n, 1 den büyük bir sayma sayısı olmak üzere,

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "n, 1 den büyük bir sayma sayısı olmak üzere,"

Transkript

1 KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide yazılailir. x = α ise, x = α dır. x m = x m Özellik : x = α ifadesii ir reel sayı elirteilmesi içi iki durum söz kousudur. II. I. tek ise, α herhagi ir reel sayı ola- ilir. Bu durumda x = α reel sayı elirtir. çift ise, α 0 olursa x = α ir reel sayı elirtir. çift ise, α < 0 olursa x = α sayı elirtmez. ifadesi ir ifadesi ir reel 5 = 5 5 = 5 = 5 = 5 Örek: (00 KPSS) ( x ) 5 = 9 olduğua göre, x kaçtır? A) B) C) D) E) Örek: 7x ifadesii ir reel sayı elirtmesii sağlaya x doğal sayıları toplamı kaçtır? A) B) C) D) 7 E) 8 Örek:.. işlemii soucu kaçtır? A) B) C). 9 D) E) Özellik : Kökü derecesi e olursa olsu (tek veya çift), kökü içi sıfır ise, kökü soucu sıfırdır. Örek: x + x + y = 0 olduğua göre, x + y toplamı kaçtır? Özellik : α = x 7 ifadeside, I. tek sayı ise, x II. çift sayı ise, x 5 8 = 5 = 5 7 = ( ) 7 = = x tir. = x tir A) B) C) D) 7 E) 0 ( ) = = Örek: ( ) 7 + Özellik : Köklü sayılar üslü sayı içimide yazılailir. işlemii soucu kaçtır? A) 9 B) 8 C) 7 D) E) 5

2 Örek: α < 0 < olmak üzere, + ( α) + (α ) ifadesii değeri aşağıdakilerde hagisidir? A) α B) α C) 0 D) α E) Örek: (00 KPSS) sayısıı yaklaşık değeri,7 dir. 7 ifadesii yaklaşık değeri kaçtır? A), B) 5, C),8 D) 8,5 E) 0, Özellik 5: Köklü ifadelerde, kökü içideki sayıı tamamı her zama kök dışıa çıkmayailir. Böyle durumlarda, çıka sayı köklü sayı ile çarpılırke, kökü içide kala sayı yie ayı kökle isimledirilir. x ve y pozitif reel sayılar olmak üzere, x. y =. =. = 5 = 7. =. =. = x. y KÖKLÜ SAYILARDA DÖRT İŞLEM. Toplama ve Çıkarma İşlemleri Köklü sayılarda toplama ve çıkarma işlemleri yapailmek içi, kök derecelerii ve kök içlerii ayı olması gerekir. Burada; köklü ifadeleri katsayıları toplaır veya çıkarılır. Bulua değer, ortak ola köklü ifadei katsayısı olarak yazılır. α. x Örek: (005 KPSS) +. x c. x = α + c. x = = x 8 olduğua göre, x kaçtır? A) B) C) D) 5 E). Çarpma İşlemi Köklü ifadelerde çarpma işlemi yapailmek içi, kök derecelerii ayı olması gerekir. Burada; kökü içideki sayılar çarpılır ve ulua değer, ayı derecede kökü içie yazılır. x ve y pozitif reel sayılar olmak üzere,. 5 = Örek: = 00 x. y = x. y... 9 işlemii soucu kaçtır? A) B).. Bölme İşlemi C). D) 8 E) 9 Köklü ifadelerde ölme işlemi yapailmek içi, kök derecelerii ayı olması gerekir. Burada; kökü içideki sayılar ölüür ve ulua değer, ayı derecede kökü içie yazılır. x ve y pozitif reel sayılar olmak üzere, x = y x y

3 8 5 = 9 = 8 5 =, 9 =,5 PAYDAYI RASYONEL YAPMA Kesirli ifadelerde payda köklü ir sayı ise, paydayı kökte kurtarma işlemie paydayı rasyoel yapma, ir aşka deyişle eşleik çarpımı deir. Örek: (00 KPSS) 0,9 0, 0,5. 0, Örek: x. x = x x + y. x y = x y işlemii soucu kaçtır? A) B) C) 0 D) E) 0 = + = + = + ( + ) Örek: (00 KPSS) 0,8 + 0, 0,5 + 0,0 0,09 0,9 + = 5 = Örek: +. + işlemii soucu kaçtır? işlemii soucu kaçtır? A) B) C) D) 5 E) A) B) C) D) E) Özellik : Kök dereceleri ayı olmaya köklü ifadelerde çarpma veya ölme yapailmek içi, kök dereceleri OKEKleride eşitleir. Burada kök derecesi hagi sayı ile çarpılırsa, kökü içideki sayıı kuvveti de ayı sayı ile çarpılır. x m Örek: k. = x k.m olduğua (k R + ) hagisi doğrudur? α =, = 5, c = göre, aşağıdaki sıralamalarda Örek: + işlemii soucu kaçtır? A) B) + C) + D) E) + Özellik 7: x ve y pozitif reel sayı ve x > y olmak üzere; x + y = α x. y = olsu. A) α < < c B) α < c < C) < α < c D) c < α < E) c < < α α + = x + y α = x y

4 8 + 5 = 5 + Özellik 9: x = α. (α + ) olmak üzere; 7 0 = 5 Örek: + + işlemii soucu kaçtır? A) B) C) D) E) + x + x + x + = (α + ) x x x = α Örek: 0=.5 olduğuda = = Örek: işlemii soucu kaçtır? A) 5 B) + C) 5 + D) + E) 5 + Örekler. a = a + olduğua göre, a kaçtır? A) - B) C) D) + E) + Örek: 5 işlemii soucu kaçtır?. 0 + x + = A) D) 7 5 B) E) 0 0 C) 0 olduğua göre, x kaçtır? A) -7 B) - C) 5 D) 5 E) 8 Özellik 8: iç içe geçmiş köklerde kural,. a + a = m x m. = x tir. olduğua göre, a kaçtır? m x. y m. = x. y A) B) 5 C) D) 7 E) 8. = = 5.. = 5. = 75

5 . (008 KPSS) işlemii soucu kaçtır? işlemii soucu kaçtır? A) B) C) 5 D) E) A) 5 B) 5 C) 9 D) 5 E) sayısıı yaklaşık değerii hesaplaailmesi içi aşağıdaki sayılarda hagisii yaklaşık değeri ilimelidir? A) 7 B) C) 5 D) E) 0. A = x + x + x 9 ifadesi reel ir sayıya eşit ise u sayı kaçtır?. ise, x kaçtır? 5 x+ = 5 x 5 A) B) C) D) 8 E) 9 A) 8 B) C) - D) - E) = x + y + ise, x + y kaçtır? işlemii soucu kaçtır? A) 7 B) 7 C) 7 D) 7 E) 5 7 A) B) C) 5 D) E) ( ) 5 + ( ) 5 işlemii soucu kaçtır? ( ). 5 işlemii soucu kaçtır? A) B) C) D) E) A) -5 B) -9 C) D) 9 E) 5 5

6 . (00 KPSS) işlemii soucu kaçtır? A) B) + C) D) + E) işlemii soucu kaçtır? A). D). B) E) C).. (00 KMS) 0 5 sayısı 5 sayısıı kaç katıdır? A) B) C) 8 D) 0 E) 0 işlemii soucu kaçtır? A) B) 0 C) D) E) 5. a + a = a 9. olduğua göre, α ı türüde değeri aşağıdakiler-de hagisidir? x 0,0 00 = A) + B) D) E) + C) + olduğua göre, x kaçtır? A) B) C) D) 5 E). a = 0. olduğua göre, a + 7 a ifadesii değeri kaçtır? x = A) B) C) 8 D) 9 E) 7 y = x + x + x + olduğua göre, y kaçtır? A) B) C) D) 5 E)

a = b ifadesine kareköklü ifade denir.

a = b ifadesine kareköklü ifade denir. KAREKÖKLÜ SAYILAR Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır. Karesi

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

ASAL SAYILAR. www.unkapani.com.tr

ASAL SAYILAR. www.unkapani.com.tr ASAL SAYILAR ve kendisinden aşka pozitif öleni olmayan den üyük doğal sayılara asal sayı denir.,, 5, 7,,, 7, 9, sayıları irer asal sayıdır. En küçük asal sayı dir. den aşka çift asal sayı yoktur. den aşka

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR

2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR 2. ÜNİTE RASYONEL,ÜSLÜ VE KÖKLÜ SAYILAR KONULAR 1. RASYONEL SAYILAR 2. Kesir Çeşitleri 3. Kesirlerin Sadeleştirilmesi 4. Rasyonel Sayılarda Sıralama 5. Rasyonel Sayılarda İşlemler 6. ÜSLÜ İFADE 7. Üssün

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler

DÖRDÜNCÜ BÖLÜM. 4.1. Aritmetik işlemler DÖRDÜNCÜ BÖLÜM 4.1. Aritmetik işlemler Bu bölümde öğrencilerin lisede bildikleri aritmetik işlemleri hatırlatacağız. Bütün öğrencilerin en azından tamsayıların toplama, çıkarma, çarpma ve bölme işlemlerini

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS YILLAR 6 7 8 ÖSS-YGS - - / /LYS ONDALIK SAYILAR Paydası ve un pozitif kuvveti şeklinde olan veya u şekle dönüştürüleilen kesirlere ondalık kesir(ondalık sayı) denir 7,,,,,7 6 (,6)gii 8 8 NOT: ondalık sayıların

Detaylı

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :.

SAYILAR MATEMATİK KAF03 BASAMAK KAVRAMI TEMEL KAVRAM 01. İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. SAYILAR BASAMAK KAVRAMI İki basamaklı en küçük sayı : İki basamaklı en büyük negatif sayı :. Üç basamaklı rakamları farklı en küçük sayı :. SORU 5 MATEMATİK KAF03 TEMEL KAVRAM 01 Üç basamaklı birbirinden

Detaylı

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme

matematik kpss soru yeni konularla yeni sorularla yeni sınav sistemine göre hazırlanmıştır sayısal akıl yürütme mantıksal akıl yürütme kpss 04 akıcı ayrıntılı güncel konu anlatımları örnekler yorumlar uyarılar pratik bilgiler ösym tarzında özgün sorular ve açıklamaları matematik sayısal akıl yürütme mantıksal akıl yürütme 0 kpss de 85

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde

MATEMATİK SORU BANKASI GEOMETRİ KPSS KPSS. Genel Yetenek Genel Kültür. Sayısal ve Mantıksal Akıl Yürütme. Eğitimde KPSS Genel Yetenek Genel Kültür MATEMATİK Sayısal ve Mantıksal Akıl Yürütme KPSS 2016 Pegem Akademi Sınav Komisyonu; 2015 KPSS ye Pegem Yayınları ile hazırlanan adayların, 100'ün üzerinde soruyu kolaylıkla

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1

Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Tam Sayılarla Toplama ve Çıkarma İşlemi Akıllı Ödev 1 Öğrenci Adı Soyadı Sınıfı Ödev Teslim Tarihi Öğretmen Görüşü Soru 1 Aşağıda sayma pulları ile modellenen matematik işlemlerini bulunuz. Soru 2 Aşağıda

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

Ardışık sayılar YILLAR

Ardışık sayılar YILLAR YILLAR 00 00 004 005 006 007 008 009 010 011 ÖSS-YGS - - - 1 - - - 1 ÇÖZÜM 1: ARDIŞIK SAYILAR +(+1)+(+)++(+14)=085 Belli bir kurala göre ard arda sıralaa sayılara ardışık sayılar deir Z olmak üzere; 14

Detaylı

YENİDEN DÜZENLENMİŞTİR.

YENİDEN DÜZENLENMİŞTİR. 0. Sııf MATEMATİK Soru Kitabı Mehmet ŞAHİN T.C MİLLİ EĞİTİM BAKANLIĞI Talim Terbiye Kurulu Başkalığı MATEMATİK Öğretim programıda yaptığı so gücelleme doğrultusuda YENİDEN DÜZENLENMİŞTİR. Emre ORHAN Mehmet

Detaylı

www.derssunumlari.com

www.derssunumlari.com . BÖLÜM: KESİRLER HER YERDE Kesirleri Karşılaştıralım, Toplayalım ve Çıkaralım 7 7 7 ile kesirlerini karşılaştırınız ve bu 8 8 kesirleri sayı doğrusunda gösteriniz. 8 Pay üï Payda : Bir bütünün kaç parçaya

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal I / 22 Nisan 2007. Matematik Soruları ve Çözümleri Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal I / 22 Nisan 2007 Matematik Soruları ve Çözümleri 3 1 1. x pozitif sayısı için, 2 1 x 12 = 0 olduğuna göre, x kaçtır? A) 2

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z.

( KÜME LİSTE, ORTAK ÖZELLİK, ŞEMA YÖNTEMİ ELEMAN SAYISI BOŞ, SONLU, SONSUZ KÜME ALT KÜME VE ÖZELLİK- LERİ ) ... BOŞ KÜME. w w w. m a t b a z. KÜME KAVRAMI Küme matematiği taımsız bir kavramıdır. Acak kümeyi, iyi taımlamış kavram veya eseler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi oluştura

Detaylı

Başlayanlara AKTİF MATEMATİK

Başlayanlara AKTİF MATEMATİK KPSS - YGS - DGS - ALES Adayları için ve 9. sınıfa destek 0 dan Başlayanlara AKTİF MATEMATİK MEHMET KOÇ ÖNSÖZ Matematikten korkuyorum, şimdiye kadar hiç matematik çözemedim, matematik korkulu rüyam! bu

Detaylı

Fatih University- Faculty of Engineering- Electric and Electronic Dept.

Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE TASARIMI EEM122 Ref. Morris MANO & Michael D. CILETTI SAYISAL TASARIM 4. Baskı Fatih University- Faculty of Engineering- Electric and Electronic Dept. SAYISAL DEVRE NEDİR? Mühendisler, elektronik

Detaylı

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR.

TEOG. Sayma Sayıları ve Doğal Sayılar ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK SAYI BASAMAKLARI VE SAYILARIN ÇÖZÜMLENMESİ 1. DOĞAL SAYILAR. TEOG Sayma Sayıları ve Doğal Sayılar 1. DOĞAL SAYILAR 0 dan başlayıp artı sonsuza kadar giden sayılara doğal sayılar denir ve N ile gösterilir. N={0, 1, 2, 3,...,n, n+1,...} a ve b doğal sayılar olmak

Detaylı

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker

kpss matematik geometri tamamı çözümlü kenan osmanoğlu / kerem köker kpss soru bankası tamamı çözümlü sözel adaylar için matematik geometri kenan osmanoğlu / kerem köker ÖN SÖZ Değerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme

Detaylı

ÖN SÖZ. Değerli Adaylar,

ÖN SÖZ. Değerli Adaylar, ÖN SÖZ eğerli daylar, Okul ve meslek yaşamının en önemli sınavlarından birine, Kamu Personeli Seçme Sınavı(KPSS) na hazırlanmaktasınız ve buradaki başarınız gelecekteki iş yaşamınızı ciddi şekilde etkileyecek.

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

Explanation: Number of bracelets made with 2 blue, 2 identical red and n identical black beads.

Explanation: Number of bracelets made with 2 blue, 2 identical red and n identical black beads. http://oeis.org/a - (,,) Origial wor by Ata Aydi Uslu Hamdi Gota Ozmeese.. Explaatio: Number of bracelets made with blue, idetical red ad idetical blac beads. Usage: Chemistry: CROSSRES: A85 A989 A989

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

İl temsilcimiz sizinle irtibata geçecektir.

İl temsilcimiz sizinle irtibata geçecektir. Biz, Sizin İçin Farklı Düşünüyor Farklı Üretiyor Farklı Uyguluyoruz Biz, Sizin İçin Farklıyız Sizi de Farklı Görmek İstiyoruz Soru Bankası matematik konularını yeni öğrenen öğrenciler için TMOZ öğretmenlerince

Detaylı

Binom Açılımı Öğretimine Farklı Bir Yaklaşım

Binom Açılımı Öğretimine Farklı Bir Yaklaşım Gülte, D. Ç. & Gülte, İ. (00). Biom Açılımı Öğretimie Farklı Bir Yaklaşım,, İlköğretim-Olie, (), 60-66, [Olie]: http://ilkogretim-olie.org.tr Biom Açılımı Öğretimie Farklı Bir Yaklaşım Dilek Çağırga GÜLTEN

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

EĞİTİM BİLİMLERİ MERKEZİ

EĞİTİM BİLİMLERİ MERKEZİ EĞİTİM BİLİMLERİ MERKEZİ 0 EBİM KPSS Kurslarının öğretmen adaylara armağanıdır. SAYILAR Z{,-,-,-,0,,,, } Z - {,-,-,-} negatif tam sayılar kümesi {0} (elemanı 0 olan bir küme) Z + {,,,,n,n+, } pozitif

Detaylı

Su Yapıları II Hidroelektrik Enerji Üretimi

Su Yapıları II Hidroelektrik Enerji Üretimi Su Yapıları II Hidroelektrik Eerji Üretimi Yrd. Doç. Dr. Burha ÜNAL Bozok Üiversitesi Mühedislik Mimarlık Fakültesi İşaat Mühedisliği Bölümü Yozgat Yrd. Doç. Dr. Burha ÜNAL Bozok Üiversitesi aat Mühedislii

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde

biliniyordu: Eğer 2 a 1 bir asal sayıysa, o zaman S = 2 a 1 (2 a 1) yetkin bir sayıdır. Bunu toplayalım: O halde SAYILAR DÜNYASINDA GEZİNTİLER H. Turgay Kaptaoğlu Bu yazıda deri teorilere imede sayıları çoğulula da tamsayıları ilgiç özellileride bahsedeceğiz. Bu özellileri hiçbiri yei değil; yüzyıllar, hatta biyıllar

Detaylı

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org

Mehmet ŞAHİN. www.mehmetsahinkitaplari.org 0. Sınıf M AT E M AT İ K Mehmet ŞAHİN www.mehmetsahinkitaplari.org M.E.B Talim ve Terbiye Kurulu Başkanlığı nın 0..009 tarih ve 4 sayılı kararı ve 00-0 öğretim yılından itibaren uygulanacak programa göre

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012

RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012 RASYONEL SAYILAR ELİF ÇAĞLAYAN GAMZE NUR AYDIN HUMAYLA ÖNDER GÜLFER YÜKSEKDAĞ 2011-2012 İçindekiler RASYONEL SAYILARIN SAYI DOĞRUSUNDA GÖSTERİLMESİ... 5 RASYONEL SAYILARDA SIRALAMA... 8 RASYONEL SAYILARDA

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)...

PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK...111. Konu Özeti...111. Testler (1 11)...115. Yazılıya Hazırlık Soruları (1 2)... ÜNİTE PERMÜTASYON, KOMBİNASYON, BİNOM, OLASILIK VE İSTATİSTİK Bölüm PERMÜTASYON, KOMBİNASYON BİNOM VE OLASILIK! = (...... ) PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK VE İSTATİSTİK PERMÜTASYON, KOMBİNASYON,

Detaylı

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir.

1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Değişkenler 1- Sayı - Tam sayıları ifade etmek için kullanılır. İfade edilen değişkene isim ve değer verilir. Örnek Kullanım : sayı değer= 3; sayı sayı1; 2- ondalık - Ondalık sayıları ifade etmek için

Detaylı

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2

BİLİŞİM TEKNOLOJİLERİ 6. SINIF DERS NOTLARI 2 PROGRAMLAMA Bir problemin çözümü için belirli kurallar ve adımlar çerçevesinde bilgisayar ortamında hazırlanan komutlar dizisine programlama denir. Programlama Dili: Bir programın yazılabilmesi için kendine

Detaylı

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1

sayısının tamkare olmasını sağlayan kaç p asal sayısı vardır?(88.32) = n 2 ise, (2 p 1 TAM KARELER 1. Bir 1000 basamaklı sayıda bir tanesi dışında tüm basamaklar 5 tir. Bu sayının hiçbir tam sayının karesi olamayacağını kanıtlayınız. (2L44) Çözüm: Son rakam 5 ise, bir önceki 2 olmak zorunda.

Detaylı

MATEMATİK. Zihinden Toplama ve Çıkarma İşlemi 5. SINIF 3. 55 + 37 = (55+10)+10+10+7 = (65+10) + 10 + 7 = (75+10) + 7 = 85+7 =92

MATEMATİK. Zihinden Toplama ve Çıkarma İşlemi 5. SINIF 3. 55 + 37 = (55+10)+10+10+7 = (65+10) + 10 + 7 = (75+10) + 7 = 85+7 =92 5. SINIF KULA ARDICI VE SINAVLARA HAZIRLIK Zihinden Toplama ve Çıkarma İşlemi TEST-10 1. Aşağıdaki toplama işlemlerinden hangisi "onlukları ve birlikleri ayırarak ekleme" yöntemi ile yapılmıştır? A) 46

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

Ar tık Matematiği Çok Seveceksiniz!

Ar tık Matematiği Çok Seveceksiniz! Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

Temel Matematik Testi - 1

Temel Matematik Testi - 1 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 00. u testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları

Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Adı: Metalik Oranlar ve Karmaşık Sayı Uygulamaları Projenin Amacı: Metalik Oranların elde edildiği ikinci dereceden denklemin diskriminantını ele alarak karmaşık sayılarla uygulama yapmak ve elde

Detaylı

d) x TABAN ARĐTMETĐĞĐ

d) x TABAN ARĐTMETĐĞĐ YILLAR 00 00 00 00 00 007 008 009 010 011 ÖSS-YGS - 1 1 - - - - - - - TABAN ARĐTMETĐĞĐ Genel olarak 10 luk sayı sistemini kullanırız fakat başka sayı sistemlerine de ihtiyaç duyarız Örneğin bilgisayarın

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI . INIF MATEMATİK ÜÇRENK ORU BANKAI Mil lî E i tim Ba ka l Ta lim ve Ter bi ye Ku ru lu Ba ka l.8. ta rih ve sa y l ka ra r ile ka bul edi le ve - Ö re tim Y l da iti ba re uy gu la a cak ola prog ra ma

Detaylı

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır.

5. a ve b birer pozitif tam sayıdır. A) 1 B) 2 C) 3 D) 14 E) a ve b birer doğal sayıdır. 7. a ve b birer pozitif tam sayıdır. Üniversite Haz rl k Sözcükte Do al ve Say lar Söz Öbeklerinde ve Tam Say lar Anlam - I - I YGS Temel Matematik. 8 + 4. + 8 : 4 işleminin sonucu A) 8 B) 9 C) D) 5 E) 8 5. a ve b birer pozitif tam sayıdır.

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ ALES Sonahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-1 TESTİ Sınavın u ölümünden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder.

Sayıtlama Dizgeleri. (a n a n-1 a n1 a n0. b 1 b 2 b m )r. simgesi şu sayıyı temsil eder. 1 Sayıtlama Dizgeleri Hint-Arap Sayıtlama Dizgesi Sayıları göstermek (temsil etmek) için tarih boyunca türlü simgeler kullanılmıştır. Sümerlerin, Mısırlıların, Romalıların ve diğer uygarlıkların kullandıkları

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek

FİNANSAL YÖNETİM. Finansal Yönetim Örnek Sorular Güz 2015. Yrd. Doç. Dr. Rüstem Barış Yeşilay 1. Örnek. Örnek. Örnek. Örnek. Örnek Fasal Yöetm Örek lar Güz 2015 Güz 2015 Fasal Yöetm Örek lar 2 Örek FİNNSL YÖNETİM ÖRNEKLER 1000 TL %10 fazde kaç yıl süreyle yatırıldığıda 1600 TL olur? =1000 TL, FV=1600 TL, =0.1 FV (1 ) FV 1600 (1 )

Detaylı

3- ARİTMETİK İFADELERİN YAZILMASI. M.İLKUÇAR - imuammer@yahoo.com

3- ARİTMETİK İFADELERİN YAZILMASI. M.İLKUÇAR - imuammer@yahoo.com 3- ARİTMETİK İFADELERİN YAZILMASI 3.1- Aritmetiksel operatörler Operatör Anlamı + Toplama - Çıkarma * Çarpma / Bölme % Kalanlı Bölme ^ Üs alma ( ) Parantez = Atama Aritmetik operatörlerde işlem öncelik

Detaylı

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015

Sayılar ve Altın Oranı. Mahmut Kuzucuoğlu. 16 Ağustos 2015 Sayılar ve Altın Oranı Mahmut Kuzucuoğlu Orta Doğu Teknik Üniversitesi Matematik Bölümü matmah@metu.edu.tr İlkyar-2015 16 Ağustos 2015 Ben kimim? Denizli nin Çal ilçesinin Ortaköy kasabasında 1958 yılında

Detaylı

SAYILARIN ASAL ÇARPANLARINA AYRILMASI

SAYILARIN ASAL ÇARPANLARINA AYRILMASI ASAL SAYILAR Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki

Detaylı

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım

Normal Dağılımlı Bir Yığın a İlişkin İstatistiksel Çıkarım Normal Dağılımlı Bir Yığı a İlişi İstatistisel Çıarım Bir üretici edi ürüleride, piyasadai 3,5 cm li vidalarda yalıca boyları 3,4 cm ile 3,7 cm aralığıda olaları ullaabilmetedir. Üretici, piyasadai bu

Detaylı

b b b b b b b b b b b b b b

b b b b b b b b b b b b b b 1 Doğal Sayılar Sayı Örüntüleri Doğal Sayılarla Toplama İşlemi ve Prolemleri Doğal Sayılarla Çıkarma İşlemi ve Prolemleri Zihinden Toplama ve Çıkarma İşlemleri, Tahmin Etme Doğal Sayılarla Çarpma İşlemi

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası

AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası AKSARAY Mesleki E ğitim Merkezi Matematik ve Meslek Matematiği Soru Bankası SORU 1 525 + 2834 + 379 toplama işlemini alt alta yazarak yapınız. 525 2834 +379 3738 SORU 2 Manavdan kilogramı 4 TL olan armut

Detaylı

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar;

Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; I. SAYI SİSTEMLERİ Elektronik sistemlerde dört farklı sayı sistemi kullanılır. Bunlar; i) İkili(Binary) Sayı Sistemi ii) Onlu(Decimal) Sayı Sistemi iii) Onaltılı(Heksadecimal) Sayı Sistemi iv) Sekizli(Oktal)

Detaylı

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I

KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I Üniversite Hazırlık / YGS Kolay Temel Matematik 0 KE00-SS.08YT05 DOĞAL SAYILAR ve TAM SAYILAR I. 8 ( 3 + ) A) 7 B) 8 C) 9 D) 0 E) 6. 3! 3 ( 3 3)": ( 3) A) B) 0 C) D) E) 3. 7 3. + 5 A) 6 B) 7 C) 8 D) 0

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor.

Üstel Dağılım Babam: - Şu ampullerin hangisinin ömrünün daha kısa olduğu hiç belli olmuyor. Bazen yeni alınanlar eskilerden daha önce yanıyor. Üsel Dağılım Babam: - Şu ampulleri hagisii ömrüü daha kısa olduğu hiç belli olmuyor. Baze yei alıalar eskilerde daha öce yaıyor. Hele şuradaki bildim bileli var. Evde yedek ampul yokke, gerekirse ou söküp

Detaylı

ORTAÖĞRETİM MATEMATİK 10. SINIF DERS KİTABI YAZARLAR KOMİSYON

ORTAÖĞRETİM MATEMATİK 10. SINIF DERS KİTABI YAZARLAR KOMİSYON ORTAÖĞRETİM MATEMATİK 0. SINIF DERS KİTAI YAZARLAR KOMİSYON DEVLET KİTAPLARI İKİNCİ ASKI..., 0 MİLLİ EĞİTİM AKANLIĞI YAYINLARI...: 5659 DERS KİTAPLARI DİZİSİ...: 54.?.Y.000.470 Her hakkı saklıdır ve Milli

Detaylı