Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:"

Transkript

1 OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi seçilen örneklerin şansa bağlı olarak farklılıklar göstermesi ve bunun sonucunda her deneyde farklı sonuçlarla karşılaşılmasıdır. Olasılık, herhangi bir deneyin sonucunda gözlenebilecek farklı durumlar ile hangi sıklıkla karşılaşılacağıdır. Bir başka ifadeyle ortaya çıkan olayların belirsizliğinin incelenmesi anlamına gelir. 1

2 Diğer bir tanım, Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya başlanan olasılık, uygulamalı matematiğin bir dalı olarak gelişim göstermiş ve istatistiksel yorumlamada önemli uygulama alanı bulmuştur. Örnekler: Madeni paranın atılması sonucu tura gelme olasılığı, Bir deste iskambil kağıdından çekilen 2 kağıdın en az birinin papaz olma olasılığı, Nişanlı olan bir çiftin evlenme olasılığı.??? 2

3 Temel Tanımlar ve Kavramlar- Olay: Birden fazla basit olayın bir araya gelmesi sonucu oluşur. Örnek: hilesiz bir zarın atılması sonucu asal sayı gelmesi, içinde 5 sarı 7 lacivert bilye bulunan torbadan 2 top çekildiğinde birinin sarı birinin lacivert olması. 3

4 Örnek Uzayı: Bir deneyin sonucunda elde edilen tüm mümkün basit olaylarının oluşturduğu kümedir. Genellikle S ile tanımlanır. Örnek: Hilesiz bir zarın atılması sonucu elde edilen örnek uzayı; x: zarın üst yüzünde gelen sayı S = { x; x = 1,2,3,4,5,6 } 4

5 Temel Tanımlar ve Kavramlar Tekrarlanabilir Deney: Sonucu kesin olarak kestirilemeyen bir tek çıktı (şans değişkeni) oluşturan eylem, gözlem ya da süreçtir. Örnek: madeni para atılması, içinde 5 sarı 7 lacivert bilye bulunan torbadan bir top çekilmesi. Basit Olay: Tek bir deneyde tek bir sonuç olarak gerçekleşen olaylardır. Örnek: hilesiz bir zarın atılması sonucu 2 gelmesi P(A) bir deste iskambil kağıdından çekilen kağıdın maça 5 as olması P(A)

6 Bileşik olay:iki veya daha çok olayın birlikte veya birbiri ardına meydana gelmesine denir. P(A 1 ve A 2 ) İki zar atılır ve 4 gelmesi Bir zar arka arkaya iki defa atılır.her iki atışta da 4 gelmesi. 52 lik desteden as ve aynı zamanda karo gelmesi. 6

7 Temel Tanımlar ve Kavramlar Ayrık (bağdaşmaz) olay: Eğer A ve B gibi iki olay aynı anda gerçekleşemiyor ise bu olaylara ayrık(birbirini engelleyen) olaylar denir Örnek: Madeni para atılması sonucunda yazı veya tura gelmesi Bir sınavda geçilir veya kalınır. 7

8 Bağdaşır olay:bir olayın ortaya çıkması başka bir olayın ortaya çıkmasını engellemiyorsa iki veya daha çok olay birlikte meydana gelebiliyorsa bağdaşır olaydır. Örnek: Zarın atılması sonucu 1 ve tek sayı gelmesi. (Çünkü aynı anda gerçekleşebilirler.) 52 lik desteden çekilen kartın maça olması kız olması 8

9 Bağımsız olay: Bir olayın ortaya çıkması başka bir olayın ortaya çıkmasından ilişkisiz ise P( A B P( A). P( B) Örneğin, ailede birinci çocuğun erkek olması ikincisinin de erkek olacağı anlamına gelmez. Bağımlı olay: Bir olayın ortaya çıkması başka bir olayın ortaya çıkmasını etkiliyorsa 52 lik bir desteden iadesiz arka arkaya iki kart çekiliyor. Kart sayısı önce 52 sonra beyaz, 8 kırmızı top var. 3 top çekiliyor İade edilirse bağımsız, iade edilmezse bağımlı olaydır. 9

10 Eşit Olasılıklı Olaylar: Bir örnek uzayındaki tüm basit olayların ortaya çıkma olasılığı eşit ise bu olaylara eşit olasılıklı olaylar denir. Örnek: Bir deste iskambil kağıdından bir adet kağıt çekilmesi. 10

11 Olasılığın İki Temel Kuralı; 1) Tüm basit olayların olasılıkları 0 ile 1 arasındadır. 2) Bir örnek uzayındaki tüm basit olayların ortaya çıkma olasılıklarının toplamı 1 e eşittir. DİKKAT!!!! Hiç bir olayın OLASILIĞI 1 den büyük olamaz!!!! Bir A olayın ortaya çıkma olasılığı; P(A) şeklinde gösterilir. 11

12 Olasılığın Gelişim Aşamaları Klasik (A Priori) Olasılık Frekans (A Posteriori) Olasılığı Aksiyom Olasılığı NOT:Bu sıralama olasılık teorisinin tarihsel gelişimini tanımlamaktadır. 12

13 Klasik Olasılık Eğer bir örnek uzayı n(s) adet ayrık ve eşit olasılıkla ortaya çıkan basit olaylardan oluşuyor ve örnek uzayındaki basit olaylardan n(a) adedi A olayının özelliğine sahip ise A nın olasılığı: P(A) = n(a) / n(s) kesri ile elde edilir n(s): Örnek uzayı eleman sayısı n(a): Örnek uzayındaki A elemanı sayısı Klasik olasılık TÜMDENGELİME dayanan çıkarımlar yaparak olasılığı bulur. 13

14 Örnek: Bir kapta 5 sarı, 5 lacivert ve 5 adet yeşil bilye bulunmaktadır. Çekilen bir bilyenin sarı olma olasılığı nedir? A: Çekilen bir bilyenin sarı olması n(s): Örnek uzayı eleman sayısı = 15 n(a): Örnek uzayındaki A elemanı sayısı = 5 n( A) 5 P( A) n( S)

15 Frekans Olasılığı Araştırılan anakütle üzerinde n adet deney uygulanır. Yapılan bu deneylerde ilgilenilen A olayı n(a) defa gözlenmiş ise A olayının göreli frekansı (yaklaşık olasılığı): P(A) = n(a) / n olarak bulunur. 15

16 Örnek: Bir fabrikanın üretmiş olduğu televizyonların hatalı olma olasılığı p nedir? Önce örnek uzayı oluşturulur: S={sağlam,hatalı} Klasik olasılığa göre (eşit olasılıklı olaylar) p=0.5 olup gerçeği yansıttığı şüphelidir. Yapılması gereken; örneklem alarak p = n(h) / n olasılığını hesaplamaktır. 16

17 Bir olayın olasılığı 0 ile 1 arasındadır. Örneğin bir para atıldığında yazı gelme olasılığı 0.5 dir. Bir örnek uzayındaki tüm sonuçların olasılıklarının toplamı 1 e eşittir. Bazı Temel Olasılık Aksiyomları Örnek: İki para atılma olayında örnek uzayı: s ( YY ),( TT),( TY),( YT ) Her sonucun gelme olasılığı ¼ dür. 4 sonuç olduğuna göre ¼+1/4+1/4+1/4=1. P(S)=1 örnek uzağının olasığı 1 dir. P ( ) = 0 boş kümenin olasılığı sıfırdır. A olayının tümleyeni olarak gösterilir. A P( A) 1 P(A) 17

18 Örnek Uzayı ve Olay Sayısını Belirleyen Sayma Yöntemleri Klasik olasılığın diğer bir ifade ile eşit olasılıklı olayların geçerli olduğu durumlarda: Örnek uzayının eleman sayısı, İlgilenilen olayın eleman sayısının belirlenmesi gereklidir. Kullanılan iki temel prensip; 1) Toplama Yöntemi 2) Çarpma Yöntemi 18

19 Bağımlı olayda çarpma kuralı: Bağımlı iki olaydan A 2 olayı A 1 olayından sonra ortaya çıktığında olayların birlikte gerçekleşme olasılığıdır. P( AveA ) P( A ). P( A A ) A 2 nin şartlı olasılığı 8 boş 2 ikramiyeli bilet var. Bir kişi 2 bilet almış her iki biletinde ikramiye kazanma olasılığı nedir? 1.bilet: P(A 1 )=2/10 Geriye 8 boş ve 1 ikramiyeli bilet kaldı. P( A A ) P( AveA 1 2) P( A1 ). P( A2 A1 )

20 Bağımsız olayda çarpma kuralı: Birbirinden bağımsız A 1 ve A 2 olaylarının birlikte gerçekleşmesi olasılığı bu olayların basit olasılıklarının çarpımına eşittir. P( AveA ) P( A ). P( A ) Aynı anda atılan iki zarın ikisinin de 2 gelmesi P( AveA 1 2) P( A1 ). P( A2 ) Alinin 25 yıl sonra hayatta olması olasılığının 0.60, kardeşli Hasan ın 25 yıl sonra hayatta olması olması olasılığının 0.50 olduğunu varsayarsak 25 yıl sonra ikisinin de hayatta olma olasılığı nedir. P( AveA ) P( A ). P( A ) 0.60.(0.50)

21 Bağdaşır olayda toplama kuralı: İki olay bağdaşır olduğunda A 1 olayının veya A 2 olayının ortaya çıkması, ya A 1 olayının ya A 2 olayının ya da A 1 ve A 2 olaylarının her ikisinin birlikte gerçekleşmesi anlamına gelir. P( AveyaA ) P( A ) P( A ) P( AveA ) P(A U A ) P(A ) P(A )-P(A A ) lik bir desteden bir kız veya bir maça kızı çekme olasılığı nedir? P(A1 U A 2) P(A 1) P(A 2)-P(A 1 A 2) P( AveyaA 1 2) P( A1 ) P( A2 ) P( AveA 1 2)

22 Bağdaşmaz olaylarda toplama kuralı: A1 ve A2 bağdaşmaz olaylar ise A 1 veya A 2 olayının ortaya çıkması olasılığı P( AveyaA ) P( A ) P( A ) Bir zarın 2 veya 6 gelmesi olasılığı nedir? P( AveyaA ) P( A ) P( A )

23 Şartlı Olasılık Bağımlı olaylardan birinin (A 1 ) gerçekleştiği bilindiğine göre, diğerine (A 2 ) bağlı meydana gelme olasılığıdır. P( A2 A1) A 2 nin A 1 e bağlı şartlı olasılığı. P( A A ) P( AveA ) / P( A ) P( A A2) / P( A ) 1 1 A 1 in gerçekleşmiş olması şartıyla A 2 nin gerçekleşme olasılığıdır. 23

24 Bir öğrencinin iktisat dersinde başarılı olma olasılığı P(A 1 )=0.25 olsun. Aynı öğrencinin hem iktisat hem Matematikte başarılı olma olasılığı P(A 1 ve A 2 )=0.15. Öğrencinin İktisatta başarılı olması şartıyla Matematikte de başarılı olma olasılığı nedir? P( A A ) P( AveA ) / P( A ) P( A A2) / P( A ) 1 1 P( A2 A1) 0.15 /

25 Örnek: Bir üniversitede okuyan öğrencilerin % 70 i tiyatroya, % 35 ise sinemaya ilgi duymaktadır. a) Bir öğrencinin sinemaya ilgi duyduğu bilindiğinde tiyatroya ilgi duyma olasılığı 0,40 ise her iki aktiviteye birden ilgi duyma olasılığı nedir? b) Bir öğrencinin tiyatro veya sinemaya ilgi duyma olasılığı nedir? T:Tiyatroya ilgi duyma S:Sinemaya ilgi duyma P ( T ) = 0,70 P( S ) = 0,35 a) P ( T / S ) = 0,40 P (T S ) =? P(T S) P(T/S)*P(S) 0,40*0,35 0,14 b) P(T U S) P(T) P(S) - P(T S) 0,70 0,35-0,14 0,91 25

26 26 Bayes Teoremi Çeşitli nedenlerin aynı sonucu verebildiği durumlarda, bazen sonuç bilindiği halde bunun hangi nedenden meydana geldiği bilinmeyebilir. Sonucun hangi olasılıkla, hangi nedenden ortaya çıktığı araştırılmak istendiğinde Bayes teoreminden yararlanılır. Yani sonuç belli iken geriye doğru analiz yapma imkanı sağlar. k i i i i i i i B P B A P B P B A P A P B A P A B P 1 ) ( ) / ( ) ( ) / ( ) ( ) ( ) / (

27 Örnek: Bir ilaç üç fabrika tarafından üretilmektedir. 1. Fabrikanın üretimi 2. ve 3. fabrikaların üretiminin 2 katıdır. Ayrıca 1. ve 2. fabrikalar % 2, 3. fabrika % 4 oranında bozuk ilaç üretmektedir. Üretilen tüm ilaçlar aynı depoda saklandığına göre bu depodan rast gele seçilen bir ilacın bozuk olma olasılığı nedir. A = Seçilen ilacın bozuk olma olasılığı P ( A ) =? B i = Seçilen ilacın i nci fabrikada üretilmesi P(B 1 ) = P(B 2 ) + P(B 3 ) P(B 1 ) + P(B 2 ) + P(B 3 ) = 1 olduğundan; P(B 1 ) = 0,50 P(B 2 ) = P(B 3 ) = 0,25 olarak elde edilir. 27

28 Depodan rasgele seçilen bir ilacın bozuk olduğu bilindiğine göre 1 nci fabrikadan gelmiş olma olasılığı; P(B /A) 1 /A) P(B 1 P(A/B )P(B ) 1 1 P(A/B 1)P(B 1) P(A/B )P(B ) 2 2 P(A/B )P(B (0.02)(0.5) 0,40 (0.02)(0.5) (0.02)(0.25) (0.04)(0.25) 3 3 ) A = Seçilen ilacın bozuk olma olasılığı P ( A ) = B i = Seçilen ilacın i nci fabrikada üretilmesi P ( B 1 ) ; P ( B 2 ); P ( B 3 ) P(B 1 ) + P(B 2 ) + P(B 3 ) = 1 olduğundan; P(B 1 ) = 0,50 P(B 2 ) = P(B 3 ) = 0,25 28

29 Örnek: 3 mavi, 2 kırmızı ve 5 yeşil torba bulunmaktadır. Mavi torbaların her birinde 15 bilya(7si beyaz ve 8 i siyah), kırmızı torbaların her birinde 11 bilya(7si beyaz ve 4 ü siyah) yeşil torbaların herbirinde 20 bilya(11 i beyaz ve 9 u siyah) bulunduğu bilinmektedir. Bu torbaların birinden bir bilya çekilmiş ve siyah renkte olduğu görülmüştür. Bu bilyanın mavi renkte bir torbadan çekilmesi olasılığı nedir. 29

30 S:siyah bilya çekilmesi olayını P(M):bir bilyanın mavi torbadan çekilmesi olasılığı =3/10 P(K): bir bilyanın kırmızı torbadan çekilmesi olasılığı=2/10 P(Y) : bir bilyanın yeşil torbadan çekilmesi olasılığı=5/10 P( S M ) : P( S K ) : P( S Y ) : P( M S ) : Mavi torbadan çekilen bir bilyanın siyah renkli olması olasılığı=8/15 Kırmızı torbadan çekilen bir bilyanın siyah renkli olması olasılığı=4/11 Yeşil torbadan çekilen bir bilyanın siyah renkli olması olasılığı=9/20 Siyah renkli bir bilyanın mavi torbadan çekilmiş olması olasılığı nedir? 30

31 P( M S) P( M ). P( S M ) P( M ). P( S M ) P( K). P( S K) P( Y). P( S Y) P( M S) (3/10).(8 /15) (3/10).(8 /15) (2 /10).(4 /11) (5 /10).(9 / 20) P( M S) Çekilen siyah bilyanın mavi renkli bir torbadan çekilmiş olması olayı %34.96dır. 31

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür.

Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 1 Olasılık Örnekler 1. Bir çantada 4 beyaz 8 siyah top vardır. Bir siyah top çekilmesi olasılığı nedir? Çözüm: Siyah top çekilme olasılığı B olsun. Topların sayısı 12 olduğuna göre P(B)=8/12=2/3 tür. 2.

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

BİYOİSTATİSTİK OLASILIK

BİYOİSTATİSTİK OLASILIK BİYOİSTATİSTİK OLASILIK B Doç. Dr. Mahmut AKBOLAT *Küme Kavramı: Küme, tek bir isim altında toplanabilen ve benzer özellik gösteren birimlerin meydana getirdiği topluluk olarak tanımlanabilir. Küme içinde

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları Koşullu Olasılık

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 GİRİŞ Olasılık Teorisi: Matematiğin belirsizlik taşıyan

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

OLASILIK. ihtimali Seçeneği durumu. Bir zar atma olayı. Basit kesirdir. Tüm durum. Sonuçlardan biri Çıktılardan biri. Diğer sayfaya geçiniz

OLASILIK. ihtimali Seçeneği durumu. Bir zar atma olayı. Basit kesirdir. Tüm durum. Sonuçlardan biri Çıktılardan biri. Diğer sayfaya geçiniz OLASILIK ihtimali Seçeneği durumu Bir zar atma olayı Basit kesirdir. Tüm durum Sonuçlardan biri Çıktılardan biri 1 Soruyu DİKKATLİ OKU, soruyu ANLA, basit örnek kur. Cevabı işaretlemeden öce tekrar soruyu

Detaylı

SAÜ BÖLÜM 11. OLASILIK. Prof. Dr. Mustafa AKAL

SAÜ BÖLÜM 11. OLASILIK. Prof. Dr. Mustafa AKAL SAÜ BÖLÜM. OLASILIK Prof. Dr. Mustafa AKAL 0 İÇİNDEKİLER.KAVRAMLAR.. Rassal Deney, Örneklem Uzayı ve Olay.. Olayların Biçimlenmesi.3. Olasılık Tanımı.PERMÜTASYON VE KOMBİNASYON..Permütasyon... Sıralı Permütasyon...

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler.

Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Bölüm 2 OLASILIK TEORİSİ Olasılık teorisi, matematiğin belirsizlik taşıyan olaylarla ilgilenen bir dalıdır. Bu bilim dalı rasgele değişkenleri inceler. Rasgele değişken, gelecekteki bir gözlemde alacağı

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006

Cebir Notları. Permutasyon-Kombinasyon- Binom TEST I. Gökhan DEMĐR, gdemir23@yahoo.com.tr. www.matematikclub.com, 2006 MC www.matematikclub.com, 2006 Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Permutasyon-Kombinasyon- Binom TEST I 1. Ankra'dan Đstanbul'a giden 10 farklı otobüs, Đstanbul'- dan Edirne'ye giden 6 farklı

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,,

BİNOM AÇILIMI. Binom Açılımı. çözüm. kavrama sorusu. çözüm. kavrama sorusu. ö æ ö æ ö,, BİNOM AÇILIMI Binom Açılımı n doğal sayı olmak üzere, (x+y) n ifadesinin açılımını pascal üçgeni yardımıyla öğrenmiştik. Pascal üçgenindeki katsayılar; (x+y) n ifadesi 1. Sütun: (x+y) n açılımındaki katsayılar

Detaylı

OLASILIK (Probability)

OLASILIK (Probability) OLASILIK (Probability) Olasılık, bir olayın meydana gelme, ortaya çıkma şansını ifade eder ve P ile gösterilir. E i ile gösterilen bir basit olayın olasılığı P (E i ), A bileşik olayının olasılığıysa P

Detaylı

OLASILIK LASILIK ve İSTATİSTİK Olasılık

OLASILIK LASILIK ve İSTATİSTİK Olasılık 1-1 Click To Edit Master Title Style OLASILIK ve İSTATİSTİK Olasılık Yrd.Doç.Dr Doç.Dr.. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü 1-2 GİRİŞ Olasılık,

Detaylı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı

Not: n tane madeni paranın atılması deneyinde örnek uzayın eleman sayısı LYS Matematik Olasılık Tanım: Bir deneyde çıkabilecek tüm sonuçların kümesine örnek uzay denir ve E ile gösterilir. Örnek uzayın herhangi bir elemanına da örnek nokta denir. Örnek: Bir zarın atılması deneyinde

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir.

OLASILIK (İHTİMAL) TEORİSİ. DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. OLASILIK (İHTİMAL) TEORİSİ 1 DENEY (experiment),sonuç (outcome), OLAY (event) DENEY:Bir aktivitenin gözlemlenmesi ve ölçüm yapma şekilleridir. SONUÇ:Deneylerin tamamlanması ile elde edilen verilerdir.

Detaylı

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti:

MOMENTLER, ÇARPIKLIK VE BASIKLIK. Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: MOMENTLER, ÇARPIKLIK VE BASIKLIK Moment: Bir değişkenin gözlemleri X 1, X 2, X 3, X 4.X n olsun. Bu serinin r inci momenti: İşletme no 1 2 3 4 5 Arazi genişliği (da) 5 10 4 3 8 Aritmetik ortalamaya göre

Detaylı

Olasılık: Klasik Yaklaşım

Olasılık: Klasik Yaklaşım Olasılık Teorisi Olasılık: Klasik Yaklaşım Olasılık Bir olayın meydana gelme şansına olasılık denir. Örnek Türkiye nin kazanma olasılığı Hava durumu Loto Olayların Olasılığını Belirleme Rastsal (gelişigüzel)

Detaylı

OLASILIK. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

OLASILIK.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) OLASILIK 46 0 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları Ocak 20 0. Teorik Olasılık 0.. Deney ve Çıktı 4. Bir zar ile

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

BÖLÜM 2 : OLASILIK. Olasılığın gelişmesinde 4 anahtar sözcük önemli rol oynamaktadır. -Örneklem sonucu sample outcome

BÖLÜM 2 : OLASILIK. Olasılığın gelişmesinde 4 anahtar sözcük önemli rol oynamaktadır. -Örneklem sonucu sample outcome ÖLÜM : OLSLK Giriş: Olasılık kavramına. Fermat ile. ascal ın büyük katkıları olmuştur. ascal hesap makinesini geliştirerek Fermat ile birlikte olasılığın temellerini oluşturmuştur. Daha sonra Rus matematikçi

Detaylı

Olasılık (Probability) Teorisi

Olasılık (Probability) Teorisi Olasılık (Probability) Teorisi akin@comu.edu.tr http://akin.houseofpala.com Genetik Olasılık, genetik Genlerin gelecek generasyona geçmesinde olasılık hesapları kullanılır Akrabalık derecesinin hesaplanmasında,

Detaylı

OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK)

OLASILIK PROBLEMLERİ I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK) İST65-0-02-OLASILIK I (BAĞIMSIZ OLAYLAR, KOLMOGOROV BELİTLERİ VE KOŞULLU OLASILIK). A ve B olayları ayrık olaylar ve olasılıkları sıfırdan farklı ise, bu olayların bağımlı olduklarını tanıtlayınız. A ve

Detaylı

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

10. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 10. Sınıf Matemat k Ders İşleme Defter OLASILIK Altın Kalem Yayınları KOŞULLU OLASILIK Bas t olayların olma olasılıklarını 9. sınıf matemat k konularında şlem şt k. Ş md yapacağımız se daha karmaşık olayların

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

İstenen Durum Olasılık Tüm Durum 12

İstenen Durum Olasılık Tüm Durum 12 OLASILIK ÇIKMIŞ SORULAR 1.SORU İçinde top bulunan iki torbadan birincisinde beyaz, siyah ve ikincisinde beyaz, 5 siyah top vardır. Birinci torbadan bir top çekilip rengine bakılmadan ikinci torbaya atılıyor.

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir?

1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 1. 4 kız ve 5 erkek öğrenci; a) kızların tümü bir arada olacak şekilde kaç türlü sıralanabilir? 9. 4 çocuklu bir aile yan yana poz verecektir. Çocukların soldan sağa doğru boy sırasında olduğu kaç durum

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

A) 0 B) 1 C) 2 D) 3 Hilesiz bir çift madeni para havaya atılıyor. A) 10 B) 8 C) 7 D) 6 Hilesiz bir çift zar havaya atılıyor.

A) 0 B) 1 C) 2 D) 3 Hilesiz bir çift madeni para havaya atılıyor. A) 10 B) 8 C) 7 D) 6 Hilesiz bir çift zar havaya atılıyor. Olasılık. Sınıf Matematik Soru Bankası TEST. Havaya atılan hilesiz bir paranın yere düşmesi ile karşılaşılacak olası durumlar kaç tanedir?. A) 0 B) C) D) Hilesiz bir çift madeni para havaya atılıyor. Olası

Detaylı

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI

AÇIK UÇLU SORULAR ÜNİTE 1 VERİ, SAYMA VE OLASILIK. Bölüm 1 TEMEL SAYMA KLURALLARI ÜNİTE VERİ, SAYMA VE OLASILIK Bölüm TEMEL SAYMA KLURALLARI AÇIK UÇLU SORULAR. A = {0,,, 3, 4, } kümesindeki rakamlar kullanılarak 3 basamaklı rakamları farklı kaç farklı tek sayı yazılabilir? 48. A = {0,,

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak sayfası İÇİNDEKİLER. ÜNİTE SAYMA Sıralama ve Seçme... 4 Toplama Yolu ile Sayma... 4 Çarpma Yolu ile Sayma... 4 Permütasyon (Sıralama)... 5 Konu Testleri - -... 9 Kombinasyon (Seçme)... 4 Konu Testleri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 4: OLASILIK TEORİSİ Prof. Dr. İrfan KAYMAZ Giriş Bu bölüm sonunda öğreneceğiniz konular: Rastgele Olay Örnek Uzayı Olasılık Aksiyomları Bağımsız ve Ayrık Olaylar Olasılık Kuralları

Detaylı

OLASILIK VE OLAY ÇEŞİTLERİ

OLASILIK VE OLAY ÇEŞİTLERİ OLASILIK VE OLAY ÇEŞİTLERİ KAZANIMLAR Örnek uzay Olasılık kavramı Bir olayın olasılığının hesaplanması Teorik olasılık kavramı Deneysel olasılık kavramı Öznel olasılık kavramı Bağımsız olay Bağımlı olay

Detaylı

B İ L G İ Tanım: Rasyonel olmayan, yani a b şeklinde yazılamayan sayılara irrasyonel sayı denir. İrrasyonel sayılar kümesi I harfi ile gösterilir.. Aşağıdakilerden kaç tanesi irrasyonel sayıdır? 4. x 8

Detaylı

a. Aynı sırada çekilen herhangi iki kartın aynı d. 4. çekişte iki torbadan da 4 numaralı kartların e. 2. ve 4. çekişte aynı numaralı kartların

a. Aynı sırada çekilen herhangi iki kartın aynı d. 4. çekişte iki torbadan da 4 numaralı kartların e. 2. ve 4. çekişte aynı numaralı kartların Örnek Problem - Sinemada, yan yana koltukta oturan arkadaş, ara verildiğinde kalkıyorlar. Dönüşte, aynı koltuğa rastgele oturduklarına göre; hiçbirinin ilk yerine oturmaması olasılığı Örnek Problem - 4

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

İSTATİSTİĞE GİRİŞ VE OLASILIK

İSTATİSTİĞE GİRİŞ VE OLASILIK 1. 52 iskambil kağıdı ile oynanan bir kağıt oyununda çekilen kart vale ya da kız ise 3$, papaz ya da as ise 5$ kazanılmaktadır. Başka herhangi bir kartın çekilmesi durumunda oyun kaybedilmektedir. Oyunun

Detaylı

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir. 3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

Rastgele değişken nedir?

Rastgele değişken nedir? Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

MAT223 AYRIK MATEMATİK

MAT223 AYRIK MATEMATİK MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar

Detaylı

12. Hafta Ders Notları GENEL TEKRAR

12. Hafta Ders Notları GENEL TEKRAR 12. Hafta Ders Notları GENEL TEKRAR A Veri Türleri Anakütle bir bütünü temsil ederken; örneklem, bir bütünün sadece bir kısmını temsil etmektedir. Anakütledeki gözlem sayısı N ile temsil edilirken; örneklemdeki

Detaylı

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160

A GRUBU Noktaları adlandırılmış K 6 tam çizgesinin tam olarak 3 noktalı kaç tane alt çizgesi vardır? A) 9 B) 20 C) 24 D) 60 E) 160 A GRUBU.. Numarası :............................................. Adı Soyadı :............................................. SINAV YÖNERGESİ İşaretlemelerinizde kurşun kalem kullanınız. Soru ve cevap kağıtlarına

Detaylı

Şartlı Olasılık. Pr[A A ] Pr A A Pr[A ] Bir olayın (A 1 ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa;

Şartlı Olasılık. Pr[A A ] Pr A A Pr[A ] Bir olayın (A 1 ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa; Şartlı Olasılık Bir olayın (A ) olma olsılığı, başka bir olayın (A 2 ) gerçekleştiğinin bilinmesine bağlıysa; Pr[A A 2 Pr A A Pr A A = Pr[A A 2 2 2 Pr[A Pr[A 2 2 A A 2 S Pr[A A 2 A 2 verildiğinde (gerçekleştiğinde)

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT PERMÜTASYON, KOMBİNASYON BİNOM, OLASILIK ve İSTATİSTİK ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT Permütasyon. Kazanım : Eşleme, toplama ve çarpma yoluyla sayma yöntemlerini açıklar. 2. Kazanım : n elemanlı

Detaylı

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK

PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS - - - ÖYS PERMÜTASYON KOMBĐNASYON BĐNOM VE OLASILIK TEMEL SAYMA KURALLARI Örnek ( ) adet hediyeden üçü üç kişiye, her birine birer hediye vermek kaydıyla kaç değişik

Detaylı

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE

EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Ay 2016 2017 EĞİTİM-ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE Hafta ÖĞRENME ALANI ALT ÖĞRENME ALANI KAZANIMLAR EYLÜL 3 4 Sayılar ve İşlemler Çarpanlar

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

OLASILIK ÖRNEK - 1. Atılan bir zarın 4 ten büyük gelme olasılığı kaçtır? 1 C) 4 1 D) 3 1 E) 2 1 B) 5 A) 6

OLASILIK ÖRNEK - 1. Atılan bir zarın 4 ten büyük gelme olasılığı kaçtır? 1 C) 4 1 D) 3 1 E) 2 1 B) 5 A) 6 OLASILIK Değişik renkteki topların bulunduğu bir kutudan rastgele alınan bir topun hangi renkte olduğu, bir para atıldığında yazı veya tura gelmesi... vb. gibi sonucu önceden bilinmeyen olaylar olasılığın

Detaylı

OLASILIK TEORİSİ VE İSTATİSTİK

OLASILIK TEORİSİ VE İSTATİSTİK OLASILIK TEORİSİ VE İSTATİSTİK İki Değişkenli Olasılık Bu bölümde yapılan bir deneyin iki değişkene bağlı olan sonuçları dikkate alınacaktır. Örneğin: Bir gazete yöneticisi, politikasını belirlemek için

Detaylı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı

Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Olasılığa Giriş Koşullu Olasılık Bayes Kuralı Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Olasılığa Giriş Bundan önceki bölümlerde veri setini özetleyen,

Detaylı

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30

SİVAS FEN LİSESİ. Soru Kitapçığı Türü. 25 Nisan 2015 Cumartesi, 9:30 12:30 SİVAS FEN LİSESİ SİVAS İL MERKEZİ ORTAOKUL 1. MATEMATİK OLİMPİYATI SINAVI 015 ÖĞRENCİNİN ADI SOYADI : T.C. KİMLİK NO : OKUL / SINIFI : SINAVLA İLGİLİ UYARILAR: Soru Kitapçığı Türü A 5 Nisan 015 Cumartesi,

Detaylı

TEMEL SAYMA KURALLARI

TEMEL SAYMA KURALLARI TEMEL SAYMA KURALLARI SAYMA Toplama Yoluyla Sayma A ve B sonlu ve ayrık kümeler olmak üzere, bu iki kümenin birleşiminin eleman sayısı; s(a,b) = s(a) + s(b) dir. Sonlu ve ayrık iki kümenin birleşiminin

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT

VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT VERİ, SAYMA ve OLASILIK ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİTE 6. ÜNİT VERİ SAYMA. Kazanım : Merkezi eğilim ve yayılım ölçüleri Aritmetik ortalama, ortanca, tepe değer, en büyük değer, en küçük değer ve açıklık

Detaylı

Dr. Akarsu Hafta-4 11/16/2014 1

Dr. Akarsu Hafta-4 11/16/2014 1 Dr. Akarsu Hafta-4 11/16/2014 1 GİRİŞ Olasılık dolaylı istatistiğin önemli metotlarının temelini oluşturmaktadır. Örneğin, cinsiyet belirleyici bir prosedür belirlediğinizi iddia ediyorsunuz ve her seferinde

Detaylı

kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1

kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1 3. Olasılık Hesapları ve Olasılık Dağılımları 3.3. Sayma Teknikleri Olasılık hesapları ve istatistikte birçok problem, verilen küme elemanlarının sayılmasını veya sıralanmasını gerektirir. Eğer bir olayın

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri-

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- Hazırlayan Yrd. Doç. Selçuk Üniversitesi Mühendislik Fakültesi - Endüstri Mühendisliği Bölümü Giriş Zaman içerisinde tamamen önceden kestirilemeyecek şekilde

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3

ÜNİTE:1. İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2. Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 ÜNİTE:1 İstatistiğin Tanımı, Temel Kavramlar ve İstatistik Eğitimi ÜNİTE:2 Veri Derleme, Düzenleme ve Grafiksel Çözümleme ÜNİTE:3 Ortalamalar, Değişkenlik ve Dağılma Ölçüleri ÜNİTE:4 Endeksler ÜNİTE:5

Detaylı

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan Oktay İÇİNDEKİLER HEDEFLER İHTİMAL TEORİSİ

ÜNİTE. İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan Oktay İÇİNDEKİLER HEDEFLER İHTİMAL TEORİSİ HEDEFLER İÇİNDEKİLER İHTİMAL TEORİSİ Temel Kavramlar Toplama Kuralı Çarpma Kuralı İhtimal Dağılım Tablosu Beklenen Değer İSTATİSTİĞE GİRİŞ Prof.Dr.Erkan Oktay Bu üniteyi çalıştıktan sonra; İhtimal (olasılık)

Detaylı

10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır?

10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır? . kız ve 5 erkek arasınan kişilik bir ekip seçilecektir. n çok birinin kız olması olasılığı kaçtır? ( 5 ). 6 evli çift arasınan rasgele kişi seçiliyor. Seçilen bu kişi arasına evli bulunmama olasılığı

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

İSTATİSTİK I KISA ÖZET KOLAYAOF

İSTATİSTİK I KISA ÖZET KOLAYAOF DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. İSTATİSTİK I KISA ÖZET KOLAYAOF 2 Kolayaof.com

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır.

1 Hipotez konusuna öncelikle yokluk hipoteziyle başlanılan yaklaşımda, araştırma hipotezleri ALTERNATİF HİPOTEZLER olarak adlandırılmaktadır. Özellikle deneysel araştırmalarda, araştırmacının doğru olup olmadığını yapacağı bir deney ile test edeceği ve araştırma sonunda ortaya çıkan sonuçlarla doğru ya da yanlış olduğuna karar vereceği bir önermesi

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN E Y L Ü L ÜNİTE SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 8. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN 9.09.06/.09.06 6.09.06/0.09.06 Çarpanlar ve Katlar Çarpanlar ve Katlar 8... Verilen

Detaylı

ÖDEV 5 ÇÖZÜMLERİ. 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız.

ÖDEV 5 ÇÖZÜMLERİ. 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız. OLASILIĞA GİRİŞ IDERSİ ÖDEV 5 ÇÖZÜMLERİ 1. A, B, C Ω olmak üzere A B ve A B C olaylarını ayrık olayların birleşimi olarak yazınız. A B = A (B A) =A (B A c ) A B C = A (B A) (C (A B)) = A (B A c ) (C B

Detaylı

Değer Frekans

Değer Frekans Veri Rasgelelik içeren olgulardan elde edilen ölçüm (gözlem) değerlerine istatistiksel veri veya kısaca veri (data) diyelim. Verilerin deneyler sonucu veya doğal şartlarda olguları gözlemekle elde edildiğini

Detaylı

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı