Bahar Yarıyılı Bölüm Ankara A. OZANSOY

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bahar Yarıyılı Bölüm Ankara A. OZANSOY"

Transkript

1 FİZ314 Fizikte Güncel Konular Bahar Yarıyılı Bölüm Ankara A. OZANSOY

2 Bölüm 4: Atom ve Molekül Fiziği 1. Atomun Temel Özellikleri 2. Atom Modelleri 3. Hidrojen Atomu için Schrödinger Denklemi 4. Kuantum Sayıları 5. Elektron Spini 6. Dışarlama İlkesi 7. Atomik Geçişler 8. Laserler 9. Holografi 10.Moleküler Yapı 11. Bağlanma Çeşitleri 12.Moleküllerde Dönme Titreşim 2

3 7. Atomik Geçişler: Bir atomda herhangi iki seviye arasındaki izinli elektronik geçişler; l= 1 ve m l = 0, 1 seçim kuralı ile belirlenir. Şekilde, Hidrojen atomunun n baş kuantum sayısı ve l yörüngesel açısal momentum kuantum sayısına göre durumları ve izinli geçişler gösterilmektedir. Şekil, Kaynak[1] den alınmıştır. 3

4 Şekiller, Kaynak[1] den alınmıştır. Bir atomun toplam açısal momentumu J ye, birden fazla elektron, yörüngesel ve spin açısal momentumları ile katkıda bulunursa, J bu momentumların bir vektörel toplamıdır. L S i i F J J J ( J 1) J z M j l i s i L S I J En ağır atomların dışındaki bütün atomlar için genellikle tüm elektronların yörüngesel açısal momentumları ve spin açısal momentumları birbiriyle bağlaşarak tek bir bileşke yörüngesel açısal momentum L ve spin açısal momentumu S oluştururlar. L ve S açısal momentumları spin-yörünge etkileşmesiyle J toplam açısal momentumunu oluştururlar. LS bağlaşımı, atomik spektroskobide ince yapı olarak bilinir. Bir de atom çekirdeğinin manyetik momenti ile, elektronların oluşturduğu manyetik alanın etkileşmesi atomik spektroskobide aşırı ince yapı olarak bilinir. I: Çekirdeğin açısal momentumu, F: atomun toplam açısal momentumu 4

5 Başka seçim kuralları Tablolar için bknz:kaynak[1] İlk durum J=0 ise, J mutlaka değişmeli 5

6 Terim Sembolleri Kabuk (atomik tabaka) isimleri n baş kuantum sayısına göre verilir. n= K L M Alt kabuk sayısı l açısal momentum kuantum sayısına göre verilir. l= s p d f n 2s+1 L j : n baş kuantum sayısı L yörüngesel açısal momentum kuantum sayısına karşılık gelen sembolü gösterir j toplam açısal momentum 2s+1 katlılık (L>S ise böyle, S>L ise 2L+1 ile verilir.) Örnek: n=2, l=1 ve S=1/2 durumu için terim sembolleri j= l-s ve l+s arasındaki değerler j=1/2, j=3/2 2 2 P 1/2 ve 2 2 P 3/2 l=1 P 6

7 8. Laserler Uyarılmış yayınlama süreci laserin temelini oluşturur. Uyarılmış durumda (yarı kararlı bir durum) bulunan bir atom, uygun enerjideki bir foton ile etkileşir. Burada foton soğurulmaz. Atom daha alt enerji seviyesine foton yayınlayarak iner. İki foton da aynı enerjilidir, aynı doğrultudadır ve aynı fazdadırlar. Uyarılmış yayınlama süreci. Şekil Kaynak [2] den alınmıştır. Bir lazerdeki şiddetli demetin oluşumu. Şekil Kaynak[3] ten alınmıştır. Hepsi uyarılmış durumda olan çok sayıda atomu düşünelim. Bir foton bir atom ile etkileşip uyarılmış yayınlama oluşur ve sonuçta 2 foton elde edilir. Bu iki foton, 4 foton elde edilecek şekilde uyarılmış yayınlamaya neden olur. Her seferinde fotonları iki katına çıkararak bu süreç devam eder ve faz farkı olmayan şiddetli foton demeti elde edilir. Bu laserin işletilmesindeki temel prensiptir. 7

8 LASER Light Amplification by Stimulated Emission of Radiation ( Uyarılmış yayınlama yoluyla ışığın kuvvetlendirilmesi) Termal dengedeki atomlar için, taban durumumda bulunan atomların sayısı, uyarılmış durumda bulunanlardan fazladır. Böyle bir sisteme ışık düşürüldüğünde, genellikle soğurma olur. Eğer, başlangıçta uyarılmış durumda bulunan atomların sayısının, taban durumundakilerden fazla olmasının bir yolu bulunursa uyarılmış yayınlama başlatılabilir. Bu durumun oluşturulmasına nüfus terslenmesi denir. Laser işleyişinin sağlanması için - nüfus terslenmesi sağlanmalıdır - sistem uyarılmış durumda olmalıdır (daha uzun ömürlü bir uyarılmış durum=yarı kararlı durum) - Uyarılmış yayınlama ile oluşan fotonlar, uyarılmış durumda bulunan diğer atomları da uyarıp tekrar uyarılmış yayınlama yaptıracak kadar uzun süre sistemde tutulmalıdır. Bunun için sistemde aynalar kullanılır. 8

9 Şekil, Kaynak[2] den alınmıştır. Laser 3 temel unsurdan oluşur: 1. Gaz, sıvı ya da katı malzemeyi içeren bir tüp ( uyarılan ortam). 2. Rezonatör (Tüpün uçlarındaki aynalar: Işığı güçlendirip şiddetini artırıyor. Uçlardaki aynalardan biri tamamen yansıtıcı olur. Diğeri, laser demetinin çıkışına izin verecek şekilde biraz geçirgen olur) 3. Enerji kaynağı (Tüp içindeki maddenin uyarılmasını sağlar. Elektrik akımı, kimyasal tepkimeler, yoğun ışık olabilir) 9

10 İlk laserin 1960 yılında geliştirilmesinden bu yana laser teknolojisinde önemli gelişmeler olmuş ve uygulama alanları artmıştır. En basit tür, 3 düzeyli laserdir. 3-düzeyli laserde uyarılmış yayınlamanın baskın olması için atomların yarıdan fazlasının yarı kararlı durumda olması gerekir. Burada, enerjisi taban durumunun hf kadar üstünde olan bir yarı kararlı durum ve bu durumun üzerinde yarı kararlı duruma bozunan bir uyarılmış durumu (kısa ömürlü durum) olan bir atom topluluğu kullanılır. İstenilen, yarı kararlı durumda taban durumundan daha çok atom bulunmasıdır. Bu sağlandığında, yarı kararlı durumdaki atomlardan yapılan uyarılmış yayınlama, taban durumundaki atomların uyarılmış soğurmasından fazla olacaktır. Kısa ömürlü durum Yarı kararlı durum pompalama Laser geçişi Şekil Kaynak[3] den alınmıştır. Taban durumu 10

11 3-düzeyli laserlere bir örnek yakut laseridir. Yakut, Cr +3 iyonları ile katkılanmış bir alüminyum oksit (Al 2 O 3 ) kristalidir. Bir zenon çakma lambası, taban durumundaki Cr +3 iyonlarını yarı kararlı durumdan daha yüksekteki bir uyarılmış duruma uyarır. Bunlar, kristaldeki diğer iyonlara enerjilerini vererek yarı kararlı duruma düşerler. Yarı kararlı durumdan taban durumuna düşerken yayınlanan fotonun yolu üzerindeki diğer uyarılmış iyonlar uyarılmış yayınlama yoluyla ışıma yaparlar, böylece laser geçişi sağlanır. Aynalardan ileri-geri fotonların yansıtılması ile birkaç sn sonra, yakut çubuğun yarı geçirgen ayna bulunan ucundan eş fazlı kırmızı ışık çıkar. Çubuğun boyu, dalgaboyunun yarım tamsayı katına eşit olacak şekilde hazırlanır, böylece çubuk içine hapsolan ışıma duran dalgalar oluşturur ve eş fazlılık sağlanır. Şekil Kaynak[4] ten alınmıştır. Yakıt laseri pulslu (atmalı) bir lazer türüdür. Tipik bir yakut lazerinde bir pulsun enerjisi yaklaşık 10 J dür. Her puls yaklaşık 100 s sürdüğünden üretilen ani güç 100 kwatt mertebesinde olur. Bu yüksek ani güç, laserin pek çok uygulamasında önemli olur. 11

12 Dört düzeyli laserler; Sürekli laser için 4- atomik düzey gereklidir. Taban durumundan uyarılmış duruma atomlar pompalanır ve bu uyarılmış durumdan hızlıca yarı kararlı duruma geçiş olur. Laser geçişi, bu yarı kararlı durum ile altında yer alan başka bir uyarılmış durum arasında olur. Burada, 3-düzeyli laserlerdekinin tersine, taban durumundaki atomlar, laser geçişinden çıkan atomları soğuramazlar, bu nedenle daha işlevsel bir laser elde edilmiş olur. Şekil Kaynak[3] den alınmıştır. 12

13 Helyum-Neon laseri 4-düzeyli lasere bir örnektir. He ve Ne düşük basınçta bir cam tüp içine yerleştirilir. He nin oranı Ne ye göre daha fazla. Cam tübün uçlarında yine ayna sistemi yer alır. Tüpe bağlı bir yüksek gerilim güç kaynağı ile elektrik boşalmaları sağlanır. Elektronlar ile çarpışan He atomları yarıkararlı bir duruma uyarılır (bu durumun (n=2, l=0 durumu) enerjisi 20,61 ev.) He nin bu yarı kararlı durumunun enerjisi, Ne atomlarının yarı kararlı bir durumunun enerjisine (20, 66 ev) çok yakındır. He nin bu yarı kararlı seviyesi ve taban seviyesi arasında ışıma yoluyla geçiş olmaz ( l=0 olduğundan). Yarı kararlı durumdaki He atomları laser ışını yayamazlar, aynı tüp içinde bulunan Ne atomlarına çarparak enerjilerini onlara aktarırlar. Uyarılmış He atomları ile taban durumundaki Ne atomları arasındaki çarpışmalar sonucu, enerji Ne atomuna aktarılır, Ne atomları uyarılır; He atomları da taban durumuna iner. He kullanmadaki amaç Ne için nüfus terslenmesini sağlamaktır. Çünkü, elektronlar ile Ne atomunu yarıkararlı durumuna uyarmak zordur. Ne atomunun üstteki l=0 durumundan bir alltaki l=1 durumuna =3392 nm dalgaboyunda, daha alttaki l=1 durumuna ise =632 nm dalgaboylu foton yayarak geçer. Yaygın olarak kullanılan kırmızı laser demetleri bu şekilde elde edilir. Şekil Kaynak[5] ten alınmıştır. Şekil Kaynak[4] ten alınmıştır. 13

14 Bu sayfadaki şekiller ve metin Kaynak [6] dan alınmıştır. 14

15 He-Ne laseri sürekli bir laserdir. Marketlerde barkodları okumakta kullanılan laser budur. Tarayıcı cihazın laseri, barkod üzerinden geçerken koyu renkli barlar tarafından emilir ve açık boşluklar tarafından yansıtılır. Tarayıcı içindeki bir cihaz yansıyan ışığı alır ve bir elektrik sinyaline dönüştürür, sinyal bilgisayara gönderilir ve bu bilgisayar da veri tabanında bu numara ile ilgili kaydı bulur. Bu malın kaydı ürünün içeriğini, tedarikçinin adını, fiyatı, eldeki miktarı, vs. içerir. Bilgisayar derhal ''fiyatı kontrol eder'' ve kasada fiyatı gösterir (ayrıca satın alınan miktarı eldeki stoktan düşer) 15

16 Laserler; - Tek renkli olmaları, - Koherent (eş fazlı) olmaları, - Iraksamanın az olması (neredeyse düz bir çizgi gibi) nedeniyle pekçok uygulama alanı bulmuştur. Tıp ve biyolojide, ayrıntılı yüzey ve uzunluk ölçümlerinde (jeoloji ve astronomide), nükleer füzyon reaksiyonlarını başlatmada potansiyel bir kaynak oluşturmada, malzemelerin pürüzsüz kesimi gibi fabrikasyon işlerinde, fiber optik üzerinde telefon haberleşmesinde vb. kullanılmaktadır. Pulslu lazerler, tıpta dokuları yakarak birleştirmede ve kanın pıhtılaşmasını sağlamada kullanılır. (Bu laserler, Nd:YAG lazerleri: neodiyum safsızlığı içeren katı itriyum lal taşı kullanan laserler) Enerjileri daha yüksek olanlar, endüstride kaynak ve kesme işlemlerinde kullanılır. Boya laserleri, enerji düzeyleri birbirine çok yakın boya molekülleri kullandığından hemen hemen sürekli bir dalga boyunda çalışırlar. Çok küçük yarıiletken laserlerin pek çoğu bir araya gelerek bilginin işletilmesinde kullanılmaktadır. 16

17 9. Holografi: Laserin uygulamalarından biri de holografi yöntemiyle bir cismin 3-boyutlu görüntülerinin elde edilmesidir yılında Dennis Gabor, bir cisimden (kaynak ışını) yayılan ışık ile koherent (eş fazlı) ikinci bir ışının (kılavuz ışın) girişiminin bir fotoğraf filmi üzerine kaydedilmesi ile görüntüler elde dile bileceği fikrini öne sürmüştür. Esasında böyle bir fotoğraf filmi kırınım ağının özel bir türüdür. Işık ışınları bu fotoğraf filminden geçtiğinde kırınıma uğrar ve cismin 3-boyutlu görüntüsünü oluşturur. Bu görüntü, tıpkı bir cisim gibi farklı açılardan ve konumlardan görünebilir. Bu işleme holografi, içinde kırınım desenin bulunduğu filme de hologram denir. Kılavuz ışın P 1 noktasında kuvvetlendirici girişim yapsın. l 1 ile l 2 arasındaki yol farkı dalga boyunun tam katları ise P 2 noktasında kuvvetlendirici girişim oluşur. dsin r = n Şekil Kaynak[5] ten alınmıştır. Film tabakası üzerindeki birbirinden eşit uzaklıktaki noktalarda kuvvetlendirici girişim oluşur. Film üzerinde negatif görüntü oluştuğu için ve bu noktalar karanlık lekeler olarak kaydedilir. Noktalar filmin içine ya da dışına doğru uzanan sürekli çizgilerin parçasıdır. Girişim deseni kuvvetlendirici girişim noktalarını içeren eğri çizgilerden meydana gelir. 17

18 Kılavuz ışın ile kaynak ışınını koherent yapmak için bir laser ışını alınır ve ışın ayırıcı ile ikiye ayrılır. Biri cismi aydınlatırken diğeri kılavuz ışın olarak kullanılır. Aşağıdaki şekilde bu işlemin nasıl yapılabileceğinin bir yolu anlatılmaktadır. Laserden çıkan ışık bir B aynası yardımıyla 2 ye ayrılır. Ayrılan ışınlardan biri dağıtıcı L 1 merceğinden geçirilerek cisim aydınlatılır(kaynak ışın).. Cisimden yansıyan ışınların fotoğraf filmi üzerine düşmesi sağlanır Ayrılan diğer ışın (kılavuz ışın) da L 2 merceği yardımıyla dağıtılır ve sonra aynalardan yansıtılarak (M 1 ve M 2 ) aynı filim üzerine düşürülür. Cismin her noktası, bir ışık kaynağı gibi davranır, buralardan yansıyan ışık ışınları film üzerine düşer. Kılavuz ışın ile bu ışınlar girişim yapar. Şekil, Kaynak[2] den alınmıştır. Üzerine kayıt yapılan bir hologramdan koherent ışık geçirerek filmin arkasından ışık demetinin geldiği doğrultuya bakılırsa holograma kaydedilen görüntü en iyi şekilde görülür. 18

19 Film üzerine yapılan kayıt nasıl görülür? Kılavuz ışını gibi bir ışın demeti (koherent ışın), kılavuzla aynı açıda filmin arkasına gönderilir. (Hologram tekrar aydınlatılır) Işık, bu film üzerindeki kuvvetlendirici girişim noktalarından (karanlık yerler) tekrar saçılır. Orijinal ışığın yönü, kırınım maksimumlarının oluştuğu yerlerdedir. Böylece E den bakan gözlemci, ışığı uzaktaki I noktasından geliyormuş gibi görür ve asıl kaynağın bir görüntüsü olduğunu düşünür. Hologramlar, cismin farklı açılardan görülmesini sağlayan 3- boyutlu görüntüler oluştururlar. Gözlemci kaynağa farklı açılardan baktığında, tıpkı gerçek bir cisme bakar gibi farklı görüntüler görür. Şekiller, Kaynak[5] ten alınmıştır. 19

20 Şekiller için bknz: Kaynak [7] 20

21 Hologrofik görüntünün özellikleri: Holografi, merceksiz bir fotoğraflama tekniğidir. Görüntüsü alınan cisim ile ilgili olarak şiddet ve faz bilgisi içerir. Görüntü 3-boyutludur. Derinlik ve bakış açısına göre farklı görüntüler görme özelliğine sahiptir. Hologramın herhangi bir kısmı tüm görüntüyü içerir. Hologramın bir ucundan kesip baksak yine tüm görüntüyü görürüz. Görüntü ölçeklendirilebilir. Görüntü belli bir dalga boyundaki ışık ile oluşturulup, filme kaydedilen görüntü başka bir dalga boyunda ışık ile görüntülenebilir. 21

22 Atom ve Molekül Fiziğinde Bir Uygulama: Elektron Spin Rezonans (ESR) (ya da Elektron Paramagnetik rezonans, EPR) ESR; eşleşmemiş elektronları olan malzemelerin manyetik enerji seviyeleri arasındaki geçişleri inceleyen bir spektroskobi dalıdır. Eşleşmemiş elektronların olduğu maddeler genelde paramanyetik maddelerdir. Bu tür maddeler bir dış manyetik alana yerleştirildiğinde mıknatıslanma özelliği kazanırlar. Sabit bir manyetik alan uygulandığında manyetik momentlerin her biri birer mıknatıs gibi davranır ve elektronların sahip oldukları spin değerlerine göre mümkün olan enerji seviyelerine yarılma gözlenir. ESR için uygulanan alternatif alanın frekansı elektromanyetik spektrumun mikrodalga bölgesindedir. Mikrodalga frekansı, Larmor frekansına eşit olduğunda rezonans gerçekleşir ve enerji soğurularak enerji seviyeleri arasında geçiş meydana gelir. ESR Spektroskopisinin Kullanıldığı Alanlar : «ESR, radikal tespitinde kullanılan tek yöntemdir. Neredeyse tüm doğa bilimlerinde, uygulamalı bilimlerde, tıpta ve özellikle biyoteknolojide kullanılmaktadır. Fizikte: İletkenlik, yarıiletkenler, kuantum noktalar, kusur merkezleri, tuzaklanmış radikaller, süperiletkenler, ışınlama hasarları gibi birçok alanda kullanılabilir. Biyolojide, DNA ve RNA gibi yapılarda, hücre zarlarında araştırma yapılır. Ayrıca bu yapılarda bulunan serbest radikaller incelenebilir. İlaçların korunması ve tıpta kullanılan çeşitli malzemelerin dezenfaktasyonu amacıyla ışınlanmasında ortaya çıkan radikallerin varlığını ve miktarını belirlemekte ESR kullanılmaktadır.» (Kaynak [8]) ESR cihazının belli kısımları: Elektromagnet, mikrodalga ünitesi, kavite rezonatörler, bilgisayar. 22

23 Kaynaklar: 1. Atomic Physics, C. J. Foot, Oxford Master Series in Atomic, Optical and Laser Physics, Oxford University Press, Fen ve Mühendislik için Fizik, Cilt-III, R.A. Serway ve R.J. Beichner, (Çeviri Editörü: Prof. Dr. Kemal Çolakoğlu), 5. Baskıdan çeviri, Palme Yayıncılık 2002, Ankara. 3. Modern Physics, K. Krane, John Wiley&Sons Inc, 1996, USA. 4. Modern Fiziğin Kavramları, A. Beiser (Çeviri Prof. Dr. Gülsen Önengüt), 6. Baskıdan Çeviri, Akademi Yayıncılık 2008, İstanbul. 5. Temel Fizik, Cilt-II, P.M. Fishbane, S. Gasiorowicz ve S.T. Thornton, (Çeviri: Prof. Dr. Cengiz Yalçın), 2. Baskı, Arkadaş Yayınevi 2007, Ankara. 6. Fizikte Deneysel Yöntemler Dersi, Helyum-Neon Laseri Deneyi, Deney Föyü

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç

Girişim; iki veya daha fazla dalganın üst üste binerek, yeni bir dalga şeklinde sonuç GİRİŞİM Girişim olayının temelini üst üste binme (süperpozisyon) ilkesi oluşturur. Bir sistemdeki iki farklı olay, birbirini etkilemeden ayrı ayrı ele alınarak incelenebiliyorsa bu iki olay üst üste bindirilebilinir

Detaylı

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık 2. Ahenk ve ahenk fonksiyonu, kontrast, görünebilirlik 3. Girişim 4. Kırınım 5. Lazer, çalışma

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

FİZ314 Fizikte Güncel Konular

FİZ314 Fizikte Güncel Konular FİZ34 Fizikte Güncel Konular 205-206 Bahar Yarıyılı Bölüm-7 23.05.206 Ankara A. OZANSOY 23.05.206 A.Ozansoy, 206 Bölüm 7: Nükleer Reaksiyonlar ve Uygulamalar.Nötron İçeren Etkileşmeler 2.Nükleer Fisyon

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

Bahar Yarıyılı Bölüm-2 ve Bölüm-3 (Uygulamalar) Ankara A. OZANSOY

Bahar Yarıyılı Bölüm-2 ve Bölüm-3 (Uygulamalar) Ankara A. OZANSOY FİZ314 Fizikte Güncel Konular 2015-2016 Bahar Yarıyılı Bölüm-2 ve Bölüm-3 (Uygulamalar) Ankara A. OZANSOY Gece Görüş Sistemleri Gece gören cihazların temeli fotoelektrik olaya dayanır. (Gözlük, dürbün,

Detaylı

Raman Spektroskopisi

Raman Spektroskopisi Raman Spektroskopisi Çalışma İlkesi: Bir numunenin GB veya yakın-ir monokromatik ışından oluşan güçlü bir lazer kaynağıyla ışınlanmasıyla saçılan ışının belirli bir açıdan ölçümüne dayanır. Moleküllerin

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

X-IŞINI OLUŞUMU (HATIRLATMA)

X-IŞINI OLUŞUMU (HATIRLATMA) X-IŞINI OLUŞUMU (HATIRLATMA) Şekilde modern bir tip X-ışını aygıtının şeması görülmektedir. Havası boşaltılmış cam bir tüpte iki elektrot bulunur. Soldaki katot ısıtıldığında elektronlar salınır. Katot

Detaylı

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ 1. SPEKTROSKOPİ Bir örnekteki atom, molekül veya iyonların bir enerji düzeyinden diğerine geçişleri sırasında absorplanan veya yayılan elektromanyetik ışımanın,

Detaylı

1. Sınıf I. YARIYIL Dersin Kodu Dersin Adı Kredisi AKTS. 1. Sınıf II. Yarıyıl Dersin Kodu Dersin Adı Kredisi AKTS

1. Sınıf I. YARIYIL Dersin Kodu Dersin Adı Kredisi AKTS. 1. Sınıf II. Yarıyıl Dersin Kodu Dersin Adı Kredisi AKTS T.C. SELÇUK ÜNİVERSİTESİ REKTÖRLÜĞÜ Fen Fakültesi Dekanlığı Fizik Bölümü 2017-2018 Eğitim-Öğretim Yılı I&II. Öğretim Güz Ve Bahar Yarıyıllarda Okutulacak Dersler 1. Sınıf I. YARIYIL 2703151/270151 MEKANİK

Detaylı

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon Nanomalzemelerin Karakterizasyonu Yapısal Karakterizasyon Kimyasal Karakterizasyon 1 Nanomalzemlerin Yapısal Karakterizasyonu X ışını difraksiyonu (XRD) Çeşitli elektronik mikroskoplar(sem, TEM) Atomik

Detaylı

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü 101537 RADYASYON FİZİĞİ Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim. Bohr Atom Modeli Niels Hendrik Bohr, Rutherford un atom modelini temel alarak 1913 yılında bir atom modeli ileri sürdü. Bohr teorisini ortaya koyarak atomların çizgi spektrumlarının açıklanabilmesi için

Detaylı

İstatistiksel Mekanik I

İstatistiksel Mekanik I MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Atomların Kuantumlu Yapısı

Atomların Kuantumlu Yapısı Atomların Kuantumlu Yapısı Yazar Yrd. Doç. Dr. Sabiha AKSAY ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra, Atom modellerinin yapısını ve çeşitlerini, Hidrojen atomunun enerji düzeyini, Serileri, Laser ve

Detaylı

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a Kuantum Mekaniği Düşüncesinin Gelişimi Dalga Mekaniği Olarak da Adlandırılır Atom, Molekül ve Çekirdeği Açıklamada Oldukça Başarılıdır Kuantum

Detaylı

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan.

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan. Magnetic Materials 7. Ders: Ferromanyetizma Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASAM) Moleküler Alan Teorisinin

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. . ATOMUN KUANTUM MODELİ SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. Orbital: Elektronların çekirdek etrafında

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

İNSTAGRAM:kimyaci_glcn_hoca

İNSTAGRAM:kimyaci_glcn_hoca MODERN ATOM TEORİSİ ATOMUN KUANTUM MODELİ Bohr atom modeli 1 H, 2 He +, 3Li 2+ vb. gibi tek elektronlu atom ve iyonların çizgi spektrumlarını başarıyla açıklamıştır.ancak çok elektronlu atomların çizgi

Detaylı

BÖLÜM 1: Matematiğe Genel Bakış 1. BÖLÜM:2 Fizik ve Ölçme 13. BÖLÜM 3: Bir Boyutta Hareket 20. BÖLÜM 4: Düzlemde Hareket 35

BÖLÜM 1: Matematiğe Genel Bakış 1. BÖLÜM:2 Fizik ve Ölçme 13. BÖLÜM 3: Bir Boyutta Hareket 20. BÖLÜM 4: Düzlemde Hareket 35 BÖLÜM 1: Matematiğe Genel Bakış 1 1.1. Semboller, Bilimsel Gösterimler ve Anlamlı Rakamlar 1.2. Cebir 1.3. Geometri ve Trigometri 1.4. Vektörler 1.5. Seriler ve Yaklaşıklıklar 1.6. Matematik BÖLÜM:2 Fizik

Detaylı

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 1 Maddenin Yapısı ve Radyasyon. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 1 Maddenin Yapısı ve Radyasyon Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınlarının elde edilmesi X-ışınlarının Soğrulma Mekanizması X-ışınlarının özellikleri X-ışını cihazlarının parametreleri

Detaylı

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması Dalga Nedir Enerji taşıyan bir değişimin bir yöne doğru taşınmasına dalga denir.

Detaylı

Fourier Transform Infrared Spectroscopy (FTIR) Spektroskopi Nedir?

Fourier Transform Infrared Spectroscopy (FTIR) Spektroskopi Nedir? Fourier Transform Infrared Spectroscopy (FTIR) Spektroskopi Nedir? Spektroskopi, atom ya da molekül tarafından absorplanan, yayınan ya da saçılan Elektromagnetik Radyasyonun (EMR) ölçülmesi ve yorumlanmasıdır.

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR...

İÇİNDEKİLER 1: KRİSTALLERDE ATOMLAR... İÇİNDEKİLER Bölüm 1: KRİSTALLERDE ATOMLAR... 1 1.1 Katıhal... 1 1.1.1 Kristal Katılar... 1 1.1.2 Çoklu Kristal Katılar... 2 1.1.3 Kristal Olmayan (Amorf) Katılar... 2 1.2 Kristallerde Periyodiklik... 2

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu 2. Direnç ve Ohm Kanunu 3. Özdirenç 4. Elektromotor

Detaylı

Bölüm 5. Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5. Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 5 Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri Prof. Dr. Bahadır BOYACIOĞLU İÇİNDEKİLER X-ışınları Görüntüleme Teknikleri Bilgisayarlı Tomografi (BT) Manyetik Rezonans Görüntüleme (MRI) Nükleer

Detaylı

LAZER CĐHAZI : (1 ) lazer ortamı (2) maddeye verilen enerji (ışık), (3) ayna, (4) yarı geçirgen ayna, (5) dışarı çıkan lazer ışını

LAZER CĐHAZI : (1 ) lazer ortamı (2) maddeye verilen enerji (ışık), (3) ayna, (4) yarı geçirgen ayna, (5) dışarı çıkan lazer ışını 50. YILINDA LAZER Đlk kullanılabilir lazer 1960 yılında Dr. Theodor Maiman tarafından yapılmıştır. Lazerin bulunuşunun 50. yılı kutlama etkinlikleri, 2010 yılı boyunca sürecektir. Einstein in 1917 yılında,

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı 9.Bölümün Özeti Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı 9.Bölümün Özeti Ankara Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı 9.Bölümün Özeti Ankara Aysuhan OZANSOY Bölüm 9: Manyetik Alan Kaynakları 1. Biot-Savart Kanunu 1.1 Manyetik Alan

Detaylı

Modern Fizik (Fiz 206)

Modern Fizik (Fiz 206) Modern Fizik (Fiz 206) 3. Bölüm KUANTUM Mekaniği Bohr modelinin sınırları Düz bir dairenin çevresinde hareket eden elektronu tanımlar Saçılma deneyleri elektronların çekirdek etrafında, çekirdekten uzaklaştıkça

Detaylı

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ

1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ 1.ÜNİTE MODERN ATOM TEORİSİ -2.BÖLÜM- ATOMUN KUANTUM MODELİ Bohr Modelinin Yetersizlikleri Dalga-Tanecik İkiliği Dalga Mekaniği Kuantum Mekaniği -Orbital Kavramı Kuantum Sayıları Yörünge - Orbital Kavramları

Detaylı

BÖLÜM 8 MALZEMENİN MANYETİK ÖZELLİKLERİ

BÖLÜM 8 MALZEMENİN MANYETİK ÖZELLİKLERİ BÖLÜM 8 MALZEMENİN MANYETİK ÖZELLİKLERİ İndüktörler, transformatörler, jeneratörler, elektrik motorları, trafolar, elektromıknatıslar, hoparlörler, kayıt cihazları gibi pek çok cihaz malzemenin manyetik

Detaylı

Elektromanyetik Dalgalar. Test 1 in Çözümleri

Elektromanyetik Dalgalar. Test 1 in Çözümleri 38 Elektromanyetik Dalgalar 1 Test 1 in Çözümleri 1. Radyo dalgaları elektronların titreşiminden doğan elektromanyetik dalgalar olup ışık hızıyla hareket eder. Radyo dalgalarının titreşim frekansı ışık

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

Holografi. kısa bir giriş

Holografi. kısa bir giriş Holografi kısa bir giriş İçerik Giriş Holografinin kavramları Holografik görüntülemenin kavramları Holografinin dayandığı ğ fiziksel etkiler (olaylar) Holografinin tarihçesi Holografik süreçte basit girişim

Detaylı

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU

FİZ201 DALGALAR LABORATUVARI. Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU FİZ201 DALGALAR LABORATUVARI Dr. F. Betül KAYNAK Dr. Akın BACIOĞLU LASER (Light AmplificaLon by SLmulated Emission of RadiaLon) Özellikleri Koherens (eş fazlı ve aynı uzaysal yönelime sahip), monokromalk

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK C IŞIĞIN KIRILMASI (4 SAAT) 1 Kırılma 2 Kırılma Kanunları 3 Ortamların Yoğunlukları 4 Işık Işınlarının Az Yoğun Ortamdan Çok Yoğun Ortama Geçişi 5 Işık Işınlarının

Detaylı

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası" Kitabı ndan okuyunuz.

Aşağıda verilen özet bilginin ayrıntısını, ders kitabı. olarak önerilen, Erdik ve Sarıkaya nın Temel. Üniversitesi Kimyası Kitabı ndan okuyunuz. KİMYASAL BAĞLAR Aşağıda verilen özet bilginin ayrıntısını, ders kitabı olarak önerilen, Erdik ve Sarıkaya nın Temel Üniversitesi Kimyası" Kitabı ndan okuyunuz. KİMYASAL BAĞLAR İki atom veya atom grubu

Detaylı

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması FİZİK 4 Ders 6: Atom Enerjisinin Kuantalanması Atom Enerjisinin Kuantalanması Atom Spektrumları Atom Modelleri Bohr Atom Modeli Atomun yapısı ve Laserler Dalga Parçacık İkilemi Tüm fizikçiler fotoelektrik

Detaylı

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için,

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için, DENEY NO : 7 DENEYİN ADI : ELEKTRONLARIN KIRINIMI DENEYİN AMACI : Grafit içinden kırınıma uğrayan parçacıkların dalga benzeri davranışlarının gözlemlenmesi. TEORİK BİLGİ : 0. yüzyılın başlarında Max Planck

Detaylı

Optik Özellikler. Elektromanyetik radyasyon

Optik Özellikler. Elektromanyetik radyasyon Optik Özellikler Işık malzeme üzerinde çarptığında nasıl bir etkileşme olur? Malzemelerin karakteristik renklerini ne belirler? Neden bazı malzemeler saydam ve bazıları yarısaydam veya opaktır? Lazer ışını

Detaylı

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır:

Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır: İyonik bağlar, elektronlar bir atomdan diğerine aktarıldığı zaman

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ

MADDENİN YAPISI VE ÖZELLİKLERİ MADDENİN YAPISI VE ÖZELLİKLERİ 1. Atomun Yapısı KONULAR 2.Element ve Sembolleri 3. Elektronların Dizilimi ve Kimyasal Özellikler 4. Kimyasal Bağ 5. Bileşikler ve Formülleri 6. Karışımlar 1.Atomun Yapısı

Detaylı

Spektroskopi. Elektromanyetik ışımanın madde ile etkileşimini inceleyen bilim dalına spektroskopi denir.

Spektroskopi. Elektromanyetik ışımanın madde ile etkileşimini inceleyen bilim dalına spektroskopi denir. Spektroskopi Elektromanyetik ışımanın madde ile etkileşimini inceleyen bilim dalına spektroskopi denir. Bu etkileşim absorbsiyon (soğurma) ya da emisyon (yayınma) şeklinde olabilir. Elektromanyetik ışımanın

Detaylı

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım

FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım FİZİK 2 ELEKTRİK VE MANYETİZMA Elektrik yükü Elektrik alanlar Gauss Yasası Elektriksel potansiyel Kondansatör ve dielektrik Akım ve direnç Doğru akım devreleri Manyetik alanlar Akım nedeniyle oluşan manyetik

Detaylı

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu Laboratuar Yeri: E1 Blok Termodinamik Laboratuvarı Laboratuar

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) 5.111 Ders Özeti #4 Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 ) Ders #5 için Okuma: Bölüm 1.3 (3. Baskıda 1.6 ) Atomik Spektrumlar, Bölüm 1.7 de eģitlik 9b ye kadar (3. Baskıda

Detaylı

OPTİK. Işık Nedir? Işık Kaynakları

OPTİK. Işık Nedir? Işık Kaynakları OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

4 ve 2 enerji seviyelerinin oranından 3.33 değeri bulunur, bu da çekirdeğin içi hakkında bllgi verir.

4 ve 2 enerji seviyelerinin oranından 3.33 değeri bulunur, bu da çekirdeğin içi hakkında bllgi verir. 4.3. KOLLEKTİF MODEL Tüm nükleonların birlikte koherent davrandığı durum düşünülür. Çekirdekte olabilen kolektif davranışlar çekirdeğin tamamını kapsayan titreşimler ve dönmelerdir. Buna göre nükleer özellikler

Detaylı

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom

Kasetin arka yüzeyi filmin yerleştirildiği kapaktır. Bu kapakların farklı farklı kapanma mekanizmaları vardır. Bu taraf ön yüzeyin tersine atom KASET Röntgen filmi kasetleri; radyografi işlemi sırasında filmin ışık almasını önleyen ve ranforsatör-film temasını sağlayan metal kutulardır. Özel kilitli kapakları vardır. Kasetin röntgen tüpüne bakan

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

MOLEKÜL FİZİĞİ BÖLÜM-1

MOLEKÜL FİZİĞİ BÖLÜM-1 MOLEKÜL FİZİĞİ BÖLÜM 1 MOLEKÜLLERDE BAĞLANMA ENERJİLERİ BÖLÜM MOLEKÜL SPEKTRUMLARI VE IŞIMALAR MOLEKÜL FİZİĞİ BÖLÜM-1 MOLEKÜLLERDE BAĞLANMA ENERJİLERİ 1)MOLEKÜLLERDE BAĞLANMA ENERJİLERİ: Aynı ya da farklı

Detaylı

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 6 X-Işınlarının madde ile etkileşimi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI MADDE ETKİLEŞİMİ Elektromanyetik enerjiler kendi dalga boylarına yakın maddelerle etkileşime

Detaylı

2. HAFTA MİKROSKOPLAR

2. HAFTA MİKROSKOPLAR 2. HAFTA MİKROSKOPLAR MİKROSKOPLAR Hücreler çok küçük olduğundan (3-200 µm) mikroskop kullanılması zorunludur. Soğan zarı, parmak arası zarlar gibi çok ince yapılar, kesit almadan ve mikroskopsuz incelenebilir.

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

ELEMENTLERİN SEMBOLLERİ VE ATOM

ELEMENTLERİN SEMBOLLERİ VE ATOM ELEMENT VE SEMBOLLERİ SAF MADDE: Kendisinden başka madde bulundurmayan maddelere denir. ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani elementlerin yapı yaşı atomlardır. BİLEŞİK: En

Detaylı

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET BÖLÜM : NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET Atomdaki elektronların hareketini kontrol eden kuvvetler elektromanyetik kuvvettir. Elektromanyetik kuvvet atomları ve molekülleri bir arada tutar. Çekirdekteki

Detaylı

LÜMİNESANS MATERYALLER

LÜMİNESANS MATERYALLER LÜMİNESANS MATERYALLER Temel Prensipler, Uygulama Alanları, Işıldama Eğrisi Özellikleri Prof. Dr. Niyazi MERİÇ Ankara. Üniversitesi Nükleer Bilimler Enstitüsü meric@ankara.edu.tr Enerji seviyeleri Pauli

Detaylı

CEVAP D. 6. T 1 > T c, B 1 = B T 2 < T c, B 2 = 0 ESEN YAYINLARI

CEVAP D. 6. T 1 > T c, B 1 = B T 2 < T c, B 2 = 0 ESEN YAYINLARI TEST 1 ÇÖZÜMLER MODER FİZİĞİ TEKOLOJİDEKİ UYGULAMALARI 1. 273 C üzerinde sıcaklığa sahip tüm maddeler, kızılötesi (infrared) aralıkta yayılan termal enerji yayarlar. Termal kameralar, kızılötesi ışınları

Detaylı

Lazer ile şekil verme. Prof. Dr. Akgün ALSARAN

Lazer ile şekil verme. Prof. Dr. Akgün ALSARAN Lazer ile şekil verme Prof. Dr. Akgün ALSARAN Lazer Lazer (İngilizce LASER (Light Amplification by Stimulated Emission of Radiation) fotonları uyumlu bir hüzme şeklinde oluşturan optik kaynak. Lazer fikrinin

Detaylı

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ ELEMENTLER VE SEMBOLLERİ Elementler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Elementler çok sayıda

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Infrared (IR) ve Raman Spektroskopisi Yrd. Doç. Dr. Gökçe MEREY TİTREŞİM Molekülleri oluşturan atomlar sürekli bir hareket içindedir. Molekülde: Öteleme hareketleri, Bir eksen

Detaylı

ELEKTRONLAR ve ATOMLAR

ELEKTRONLAR ve ATOMLAR BÖLÜM 3 ELEKTRONLAR ve ATOMLAR 1 Kapsam 1.0 Radyasyon Enerjisinin Doğası ve Karakteristiği 2.0 Fotoelektrik Etki 3.0 ER: Dalga Özelliği 4.0 Dalgaboyu, Frekans, Hız ve Genlik 5.0 Elektromanyetik Spektrum

Detaylı

ÇALIŞMA YAPRAĞI (KONU ANLATIMI)

ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ÇALIŞMA YAPRAĞI (KONU ANLATIMI) ATOMUN YAPISI HAZIRLAYAN: ÇĐĞDEM ERDAL DERS: ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERS SORUMLUSU: PROF.DR. ĐNCĐ MORGĐL ANKARA,2008 GĐRĐŞ Kimyayı ve bununla ilgili

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis)

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis) Manyetik Alan Manyetik Akı Manyetik Akı Yoğunluğu Ferromanyetik Malzemeler B-H eğrileri (Hysteresis) Kaynak: SERWAY Bölüm 29 http://mmfdergi.ogu.edu.tr/mmfdrg/2006-1/3.pdf Manyetik Alan Manyetik Alan

Detaylı

5.111 Ders Özeti #5. Ödev: Problem seti #2 (Oturum # 8 e kadar)

5.111 Ders Özeti #5. Ödev: Problem seti #2 (Oturum # 8 e kadar) 5.111 Ders Özeti #5 Bugün için okuma: Bölüm 1.3 (3. Baskıda 1.6) Atomik Spektrumlar, Bölüm 1.7, eşitlik 9b ye kadar (3. Baskıda 1.5, eşitlik 8b ye kadar) Dalga Fonksiyonları ve Enerji Düzeyleri, Bölüm

Detaylı

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com Yrd. Doç. Dr. H. Hasan YOLCU hasanyolcu.wordpress.com En az iki atomun belli bir düzenlemeyle kimyasal bağ oluşturmak suretiyle bir araya gelmesidir. Aynı atomda olabilir farklı atomlarda olabilir. H 2,

Detaylı

X IŞINLARININ ELDE EDİLİŞİ

X IŞINLARININ ELDE EDİLİŞİ X IŞINLARININ ELDE EDİLİŞİ Radyografide ve radyoterapide kullanılan X- ışınları, havası boşaltılmış bir tüp içinde, yüksek gerilim altında, ısıtılan katottan çıkan elektron demetinin hızlandırılarak anota

Detaylı

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI 3- KİMYASAL ELEMENTLER VE FONKSİYONLARI Doğada 103 elementin olduğu bilinmektedir. Bunlardan 84 metal elementlerdir. Metal elementler toksik olan ve toksik olmayan elementler olarak ikiye ayrılmaktadır.

Detaylı

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar

MIT Açık Ders Malzemeleri http://ocw.mit.edu. 5.62 Fizikokimya II 2008 Bahar MIT Açık Ders Malzemeleri http://ocw.mit.edu 5.62 Fizikokimya II 2008 Bahar Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak in http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

FİZ4001 KATIHAL FİZİĞİ-I

FİZ4001 KATIHAL FİZİĞİ-I FİZ4001 KATIHAL FİZİĞİ-I Bölüm 3. Örgü Titreşimleri: Termal, Akustik ve Optik Özellikler Dr. Aytaç Gürhan GÖKÇE Katıhal Fiziği - I Dr. Aytaç Gürhan GÖKÇE 1 Bir Boyutlu İki Atomlu Örgü Titreşimleri M 2

Detaylı

, bu vektörün uzay ekseni üzerindeki izdüşümüdür. Bunlar şu değerlere sahiptir:

, bu vektörün uzay ekseni üzerindeki izdüşümüdür. Bunlar şu değerlere sahiptir: .. AÇISAL MOMENTUM Çekirdek ve çekirdekteki parçacıkların açısal momentumları vardır. Bu özellik her türlü nükleer reaksiyonda gözlenir. Açısal momentumun gözlenebilir özelliği açısal momentum vektörünün

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy FİZ101 FİZİK-I Ankara Üniersitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy Bir şeyi basitçe açıklayamıyorsan onu tam olarak anlamamışsın demektir. Albert Einstein

Detaylı

9- RADYASYONUN ETKİ MEKANİZMALARI 9.1- RADYASYONUN İNDİREKT (DOLAYLI) ETKİSİ

9- RADYASYONUN ETKİ MEKANİZMALARI 9.1- RADYASYONUN İNDİREKT (DOLAYLI) ETKİSİ 9- RADYASYONUN ETKİ MEKANİZMALARI 9.1- RADYASYONUN İNDİREKT (DOLAYLI) ETKİSİ Radyasyonun indirekt etkisi iyonlaştırdığı su moleküllerinin oluşturdukları serbest radikaller aracılığıyla olmaktadır. Çünkü

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

NORMAL ÖĞRETİM DERS PROGRAMI

NORMAL ÖĞRETİM DERS PROGRAMI NORMAL ÖĞRETİM DERS PROGRAMI 1. Yarıyıl 1. Hafta ( 19.09.2011-23.09.2011 ) Nükleer reaktör türleri ve çalışma prensipleri Atomik boyuttaki parçacıkların yapısı Temel kavramlar Elektrostatiğin Temelleri,

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

ELEKTRİK MÜHENDİSLİĞİNDE MALZEME

ELEKTRİK MÜHENDİSLİĞİNDE MALZEME Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü ELEKTRİK MÜHENDİSLİĞİNDE MALZEME Yrd. Doç. Dr. H. İbrahim OKUMU E-mail : okumus@ktu.edu.tr WEB : http://www.hiokumus.com 1 İçerik Giriş

Detaylı

KMB405 Kimya Mühendisliği Laboratuvarı I IŞINIMLA ISI İLETİMİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

KMB405 Kimya Mühendisliği Laboratuvarı I IŞINIMLA ISI İLETİMİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 IŞINIMLA ISI İLETİMİ Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Isıl ışınımla gerçekleşen ısı transferinin gözlenmesi, ters kare ve Stefan- Boltzmann kanunlarının ispatlanması.

Detaylı

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER IŞIĞIN YAPISI Işığın; Dalga ve Parçacık olmak üzere iki özelliği vardır. Dalga Özelliği: Girişim, kırınım, polarizasyon, yayılma hızı, vb. Parçacık Özelliği: Işığın

Detaylı

Optik Yükselteç (OA) Nedir?

Optik Yükselteç (OA) Nedir? Optik Yükselteç (OA) Nedir? Işığı kendi ortamında yükseltme arayışlarından doğan, optik alan içindeki ışık sinyalini, herhangi bir elektronik değişime ihtiyaç duymadan yükselten cihazdır. 1 Lazer ile optik

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

Düzlem Aynalar. Test 1 in Çözümleri. Şekilde görüldüğü gibi düzlem aynadan yansıyan K ve M ışınları A noktasal ışık kaynağından gelmektedir.

Düzlem Aynalar. Test 1 in Çözümleri. Şekilde görüldüğü gibi düzlem aynadan yansıyan K ve M ışınları A noktasal ışık kaynağından gelmektedir. 29 Düzlem Aynalar 1 Test 1 in Çözümleri 3. 1. A N N Şekilde görüldüğü gibi düzlem aynadan yansıyan e ışınları A noktasal ışık kaynağından gelmektedir. anıt D dir. N e N ışınları şekillerdeki yolları izleyerek

Detaylı

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017 Maddeden kuark a maddenin yapıtaşının serüveni Elementlerin Varlığının Keşfi Maddenin yapıtaşı arayışı M.Ö. 2000 lerde Eski Yunan

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org 9. Atomun Elektron Yapısı Elektromanyetik ışıma (EMI) Atom Spektrumları Bohr Atom Modeli Kuantum Kuramı - Dalga Mekaniği Kuantum Sayıları Elektron Orbitalleri Hidrojen Atomu Orbitalleri Elektron Spini

Detaylı

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan.

X-Işınları. 4. Ders: X-ışını sayaçları. Numan Akdoğan. X-Işınları 4. Ders: X-ışını sayaçları Numan Akdoğan akdogan@gyte.edu.tr Gebze Yüksek Teknoloji Enstitüsü Fizik Bölümü Nanomanyetizma ve Spintronik Araştırma Merkezi (NASAM) X-ışını sayaç çeşitleri 1. Fotoğraf

Detaylı