Quartic Authalic Projeksiyonu ve Bir Bilgisayar Programı: Pseudo

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Quartic Authalic Projeksiyonu ve Bir Bilgisayar Programı: Pseudo"

Transkript

1 Harita Teknolojileri Elektronik Dergisi Cilt: 1, No:, 009 (10-19) Electronic Journal of Map Technologies Vol: 1, No:, 009 (10-19) TEKNOLOJİK ARAŞTIRMALAR e-issn: Makale (Article) Quartic Authalic Projeksionu ve Bir Bilgisaar Programı: Pseudo Erdem Emin MARAŞ *, İbrahim YILMAZ ** * Ondokuzmaıs Üniversitesi Mühendislik Fak. Jeod. ve Fot. Böl., Samsun/TÜRKİYE ** Afon Kocatepe Üniversitesi Mühendislik Fak. Jeod. ve Fot. Böl., 0300 Afonkarahisar/TÜRKİYE Özet Dünanın tamamının vea büük bir kısmının ugun haritasının çizilebilmesi için doğru projeksion seçimi apılmalıdır. Seçim için gerçek anlamda olmaan projeksion türlerinin de incelenmesi gerekebilir. Bu bağlamda bu çalışmada gerçek anlamda olmaan silindirik projeksionlara bir örnek olarak Quartic Authalic projeksionu incelenmiştir. Quartic Authalic projeksionu için coğrafi grid ağı oluşturulmuş ve projeksion eşitliklerinin, a göre kısmi türevleri alınarak, ilgili eşitlikler ardımıla her grid noktasındaki deformason miktarları hesaplanmıştır. Bu hesaplamalar için grid ağını kendi oluşturan bir bilgisaar programı (Pseudo) azılmıştır. Her noktanın koordinat değerleri ve deformason miktarları elde edilmiştir. Pseudo programı ardımıla elde edilen çizimlerden, görsel ve saısal karşılaştırma daha doğru apılabildiği için ugun projeksion seçimi çok daha kola apılabilmektedir. Anahtar Kelimeler: Harita Projeksionları, Quartic Authalic Projeksionu, Gerçek Anlamda Olmaan Silindirik Projeksionlar, Deformason Elipsi The Quartic Authalic Projection and A Computer Program: Pseudo Abstract Right choice of the projection is required to make an appropriate map of the entire or a part of the Earth. In this contet, the present stud eamines the Quartic Authalic projection as an eample of pseudo clindrical projections. A graticule was formed for the Quartic Authalic projection and partial differentials were computed for projection equations according to the geographical coordinates and the amount of distortion was calculated for each graticule point using the related equations. For these calculations, a computer program (Pseudo) was developed that forms the grid network b itself. Coordinate values and the amount of distortions for each point were obtained. Since the drawings made with the Pseudo program allow more accurate visual and numerical comparisons, selection of an appropriate projection becomes much easier. Kewords : Map Projections, Quartic Authalic Projection, Pseudo Clindrical Projections, Deformation Ellipse Bu makalee atıf apmak için Maraş E.E., Yılmaz İ. Quartic Authalic Projeksionu ve Bir Bilgisaar Programı: Pseudo Harita Teknolojileri Elektronik Dergisi 009, 1() How to cite this article Maraş E.E., Yılmaz İ. The Quartic Authalic Projection and A Computer Program: Pseudo Electronic Journal of Map Technologies, 009, 1() 10-19

2 Maraş E.E., Yılmaz İ. Teknolojik Araştırmalar: HTED 009 () GİRİŞ Harita projeksionlarının amacı, erüzünün vea bir gezegenin tamamının ada büük bir parçasının belli bir koordinat sistemine göre düzlem üzerine vea düzleme açılabilen üzelere, belirli matematiksel bağıntılar ardımıla aktarılmasını sağlamaktır. Bu aktarım işleminde erüzünün şekli, haritanın özelliğine ve ölçeğine bağlı olarak, dönel elipsoit a da küre kabul edilir. Bu üzeler kapalı bir üze olduğu için, erüzünün projeksionu apılırken, üzei oluşturan parametreler olan coğrafi koordinatlar vea coğrafi koordinatlara bağlı değişkenler ile projeksion üzeindeki koordinatlar arasında matematiksel vea geometrik bağıntılar kurulur. Harita projeksionları, genel olarak, projeksion üzeine ve projeksionun karakterine göre sınıflandırılır. Projeksion üzeine göre sınıflandırma da projeksionlar, düzlem, silindirik ve konik olmak üzere üç gruba arılır [1]. Bu kapsamdaki projeksionlar, projeksion üzei gerçek bir üze olduğundan gerçek anlamda projeksionlar olarak adlandırılırlar. Uzunluk, alan ve açıların korunması amacıla sadece matematiksel bağıntılar kullanılarak, erüzünün harita düzlemine izdüşürüldüğü gerçek anlamda olmaan projeksionlar da vardır [].. GERÇEK ANLAMDA OLMAYAN PROJEKSİYONLAR Düzlem, silindir ve koni gibi gerçek bir üze kullanılmadan sadece matematiksel bağıntılar kullanılarak da harita projeksionları geliştirilmiştir. Bu gruba giren projeksionlar gerçek üzeli harita projeksionlarından esinlenerek a da başka bir deişle o projeksiona itibar edilerek özellikle erkürenin küreselliğini gösterebilmek amacıla geliştirilmiştir [3,4]. Gerçek anlamda olmaan projeksionların, düzlem, silindir, koni gibi ara üzelerle bir ilişkisi olmamasına rağmen, düzlem, silindirik ve konik projeksionlardan elde edildikleri için sınıflandırılmalarında bu isimlerden söz edilerek sınıflandırma apılır. Gerçek anlamda olmaan projeksionların özellikleri şöledir. Projeksionlarda genellikle, erüzünün tamamı için oval ve elips benzeri bir gösterim kullanılarak er küreselliğinin hissedilmesi sağlanır. Enleme bağlı olaların vurgulanabilmesi için paralel dairelerin izdüşümlerinin de paralel a da paralele akın olması istenir. Alansal oranların doğru algılanmasını sağlaacak şekilde alan koruma özelliği a da alan deformasonunun az olması istenir. Yer kürenin tamamının gösterilmesi üç şekilde olur. Bunlar, Planiglob Gösterim: Eskiden sık olarak kullanılan ancak günümüzde nadiren rastlanan bu gösterim biçimi an ana iki daireden oluşur (Şekil 1). Her iki daire bir arı kürenin gösterimini kapsar. Nicolisi nin (1660) Globular Projeksionu nda ekvator, orta meriden ve dairesel sınır meridenleri uzunluk koruan olarak gösterilmiştir. Bu şekilde dairesel olan diğer meriden ve paralel dairelerinde konumları sabitleşmiş olur [, 5]. Bu tür gösterimde azimutal projeksionlar kullanılır. 11

3 Teknolojik Araştırmalar: HTED 009 () Quartic Authalic Projeksionu ve Bir Bilgisaar Programı: Pseudo Şekil 1. Planiglob gösterim Planisfer Gösterim: Bu gösterimde erüzü tek parça olarak gösterilir. Genellikle eliptik biçimde olup, bazen de kutupların doğru parçası olarak gösterildiği şekiller planisfer gösterimler olarak düşünülebilir (Şekil ). Bu tür projeksionlar arasında genel olarak alan koruan ve her hangi bir elemanı korumaan projeksionlar ön plana çıkar. Gerçek anlamda olmaan projeksionların çoğunluğu planisfer gösterim özelliğine sahiptir []. Şekil. Planisfer gösterim Kesikli (Parçalı) Gösterim: Planisfer gösterimlerde orta meridenden ve ekvatordan uzaklaşıldıkça deformasonlar çok fazla artar. Bu probleme bir çözüm olarak tek bir orta meriden erine bir çok orta meriden kullanılabilir (Şekil 3). Bu durumda coğrafi ağın ugun erlerinden parçalanması gerekir. Bu tür projeksionlar kesikli projeksionlar a da kutupsal projeksionlar olarak adlandırılır. Goode 1916 ılında çeşitli parçalı ağlar önermiştir [, 5]. Şekil 3. Kesikli gösterim 1

4 Maraş E.E., Yılmaz İ. Teknolojik Araştırmalar: HTED 009 () Gerçek Anlamda Olmaan Silindirik Projeksionlar Gerçek anlamda olmaan silindirik projeksionlar dünaı tek parça olarak göstermee önelik olarak geliştirilmiştir [,6]. Bu çalışmanın temel alındığı literatürde [4] diğerlerine örnek olabilecek on tane gerçek anlamda olmaan silindirik projeksion seçilerek 15 0 aralıklarla coğrafi ağ oluşturulmuş ve uzunluk, alan ve açı deformasonları bakımından incelenerek, coğrafi ağları ve deformason elipslerinin çizimi apılmıştır. Burada ise, Quartic Authalic projeksionu tanıtılarak, tez için azımı apılan PSEUDO programı ardımıla, projeksion elemanlarının hesabı ve bu elamanların bilgisaar ortamında çizimi gerçekleştirilmiştir. 3. QUARTIC AUTHALIC PROJECTION 1937 ılında Karl Siemon tarafından önerilen bu projeksion, bağımsız olarak 1945 ılında Oscar Sherman Adams tarafından da kullanılmıştır. Alan koruan gerçek anlamda olmaan silindirik projeksiondur. Kutuplar nokta şeklinde gösterilmiştir (Şekil 4). Ekvatorun 0.45 katı kadar olan orta meriden doğru şeklindedir. Meridenler orta meridene doğru konkav eğriler şeklinde sıralanmıştır. Şekil 4. Quartic Authalic projeksionu coğrafi pafta ağı Meriden arasındaki mesafeler birbirine eşittir. Orta meridene dik olarak sıralanmış paralellerin ara mesafeleri birbirine eşit değildir. Kutuplara doğru ara mesafeler azalırken ekvatora doğru ara mesafeler artar. Orta meridene ve ekvatora göre simetri vardır. Orta meriden ve paralel daireler bounca ölçek korunur. Projeksion eşitlikleri ekseni doğu-batı önünü, ekseni, kuze-güne önünü göstermek üzere, RCos Cos RSin (1) () şeklindedir. Quartic Authalic projeksionu deformasonlar açısında incelenmek istenirse, 13

5 Teknolojik Araştırmalar: HTED 009 () Quartic Authalic Projeksionu ve Bir Bilgisaar Programı: Pseudo 14 1 Cos Sin Cos R Cos Sin R (3) RCos (4) Cos RCos (5) 0 (6) kısmi türevleri kullanılmalıdır. Bulunan kısmi türevler kullanılarak, meriden doğrultusundaki uzunluk deformasonu katsaısı, 1 R h (7) paralel daireler doğrultusundaki uzunluk deformasonu katsaısı, 1 RCos k (8) alan deformasonu katsaısı, Cos R P 1 (9) maksimum açı deformasonu, 1 4 arctan P k h ω (10) maksimum ve minimum uzunluk deformasonu katsaıları, P k h K (11) P k h L (1) L K a (13) L K b (14)

6 Maraş E.E., Yılmaz İ. Teknolojik Araştırmalar: HTED 009 () bağıntılarından hesaplanır [, 7]. Quartic Authalic projeksionuna ait projeksion eşitlikleri ve deformasonlar, 15 lik enlem ve bolam değerleri için hesaplanarak Tablo 1 de verilmiştir. Tablo 1. Quartic Authalic Projeksionu Deformason Katsaıları ( R 6370 km) N (km) (km) h k a b W o ,1 0,9914 1,0086 1,0000 0,0086 0, , ,1 0,998 1,0086 1,0007 0,0079 3, , ,1 0,9968 1,0086 1,007 0,0059 5, , ,1 1,0034 1,0086 1,0060 0,006 8, , ,1 1,017 1,0086 1,0106 0,000 11, , ,1 1,044 1,0086 1,0165 0, , , ,1 1,0386 1,0086 1,036 0, , , ,1 1,0551 1,0086 1,0319 0,03 0, , ,1 1,0738 1,0086 1,041 0,036 3, , ,1 1,0946 1,0086 1,0516 0,0430 6, , ,1 1,1175 1,0086 1,0630 0,0544 8, , ,1 1,14 1,0086 1,0754 0, , , ,1 1,1686 1,0086 1,0886 0, , ,7 0,9659 1,0353 1,0006 0,0347 3, , ,7 0,9715 1,0353 1,0034 0,0319 7, , ,7 0,9881 1,0353 1,0117 0,036 1, , ,7 1,0151 1,0353 1,05 0, , , ,7 1,0518 1,0353 1,0435 0,0083 3, , ,7 1,097 1,0353 1,066 0,0309 9, , ,7 1,150 1,0353 1,097 0, , ,19 884,7 1,098 1,0353 1,16 0, , , ,7 1,75 1,0353 1,155 0,100 45, , ,7 1,3455 1,0353 1,1904 0, , , ,7 1,4199 1,0353 1,76 0,193 55, , ,7 1,4978 1,0353 1,666 0,313 59, ,39 884,7 1,5788 1,0353 1,3070 0,718 64, ,6 0,939 1,084 1,0031 0,0793 9, , ,6 0,9374 1,084 1,0099 0,075 1, , ,6 0,9770 1,084 1,097 0,057 0, , ,6 1,0396 1,084 1,0610 0,014 8, , ,6 1,113 1,084 1,1019 0, , , ,6 1,184 1,084 1,1504 0, , , ,6 1,375 1,084 1,049 0,15 51, , ,6 1,4458 1,084 1,641 0, , , ,6 1,5713 1,084 1,368 0,445 65, , ,6 1,704 1,084 1,394 0, , , ,6 1,8378 1,084 1,4601 0, , , ,6 1,9768 1,084 1,596 0,447 8, , ,6,1185 1,084 1,6005 0, ,

7 Teknolojik Araştırmalar: HTED 009 () Quartic Authalic Projeksionu ve Bir Bilgisaar Programı: Pseudo ,5 0,8660 1,1547 1,0104 0, , , ,5 0,8931 1,1547 1,039 0,1308 0, , ,5 0,9697 1,1547 1,06 0,095 9, , ,5 1,0855 1,1547 1,101 0, , , ,5 1,94 1,1547 1,191 0, , , ,5 1,398 1,1547 1,738 0, , , ,5 1,5695 1,1547 1,361 0,074 67, , ,5 1,7556 1,1547 1,455 0, , , ,5 1,9484 1,1547 1,5515 0,3968 8, , ,5,1460 1,1547 1,6504 0, , , ,5,3473 1,1547 1,7510 0, , , ,5,5513 1,1547 1,8530 0, , , ,5,7575 1,1547 1,9561 0, , ,0 0,7934 1,605 1,069 0,336 6, , ,0 0,8433 1,605 1,0519 0,086 30, , ,0 0,9780 1,605 1,1193 0,141 40, , ,0 1,1685 1,605 1,145 0,0460 5, , ,0 1,391 1,605 1,363 0, , , ,0 1,635 1,605 1,4479 0, , , ,0 1,8904 1,605 1,5754 0, , ,508 50,0,1533 1,605 1,7069 0, , ,037 50,0,415 1,605 1,8410 0, , ,567 50,0,6933 1,605 1,9769 0, , ,097 50,0,9678 1,605,1141 0, , ,536 50,0 3,443 1,605,54 0, , ,036 50,0 3,53 1,605,3914 1, , PSEUDO PROGRAMI Çalışmadaki [4] tüm hesaplamalar ve çizimler, Şekil 5 te karşılama formu verilen ve Visual Basic dilinde hazırlanan PSEUDO adlı program ile gerçekleşmiştir. Şekil 5. Pseudo programı karşılama formu Pseudo programı iki ana çalışma alanından oluşmaktadır. Program kaıtlı coğrafi koordinat dosalarının kullanılması vea kullanıcı tarafından belirlenen belli aralıklar ile seçilecek coğrafi koordinatlarla çalışma gerçekleştirir (Şekil 6). Birinci çalışma alanı daha önceden kullanıcı tarafından belirlenip tt dosası olarak kadedilmiş vea tt dosası olarak mevcut (erüzünün coğrafi koordinatları, bir ülkee vea bir erleşim erine ait coğrafi koordinatlar gibi) olan coğrafi koordinatların programa üklenmesi ile başlar. İkinci çalışma alanı ise 16

8 Maraş E.E., Yılmaz İ. Teknolojik Araştırmalar: HTED 009 () istenilen coğrafi koordinatların otomatik olarak nokta sıklığının seçildiği bölümdür. Diğer bir deişle bu kısımda 0 0 den e kadar olan nokta aralığının 1, 5, 10, gibi sıklıkla seçimi apılabilir. Her iki bölümde de projeksionlar, rapor dosalarının çıktılarının seçimi isteğe bağlıdır. Arıca ine her iki kısımda da sonuçlar df formatında elde edilebilir. Şekil 6. Pseudo programı ana işlem formları Tablo 1 de verilen değerler ardımı ile Quartic Authalic projeksionundaki düna haritası (Şekil 7), açı deformason eğrileri (Şekil 8) program desteği ile çizilmiştir. Quartic Authalic projeksionu deformason elipsleri Şekil 9 görülmektedir. Şekil 7. Quartic Authalic projeksionunda düna haritası 17

9 Teknolojik Araştırmalar: HTED 009 () Quartic Authalic Projeksionu ve Bir Bilgisaar Programı: Pseudo Y X Şekil 8. Quartic Authalic projeksionunda açı deformasonu eğrileri Şekil 9. Quartic Authalic projeksionunda deformason elipsleri (http://www.mathworks.com/access/helpdesk/help/toolbo/map/quarticauthalicprojection.html) 5. SONUÇLAR Bir Kartograf, hazırlaacağı haritada kullanacağı projeksionu seçerken, haritanın hangi amaç için kullanılacağına, ne gibi özellikleri barındıracağına (açı, alan vea uzunluktan hangi özelliğin korunacağına), paralel daire ve meriden dairelerinin şekline ve özellikle ölçeğine ve deformason değerlerine dikkat etmelidir. Dünanın tümünün gösterimine önelik olarak üretilen haritalarda, deformason değerlerinin küçük olduğu, gerçek anlamlı olmaan harita projeksionları tercih edilmektedir. Çünkü bu tür projeksionlarda küreselliğin hissedilebilmesi için genellikle oval ve elips benzeri gösterimler kullanılmıştır. Alan deformasonunun ise olabildiğince az olması istenir. Bilgisaar teknolojisi ardımıla projeksionlara ait değerlerin görsel olarak kullanıcıa sunulması, projeksion seçiminde oldukça önemli hale gelmiştir. Bu amaca önelik olarak apılan bu çalışmada, erüzünü bir bütün olarak göstermee önelik gerçek anlamda olmaan silindirik projeksionlardan Quartic Authalic projeksionu incelenmiştir. Seçilen bu projeksionun belirli aralıklarla ilgili coğrafi ağın köşe noktalarındaki deformason miktarları hakkında görsel bir inceleme apılarak olası diğer projeksion 18

10 Maraş E.E., Yılmaz İ. Teknolojik Araştırmalar: HTED 009 () değerleri ile karşılaştırma olanağı sağlanmıştır. Bu amaçlara önelik olarak geliştirilen PSEUDO programı ardımıla, sınırlı saıdaki gerçek anlamda olmaan silindirik projeksionların elemanları hesaplanabilmektedir. Daha fazla saıda projeksion türü için programın geliştirilmesi düşünülmektedir. 6. KAYNAKLAR 1. Yerci, M., 1997, Harita Projeksionları Ders Notları, Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi Yaınları, Yaın no: 37, Kona. Uçar, D., İpbüker, C., Bildirici, İ.Ö., 004, Matematiksel Kartografa: Harita Projeksionları Teorisi ve Ugulamaları, Atlas aın dağıtım, İstanbul 3. Koçak, E., 1984, Harita Projeksionları, Karadeniz Teknik Üniversitesi Yaınları, Trabzon 4. Maraş, E.E., 004, Gerçek Anlamda Olmaan Silindirik Projeksionlar, Yüksek Lisans Tezi, Afon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Afonkarahisar 5. Hake, G., Grünreich, D., 1994, Kartographie, Walter de Gruter, Berlin 6. Snder, J.P., 1993, Flattening the Earth: Two Thousand Years of Map Projection, The Universit of Chicago Press, Chicago, London 7. Uçar, D., İpbüker, C., 1998, Kartografik Projeksionlarda Deformason Elipslerinin Grafik Görselleştirilmesi, Harita Dergisi, Saı:119, Ankara,

Uygun Harita Projeksiyonu Seçiminde Bazı Temel Esaslar. The Basic Principals in Choosing Appropriate Map Projection

Uygun Harita Projeksiyonu Seçiminde Bazı Temel Esaslar. The Basic Principals in Choosing Appropriate Map Projection Harita Teknolojileri Elektronik Dergisi Cilt: 1, No: 2, 2009 (31-42) Electronic Journal of Map Technologies Vol: 1, No: 2, 2009 (31-42) TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn: 1309-3983

Detaylı

Gerçek Anlamda Olmayan Projeksiyonlar

Gerçek Anlamda Olmayan Projeksiyonlar Harita Teknolojileri Elektronik Dergisi Cilt: 5, No: 2, 2013 (29-49) Electronic Journal of Map Technologies Vol: 5, No: 2, 2013 (29-49) TEKNOLOJİK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn:1309-3983

Detaylı

T.C. MİLLİ SAVUNMA BAKANLIĞI HARİTA GENEL KOMUTANLIĞI HARİTA YÜKSEK TEKNİK OKULU KOMUTANLIĞI ANKARA

T.C. MİLLİ SAVUNMA BAKANLIĞI HARİTA GENEL KOMUTANLIĞI HARİTA YÜKSEK TEKNİK OKULU KOMUTANLIĞI ANKARA T.C. MİLLİ SAVUNMA BAKANLIĞI HARİTA GENEL KOMUTANLIĞI HARİTA YÜKSEK TEKNİK OKULU KOMUTANLIĞI ANKARA ÇİFT STANDART DAİRELİ KONFORM LAMBERT PROJEKSİYONUNDA TÜRKİYE HARİTASININ YAPILMASI Hrt. Tğm. Soner ÖZDEMİR

Detaylı

Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap. Gerçek Projeksiyon

Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap. Gerçek Projeksiyon PROJEKSİYON KAVRAMI Meridyenler ve paraleller eşitliklere göre düzleme aktarılır. 1) m : harita üzerinde paralelleri çizen yarıçap ) α: harita üzerinde meridyenler arasındaki açıyı ifade eder. m = α =

Detaylı

31.10.2014. CEV 361 CBS ve UA. Koordinat ve Projeksiyon Sistemleri. Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli

31.10.2014. CEV 361 CBS ve UA. Koordinat ve Projeksiyon Sistemleri. Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli CEV 361 CBS ve UA Koordinat ve Projeksiyon Sistemleri Öğr. Gör. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Yerin Şekli 1 Yerin Şekli Ekvator çapı: 12756 km Kuzey kutuptan güney kutuba çap: 12714 km

Detaylı

1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ

1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ 1/1000 ÖLÇEKLİ KADASTRO PAFTALARININ KARTOGRAFİK YÖNTEMLERLE SAYISAL HALE DÖNÜŞTÜRÜLMESİ VE DOĞRULUK ANALİZİ ÖZET A. Celan 1, Ö. Mutluoğlu 2, R. Günaslan 3 1 S. Ü. Müh. Mim. Fak., Jeodezi ve Fot. Müh.

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Özellikler Harita Projeksiyonları Bölüm 3: Silindirik Projeksiyonlar İzdüşüm yüzeyi, küreyi saran ya da kesen bir silindir seçilir. Silindirik projeksiyonlar genellikle normal konumda ekvator bölgesinde

Detaylı

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI 36 İNCELEME - ARAŞTIRMA BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI Erdal KOÇAIC*^ ÖZET Büyük ölçekli harita yapımında G İ R İŞ uygulanabilen "Stereografik çift Stereografik

Detaylı

Bilginin Görselleştirilmesi

Bilginin Görselleştirilmesi Bilginin Görselleştirilmesi Bundan önceki konularımızda serbest halde azılmış metinlerde gerek duduğumuz bilginin varlığının işlenmee, karşılaştırmaa ve değerlendirmee atkın olmadığını, bu nedenle bilginin

Detaylı

BÖLÜM 3: MATEMATİKSEL KARTOGRAFYA - TANIMLAR

BÖLÜM 3: MATEMATİKSEL KARTOGRAFYA - TANIMLAR BÖLÜM 3: MATEMATİKEL KARTOGRAFYA - TANIMLAR Türkay Gökgöz (www.yildiz.edu.tr/~gokgoz) 3 İÇİNDEKİLER 3. Bir Haritanın Matematiksel Çatısı... 3-3 3.. Ölçek. 3-3 3... Kesir ölçek 3-3 3... Grafik ölçek.. 3-4

Detaylı

KARTOGRAFYA ve HARİTA KARTOGRAFYA KARTOGRAFYA

KARTOGRAFYA ve HARİTA KARTOGRAFYA KARTOGRAFYA 1205321/1206321 KARTOGRAFYA ve HARİTA İlk kartografik yapıtların tarihçesi yaklaşık 6000 yıl geriye uzandığı halde, nın bağımsız bir bilim olarak kabul edilmesi oldukça yakın bir zamana rastlar. Bunun

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler İÇİNDEKİLER Kuadratik Yüeler Uada İkinci Dereceden Yüeler 1 0.1. Elipsoid 2 0.2. Hiperboloid 4 0.2.1. Tek Kanatlı Hiperboloid 4 0.2.2. Çift Kanatlı Hiperboloid 4 0.3. Paraboloid 5 0.3.1. Eliptik Paraboloid

Detaylı

KARTOGRAFYA ve HARİTA

KARTOGRAFYA ve HARİTA 1205321/1206321 KARTOGRAFYA ve HARİTA İlk kartografik yapıtların tarihçesi yaklaşık 6000 yıl geriye uzandığı halde, nın bağımsız bir bilim olarak kabul edilmesi oldukça yakın bir zamana rastlar. Bunun

Detaylı

ÇED ve Planlama Genel Müdürlüğü Veri Tabanı (ÇED Veri Tabanı)

ÇED ve Planlama Genel Müdürlüğü Veri Tabanı (ÇED Veri Tabanı) ÇED ve Planlama Genel Müdürlüğü Veri Tabanı (ÇED Veri Tabanı) 1 GÜNDEM 1. Amacı 2. Veri Tabanı Kapsamı 3. Özellikleri 4. Uygulama 2 1-Amacı Mekansal (haritalanabilir) Bilgilerin Yönetimi Sağlamak (CBS)

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm 4: Konik Projeksiyonlar Doç.Dr. İ. Öztuğ BİLDİRİCİ Koni en genel projeksiyon yüzeyidir. Koninin yüksekliği sıfır alınırsa düzlem, sonsuz alınırsa silindir elde edilir. Genel

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

3. HARİTA PROJEKSİYONLARI

3. HARİTA PROJEKSİYONLARI 3. HARİTA PROJEKSİYONLARI Projeksiyon, fiziksel yeryüzünün geometrik bir yüzey üzerine izdüşürülmesidir. Yerküre nin tamamı veya bir bölümü harita üzerine aktarılırken projeksiyon sistemleri kullanılır.

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Aziutal rojeksiyonlar Harita rojeksiyonları Bölü : Aziutal rojeksiyonlar Doç.Dr. İ. Öztuğ BİLDİRİCİ rojeksiyon yüzeyi düzledir. Noral, transversal ve eğik konulu olarak uygulanan aziutal projeksiyonlar,

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Datum. Doç. Dr. Saffet ERDOĞAN 1

Datum. Doç. Dr. Saffet ERDOĞAN 1 Datum Farklı datumlar haritalanacak yeryüzü bölümüne bağlı olarak geoide göre değişik elipsoid oryantasyonları (referans elipsoid) kullanırlar. Amaç seçilen elipsoide göre en doğru koordinatlama yapmaktadır.

Detaylı

TEKNİK RESİM. Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi. Geometrik Çizimler-2

TEKNİK RESİM. Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi. Geometrik Çizimler-2 TEKNİK RESİM 4 2014 Ders Notları: Doç. Dr. Mehmet Çevik Celal Bayar Üniversitesi Geometrik Çizimler-2 2/21 Geometrik Çizimler - 2 Bir doğru ile bir noktayı teğet yayla birleştirmek Bir nokta ile doğru

Detaylı

Coğrafi Bilgi Sistemlerine Giriş. Ünite4- Harita Projeksiyonları

Coğrafi Bilgi Sistemlerine Giriş. Ünite4- Harita Projeksiyonları Coğrafi Bilgi Sistemlerine Giriş Ünite4- Harita Projeksiyonları İçerik Projeksiyon sistemleri Projeksiyon koordinat sistemleri Projeksiyon bozulmaları Silindirik projeksiyonlar Azimutal projeksiyonlar

Detaylı

CBS. Projeksiyon. CBS Projeksiyon. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB

CBS. Projeksiyon. CBS Projeksiyon. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB Prof.Dr. Emin Zeki BAŞKENT Karadeniz Teknik Üniversitesi Orman Fakültesi Elipsoid şeklindeki dünyanın bir düzlem üzerine indirilmesi ve koordinatlarının matematiksel dönüşümleridir. Harita üç şekilde projeksiyonu

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

Koordinat Referans Sistemleri

Koordinat Referans Sistemleri Koordinat Referans Sistemleri Harita yapımında geometrik süreç Küre Referans yüzeyin seçimi Elipsoit Ölçek küçültme Dünya/Jeoit Harita düzlemine izdüşüm Harita Fiziksel yer yüzünün belli bir şekli yok,

Detaylı

ĠÇ BASINÇ ETKĠSĠNDEKĠ ĠNCE CĠDARLI SĠLĠNDĠRDE DENEYSEL GERĠLME ANALĠZĠ DENEYĠ

ĠÇ BASINÇ ETKĠSĠNDEKĠ ĠNCE CĠDARLI SĠLĠNDĠRDE DENEYSEL GERĠLME ANALĠZĠ DENEYĠ MAK-AB06 ĠÇ BASINÇ TKĠSĠNDKĠ ĠNC CĠDARI SĠĠNDĠRD DNYS GRĠM ANAĠZĠ DNYĠ. DNYĠN AMACI Mukavemet derslerinde iç basınç etkisinde bulunan ince cidarlı silindirik basınç kaplarında oluşan gerilme ve şekil değişimleri

Detaylı

KİTABIN REHBERLİK PLANLAMASI. Bölümler. Bölümlere Ait Konu Kavrama Testleri KONU KAVRAMA TESTİ DOĞA VE İNSAN 1 TEST - 1

KİTABIN REHBERLİK PLANLAMASI. Bölümler. Bölümlere Ait Konu Kavrama Testleri KONU KAVRAMA TESTİ DOĞA VE İNSAN 1 TEST - 1 Sunum ve Sistematik SUNUM Sayın Eğitimciler, Sevgili Öğrenciler, ilindiği gibi gerek YGS, gerekse LYS de programlar, sistem ve soru formatları sürekli değişmektedir. Öğrenciler her yıl sürpriz olabilecek

Detaylı

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir.

Kitle: Belirli bir özelliğe sahip bireylerin veya birimlerin tümünün oluşturduğu topluluğa kitle denir. BÖLÜM 1: FREKANS DAĞILIMLARI 1.1. Giriş İstatistik, rasgelelik içeren olaylar, süreçler, sistemler hakkında modeller kurmada, gözlemlere dayanarak bu modellerin geçerliliğini sınamada ve bu modellerden

Detaylı

HARİTA. Harita,yeryüzünün bütününü yada bir parçasını tam tepeden görünüşe göre ve belli oranlarda küçültülmüş olarak gösteren çizimlerdir.

HARİTA. Harita,yeryüzünün bütününü yada bir parçasını tam tepeden görünüşe göre ve belli oranlarda küçültülmüş olarak gösteren çizimlerdir. HARİTA BİLGİSİ HARİTA Harita,yeryüzünün bütününü yada bir parçasını tam tepeden görünüşe göre ve belli oranlarda küçültülmüş olarak gösteren çizimlerdir. ÇEŞİTLİ ÖLÇEKLİ HARİTALARIN NUMARALANMA SİSTEMİ

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

CBS de Alan Koruyan Projeksiyonlar ve ArcGIS Uygulaması 1.GİRİŞ Alan verisi CBS uygulamalarında sıkça kullanılmaktadır. Alan hesabında koordinatlar ku

CBS de Alan Koruyan Projeksiyonlar ve ArcGIS Uygulaması 1.GİRİŞ Alan verisi CBS uygulamalarında sıkça kullanılmaktadır. Alan hesabında koordinatlar ku TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon CBS DE ALAN KORUYAN PROJEKSİYONLAR VE ARCGIS UYGULAMASI F. Yıldırım 1, A. Kaya 2

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

ÖLÇME BİLGİSİ. PDF created with FinePrint pdffactory trial version http://www.fineprint.com. Tanım

ÖLÇME BİLGİSİ. PDF created with FinePrint pdffactory trial version http://www.fineprint.com. Tanım ÖLÇME BİLGİSİ Dersin Amacı Öğretim Üyeleri Ders Programı Sınav Sistemi Ders Devam YRD. DOÇ. DR. HAKAN BÜYÜKCANGAZ ÖĞR.GÖR.DR. ERKAN YASLIOĞLU Ders Programı 1. Ölçme Bilgisi tanım, kapsamı, tarihçesi. 2.

Detaylı

Uygulamada Gauss-Kruger Projeksiyonu

Uygulamada Gauss-Kruger Projeksiyonu JEODEZİ12 1 Uygulamada Gauss-Kruger Projeksiyonu Gauss-Kruger Projeksiyonunda uzunluk deformasyonu, noktanın X ekseni olarak alınan ve uzunluğu unluğu koruyan koordinat başlangıç meridyenine uzaklığının

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

TEST. Dönüşüm Geometrisi. 1. y 5. 4

TEST. Dönüşüm Geometrisi. 1. y 5. 4 Dönüşüm Geometrisi 8. Sınıf Matematik Soru ankası TEST 33 1. 4. (0, 4) (5,4) (3, 0) Koordinat düzlemi üzerinde verilen ve noktaları arasındaki uzaklık kaç birimdir? ) 5 ) 3 2 4 2 5 2 Koordinat düzlemi

Detaylı

KAPSAM 1. GİRİŞ SORGULAMALAR (ALIŞTIRMALAR) 2.YERKÜRE VE KOORDİNATLAR SİSTEMİ. 2.1 Yerkürenin Şekli. 2.2 Koordinatlar Sistemi

KAPSAM 1. GİRİŞ SORGULAMALAR (ALIŞTIRMALAR) 2.YERKÜRE VE KOORDİNATLAR SİSTEMİ. 2.1 Yerkürenin Şekli. 2.2 Koordinatlar Sistemi KAPSAM 1. GİRİŞ SORGULAMALAR (ALIŞTIRMALAR) 2.YERKÜRE VE KOORDİNATLAR SİSTEMİ 2.1 Yerkürenin Şekli 2.2 Koordinatlar Sistemi 2.2.1 Coğrafi Koordinat Sistemi 2.2.2 Kartezyen Koordinat Sistemi 3. HARİTA PROJEKSİYONLARI

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler-2

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler-2 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Perspektifler-2 2/25 Perspektifler-2 Perspektifler-2 Perspektif Çeşitleri Dimetrik Perspektif Trimetrik Perspektif Eğik Perspektif

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK II Dersin Orjinal Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

Haritası yapılan bölge (dilim) Orta meridyen λ. Kuzey Kutbu. Güney Kutbu. Transversal silindir (projeksiyon yüzeyi) Yerin dönme ekseni

Haritası yapılan bölge (dilim) Orta meridyen λ. Kuzey Kutbu. Güney Kutbu. Transversal silindir (projeksiyon yüzeyi) Yerin dönme ekseni 1205321/1206321 Türkiye de Topografik Harita Yapımı Ölçek Büyük Ölçekli Haritalar 1:1000,1:5000 2005 tarihli BÖHHBYY ne göre değişik kamu kurumlarınca üretilirler. Datum: GRS80 Projeksiyon: Transverse

Detaylı

Kuzey Kutbu. Yerin dönme ekseni

Kuzey Kutbu. Yerin dönme ekseni 1205321/1206321 Türkiye de Topoğrafik Harita Yapımı Ölçek Büyük Ölçekli Haritalar 1:1000,1:5000 2005 tarihli BÖHHBYY ne göre değişik kamu kurumlarınca üretilirler. Datum: GRS80 Projeksiyon: Transverse

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN Konikler Yazar Doç.Dr. Hüsein AZCAN ÜNİTE 7 Amaçlar Bu ünitei çalıştıktan sonra; lise ıllarından da tanıdığınız çember, elips, parabol ve hiperbol gibi konik kesitleri olarak adlandırılan geometrik nesneleri

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ Makine parçalarının ve/veya eş çalışan makine parçalarından oluşan mekanizma veya sistemlerin tasarımlarında önemli bir aşama olan ve tasarıma

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme

Detaylı

Sigma 26 301-313, 2008

Sigma 26 301-313, 2008 Journal of Engineering and Natural Sciences Mühendislik ve Fen ilimleri Dergisi raştırma Makalesi / Research rticle NEW METOD FOR SOLVING THE RESETION ROLEM Sigma 6 0-, 008 Veli KRSU * Zonguldak Karaelmas

Detaylı

TOPOĞRAFYA. Ölçme Bilgisinin Konusu

TOPOĞRAFYA. Ölçme Bilgisinin Konusu TOPOĞRAFYA Topoğrafya, bir arazi yüzeyinin tabii veya suni ayrıntılarının meydana getirdiği şekil. Bu şeklin kâğıt üzerinde harita ve tablo şeklinde gösterilmesiyle ilgili ölçme, hesap ve çizim işlerinin

Detaylı

1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR

1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR 1 1. HARİTA BİLGİSİ ve TOPOĞRAFİK HARİTALAR Harita nedir? Yeryüzünün veya bir parçasının belli bir rana göre küçültülerek ve belirli işaretler kullanılarak yatay düzlem üzerinde gösterilmesine harita adı

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

DÜNYA NIN ŞEKLİ ve BOYUTLARI

DÜNYA NIN ŞEKLİ ve BOYUTLARI 0 DÜNYA NIN ŞEKLİ ve BOYUTLARI Dünya güneşten koptuktan sonra, kendi ekseni etrafında dönerken, meydana gelen kuvvetle; ekvator kısmı şişkince, kutuplardan basık kendine özgü şeklini almıştır. Bu şekle

Detaylı

JEODEZİ DATUM KOORDİNAT SİSTEMLERİ HARİTA PROJEKSİYONLARI

JEODEZİ DATUM KOORDİNAT SİSTEMLERİ HARİTA PROJEKSİYONLARI JEODEZİ DATUM KOORDİAT SİSTEMLERİ HARİTA PROJEKSİYOLARI Yer yüzeyi eredeyim? Deniz Elipsoid Geoid BÜ KRDAE JEODEZİ AABİLİM DALI Jeodezi; Yeryuvarının şekil, boyut, ve gravite alanı ile zamana bağlı değişimlerinin

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

Proje kapsamında Arazi İzleme Sisteminin bir bütün olarak sunulması için bir portal yapısı hazırlanmıştır. Arazi İzleme Sistemi;

Proje kapsamında Arazi İzleme Sisteminin bir bütün olarak sunulması için bir portal yapısı hazırlanmıştır. Arazi İzleme Sistemi; Arazi İzleme CORINE WEB Portal Projesi Kurum adı : T.C. Orman ve Su İşleri Bakanlığı Proje durumu : Tamamlandı. Uygulama adresleri: http://aris.cob.gov.tr http://aris.cob.gov.tr/csa/ http://aris.cob.gov.tr/csa/

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Final Sınavı KOCEİ ÜNİVERSİTESİ Mühendislik akültesi Makina Mühendisliği ölümü Mukavemet I inal Sınavı dı Soadı : 9 Ocak 0 Sınıfı : h No : SORU : Şekildeki ucundan ankastre, ucundan serbest olan kirişinin uzunluğu

Detaylı

BÖLÜM 3: İLETİM HAT TEORİSİ

BÖLÜM 3: İLETİM HAT TEORİSİ BÖLÜM 3: İLETİM HAT TEORİSİ 1 İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla(ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin iletimini gerçekleştirmek

Detaylı

VERİ TABANI OLUŞTURULMASI VE WEB SAYFASININ HAZIRLANMASI (İP 6)

VERİ TABANI OLUŞTURULMASI VE WEB SAYFASININ HAZIRLANMASI (İP 6) VERİ TABANI OLUŞTURULMASI VE WEB SAYFASININ HAZIRLANMASI (İP 6) Bu iş paketi kapsamında, İP1, İP2 ve İP3 iş paketlerinden elde edilen bilgiler kullanılarak Coğrafi Bilgi Sistemi (CBS) destekli bir veri

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Harita ve Ölçekler. Doç. Dr. Ünal YILDIRIM Afyon Kocatepe Üniversitesi Fen-Edebiyat Fakültesi Coğrafya Bölümü

Harita ve Ölçekler. Doç. Dr. Ünal YILDIRIM Afyon Kocatepe Üniversitesi Fen-Edebiyat Fakültesi Coğrafya Bölümü Harita ve Ölçekler Doç. Dr. Ünal YILDIRIM Afyon Kocatepe Üniversitesi Fen-Edebiyat Fakültesi Coğrafya Bölümü Harita ve Ölçekler Yeryüzünün tamamının yada bir bölümünün kuşbakışı görünüşünün bir ölçek dahilinde

Detaylı

DİŞLİ ÇARKLAR SAKARYA ÜNİVERSİTESİ MAKİNE MÜH. BÖLÜMÜ MAKİNE ELEMANLARI DERS NOTU. Doç.Dr. Akın Oğuz KAPTI

DİŞLİ ÇARKLAR SAKARYA ÜNİVERSİTESİ MAKİNE MÜH. BÖLÜMÜ MAKİNE ELEMANLARI DERS NOTU. Doç.Dr. Akın Oğuz KAPTI DİŞLİ ÇARKLAR MAKİNE MÜH. BÖLÜMÜ MAKİNE ELEMANLARI DERS NOTU Doç.Dr. Akın Oğuz KAPTI Dişli Çarklar 2 Dişli çarklar, eksenleri birbirine paralel, birbirini kesen ya da birbirine çapraz olan miller arasında

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

KONU: HARİTA BİLGİSİ

KONU: HARİTA BİLGİSİ KONU: HARİTA BİLGİSİ Yeryüzünün tamamının ya da bir bölümünün, kuşbakışı görünüşünün, belli bir ölçek dahilinde küçültülerek, bir düzlem üzerine aktarılmasıyla elde edilen çizime harita denir. Bir çizimin

Detaylı

Harita : Yeryüzünün tamamının veya bir bölümünün kuşbakışı görünümünün belli bir ölçek dahilinde küçültülerek düzleme aktarılmasına denir

Harita : Yeryüzünün tamamının veya bir bölümünün kuşbakışı görünümünün belli bir ölçek dahilinde küçültülerek düzleme aktarılmasına denir Harita : Yeryüzünün tamamının veya bir bölümünün kuşbakışı görünümünün belli bir ölçek dahilinde küçültülerek düzleme aktarılmasına denir Not: Bir çizimin harita olması için 2 temel unsur gereklidir :

Detaylı

CBS UYGULAMALARINDA ALAN DEFORMASYONU

CBS UYGULAMALARINDA ALAN DEFORMASYONU TMMOB Harita ve Kadastro Mühendisleri Odası 0. Türkiye Harita Bilimsel ve Teknik Kurultayı 28 Mart - Nisan 2005, Ankara CBS UYGULAMALARINDA ALAN DEFORMASYONU F. Yıldırım, A. Kaya Karadeniz Teknik Üniversitesi,

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojikarastirmalar.com ISSN:305-63X Yapı Teknolojileri Elektronik Dergisi 2007 () 45-49 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Afyonkarahisar Merkezindeki Dört Farklı Döneme Ait Camilerin RTK Đle

Detaylı

KAPSAM 1. GİRİŞ SORGULAMALAR (ALIŞTIRMALAR) 2.YERKÜRE VE KOORDİNATLAR SİSTEMİ. 2.1 Yerkürenin Şekli. 2.2 Koordinatlar Sistemi

KAPSAM 1. GİRİŞ SORGULAMALAR (ALIŞTIRMALAR) 2.YERKÜRE VE KOORDİNATLAR SİSTEMİ. 2.1 Yerkürenin Şekli. 2.2 Koordinatlar Sistemi KAPSAM 1. GİRİŞ SORGULAMALAR (ALIŞTIRMALAR) 2.YERKÜRE VE KOORDİNATLAR SİSTEMİ 2.1 Yerkürenin Şekli 2.2 Koordinatlar Sistemi 2.2.1 Coğrafi Koordinat Sistemi 2.2.2 Kartezyen Koordinat Sistemi 3. HARİTA PROJEKSİYONLARI

Detaylı

Alan Hesapları. Şekil 14. Üç kenarı belli üçgen alanı

Alan Hesapları. Şekil 14. Üç kenarı belli üçgen alanı lan Hesapları lan hesabının doğruluğu alım şekline ve istenile hassasiyet derecesine göre değişir. lan hesapları üç kısma ayrılmıştır. Ölçü değerlerine göre alan hesabı Ölçü ve plan değerlerine göre alan

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME

ELEKTRONİK ÇİZELGE. Hücreleri Biçimlendirme. Formülleri Kullanma. Verileri Sıralama. Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Hücreleri Biçimlendirme ELEKTRONİK ÇİZELGE Formülleri Kullanma Verileri Sıralama Grafik Oluşturma 1) HÜCRELERİ BİÇİMLENDİRME Elektronik Çizelge de sayıları; bin ayracı, yüzde oranı, tarih/saat ve para

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler DERS 5 Çok Değişkenli Fonksionlar Kısmi Türevler 5.1. Çok Değişkenli Fonksionlar. Reel saılar kümesi R ile gösterilmek üere ve her n için olarak tanımlanır. R R 3 {( ): R} = {( ) : R} = {( L ): L R} n

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

HARİTA, TOPOGRAFİK HARİTA, JEOLOJİK HARİTA. Prof.Dr. Atike NAZİK Ç.Ü. Jeoloji Mühendisliği Bölümü

HARİTA, TOPOGRAFİK HARİTA, JEOLOJİK HARİTA. Prof.Dr. Atike NAZİK Ç.Ü. Jeoloji Mühendisliği Bölümü HARİTA, TOPOGRAFİK HARİTA, JEOLOJİK HARİTA Prof.Dr. Atike NAZİK Ç.Ü. Jeoloji Mühendisliği Bölümü HARİTA NEDİR? Harita; yer yüzeyinin bir düzlem üzerine belirli bir oranda küçültülerek bir takım çizgi ve

Detaylı

HARİTA BİLGİSİ, KOORDİNAT SİSTEMLERİ, 1/25000 ÖLÇEKLİ HARİTALARIN TANITIMI VE KULLANMA TEKNİKLERİ İLE TOPRAK HARİTALARININ YAPILMASI

HARİTA BİLGİSİ, KOORDİNAT SİSTEMLERİ, 1/25000 ÖLÇEKLİ HARİTALARIN TANITIMI VE KULLANMA TEKNİKLERİ İLE TOPRAK HARİTALARININ YAPILMASI HARİTA BİLGİSİ, KOORDİNAT SİSTEMLERİ, 1/25000 ÖLÇEKLİ HARİTALARIN TANITIMI VE KULLANMA TEKNİKLERİ İLE TOPRAK HARİTALARININ YAPILMASI HARİTA Harita,yeryüzünün bütününü yada bir parçasını tam tepeden görünüşe

Detaylı

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır?

2005 ÖSS Soruları. 5. a, b, c gerçel sayıları için 2 a = 3 3 b = 4 4 c = 8 olduğuna göre, a.b.c çarpımı kaçtır? . + c m 9 + c9 m 9 9 20 ) ) 9 ) 27 ) ) 82 9 5. a, b, c gerçel saıları için 2 a = b = c = 8 olduğuna göre, a.b.c çarpımı kaçtır? ) ) 2 ) ) ) 5 6. a, b, c gerçel saıları için, a.c = 0 a.b 2 > 0 2. 2 2 +

Detaylı

GÜNEŞ ENERJİSİ II. BÖLÜM

GÜNEŞ ENERJİSİ II. BÖLÜM GÜNEŞ ENERJİSİ II. BÖLÜM Prof. Dr. Olcay KINCAY GÜNEŞ AÇILARI GİRİŞ Güneş ışınları ile dünya üzerindeki yüzeyler arasında belirli açılar vardır. Bu açılar hakkında bilgi edinilerek güneş enerjisinden en

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

YAPILARDA BURULMA DÜZENSİZLİĞİ

YAPILARDA BURULMA DÜZENSİZLİĞİ YAPILARDA BURULMA DÜZENSİZLİĞİ M. Sami DÖNDÜREN a Adnan KARADUMAN a M. Tolga ÇÖĞÜRCÜ a Mustafa ALTIN b a Selçuk Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Konya b Selçuk Üniversitesi

Detaylı

Katı Cisimlerin Yü zey Alanı Ve Hacmi

Katı Cisimlerin Yü zey Alanı Ve Hacmi Katı Cisimlerin Yü zey Alanı Ve Hacmi Dikdörtgenler Prizması Hacmi ve Yüzey Alanı Paralelkenar Prizmanın Hacmi Kürenin Hacmi ve Kürenin Yüzey Alanı Kürenin temel elemanları; bir merkez noktası, bu merkez

Detaylı

Dünya üzerindeki bir yerin kuşbakışı görünümü, kroki, plan ya da harita olarak düzleme aktarılır.

Dünya üzerindeki bir yerin kuşbakışı görünümü, kroki, plan ya da harita olarak düzleme aktarılır. AKÇADAĞ KEPEZ LİSESİ-HACI OSMAN DERELİ-COĞRAFYA ÖĞRETMENİ HARİTA BİLGİSİ Harita Bilgisi Harita, Plan, Kroki Dünya üzerindeki bir yerin kuşbakışı görünümü, kroki, plan ya da harita olarak düzleme aktarılır.

Detaylı

TMMOB Harita ve Kadastro Mühendisleri Odası 13. Türkiye Harita Bilimsel ve Teknik Kurultayı 18 22 Nisan 2011, Ankara

TMMOB Harita ve Kadastro Mühendisleri Odası 13. Türkiye Harita Bilimsel ve Teknik Kurultayı 18 22 Nisan 2011, Ankara TMMOB Harita ve Kadastro Mühendisleri Odası 13. Türkiye Harita Bilimsel ve Teknik Kurultayı 18 22 Nisan 2011, Ankara ŞERİTVARİ PROJELER İÇİN HARİTA PROJEKSİYON SEÇİMİ Faruk Yıldırım 1, Şevket Bediroğlu

Detaylı

Makine Elemanları I. Toleranslar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü

Makine Elemanları I. Toleranslar. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü Makine Elemanları I Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü İçerik Toleransın tanımı Boyut Toleransı Geçme durumları Tolerans hesabı Yüzey pürüzlülüğü Örnekler Tolerans

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 1. Konu VEKTÖRLER TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 1. Konu VEKTÖRLER TEST ÇÖZÜMLERİ 11. SINI SOU BANKASI 1. ÜNİTE: KUVVET VE HAEKET 1. Konu VEKTÖLE TEST ÇÖZÜMLEİ 1 Vektörler Test 1 in Çözümleri 3. 4 N 1. 1,2 = 2 3 2 3 120 4 N 4 N 6 N 4 N Şekil I Şekil II A Şekil I Şekil II A 3 Değeri

Detaylı

DSİ kapsamında oluşturulan dağınık durumdaki verilerinin düzenlenmesi, yeniden tasarlanarak tek bir coğrafi veri tabanı ortamında toplanması,

DSİ kapsamında oluşturulan dağınık durumdaki verilerinin düzenlenmesi, yeniden tasarlanarak tek bir coğrafi veri tabanı ortamında toplanması, Projenin Amacı DSİ Genel Müdürlüğünde, Bölge Vaziyet Planı çalışmaları kapsamında üretilen ve mevcut DSİ faaliyetlerini içeren CBS veri setleri ile CBS Veritabanının incelenerek yine mevcut CBS donanım,

Detaylı

GÜNEŞ YÖRÜNGESİ TEMEL ÇİZİMLERİ

GÜNEŞ YÖRÜNGESİ TEMEL ÇİZİMLERİ GÜNEŞ YÖRÜNGESİ TEMEL ÇİZİMLERİ için ÖNSÖZ Yeryüzünün herhangi bir noktasında ve yılın herhangi bir gününün istenen bir zamanında, güneşin gökyüzündeki yeri, bilgisayar programları ile elde edilebilmektedir.

Detaylı