dili R nedir, ne değildir? Neden R? Arayüz Çalışma alanı Yardım R ile çalışmak Paketler Veri okuma/yazma İşleme Grafik oluşturma Uygulamalar

Detaylı

İM 205-İnşaat Mühendisleri için MATLAB. Irfan Turk Fatih Üniversitesi,

İM 205-İnşaat Mühendisleri için MATLAB. Irfan Turk Fatih Üniversitesi, İM 205-İnşaat Mühendisleri için MATLAB Irfan Turk Fatih Üniversitesi, 2013-14 MATLAB Nedir? MATLAB ın açılımı MATrix LABoratory dir. MATLAB yüksek performanslı tekniksel bir programlama dilidir. Matematik,

Detaylı

Moodle-IST Kullanım Klavuzu

Moodle-IST Kullanım Klavuzu Moodle-IST Kullanım Klavuzu 1 İÇİNDEKİLER 1. ÖYS (Öğrenim Yönetim Sistemi) ve Moodle Nedir?...3 2. Sisteme Giriş...4 2. Ders Takibi...5 4. Ödev yükleme...7 2 1. ÖYS (Öğrenim Yönetim Sistemi) ve Moodle

Detaylı

Doğrusal Olmayan Sistemlere Doğru. Uzay Çetin. Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay

Doğrusal Olmayan Sistemlere Doğru. Uzay Çetin. Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay Doğrusal Olmayan Sistemlere Doğru 1 / 27 Doğrusal Olmayan Sistemlere Doğru Uzay Çetin Boğaziçi - Işık Üniversitesi Python ve R ile Bilimsel Hesaplama Kursu Mustafa Gökçe Baydoğan, Uzay Çetin, Berk Orbay

Detaylı

Tezde yer alacak bölümlerin sunuş sırası aşağıdaki düzende olmalıdır;

Tezde yer alacak bölümlerin sunuş sırası aşağıdaki düzende olmalıdır; TEZ BÖLÜMLERİNİN SUNUŞ SIRASI Tezde yer alacak bölümlerin sunuş sırası aşağıdaki düzende olmalıdır; 1. Dış kapak 2. İçindekiler 3. Kısaltmalar 4. Çizelge listesi 5. Şekil listesi 6. Özet 7. Giriş 8. Diğer

Detaylı

idealonline Elektronik veri tabanı tanıtımı www.idealonline.com.tr

idealonline Elektronik veri tabanı tanıtımı www.idealonline.com.tr idealonline Elektronik veri tabanı tanıtımı www.idealonline.com.tr İdealonline Sosyal bilimler ve fen bilimleri alanlarında Türkçe dergilerden ve kitaplardan oluşan elektronik veritabanı platformu İdealonline

Detaylı

IQ PLUS BUTİK EĞİTİM MERKEZİ

IQ PLUS BUTİK EĞİTİM MERKEZİ TÜRKÇE www.ilusegitim.com 0 232 2013 2013 www.ilusegitim.com www.ilusegitim.com 0 232 2013 2013 www.ilusegitim.com 2013 www.ilusegitim.com 0 232 2013 www.ilusegitim.com www.ilusegitim.com 0 232 www.ilusegitim.com

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

İÇİNDEKİLER. Çizelgelerin ele alınışı. Uygulamalı Örnekler. Birim metre dikiş başına standart-elektrod miktarının hesabı için çizelgeler

İÇİNDEKİLER. Çizelgelerin ele alınışı. Uygulamalı Örnekler. Birim metre dikiş başına standart-elektrod miktarının hesabı için çizelgeler ELEKTROD SARFİYAT ÇİZELGELERİ İÇİNDEKİLER Kısım A Genel bilgiler Kısım B Çizelgelerin ele alınışı Kısım C Uygulamalı Örnekler Kısım D Birim metre dikiş başına standart-elektrod miktarının hesabı için çizelgeler

Detaylı

ORTAÖĞRETİME ÖĞRETMEN YETİŞTİRMEDE "GENEL KÜLTÜR" BAKIMINDAN FEN EDEBİYAT FAKÜLTELERİNİN ETKİLİLİĞİ

ORTAÖĞRETİME ÖĞRETMEN YETİŞTİRMEDE GENEL KÜLTÜR BAKIMINDAN FEN EDEBİYAT FAKÜLTELERİNİN ETKİLİLİĞİ ORTAÖĞRETİME ÖĞRETMEN YETİŞTİRMEDE "GENEL KÜLTÜR" BAKIMINDAN FEN EDEBİYAT FAKÜLTELERİNİN ETKİLİLİĞİ Prof. Dr. Nuray SENEMOĞLU Eğitim, toplumsal yapının en temel sistemlerinden biridir ve diğer toplumsal

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

ArcGIS ile Su Yönetimi Eğitimi

ArcGIS ile Su Yönetimi Eğitimi ArcGIS ile Su Yönetimi Eğitimi http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 5 Gün 30 Saat ArcGIS ile Su Yönetimi Genel Bir platform olarak ArcGIS,

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Antenler ve Propagasyon II EEE410 8 3+2 4 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Antenler ve Propagasyon II EEE410 8 3+2 4 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Antenler ve Propagasyon II EEE410 8 3+2 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Seçmeli / Yüz

Detaylı