KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI"

Transkript

1 KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, 44280, Malatya ÖZET Kimyasal tepkime sistemi modellerinde kinetik parametrelerin belirlenmesi modelin doğru sonuçlar vermesi bakımından önemlidir. Bu parametrelerin belirlenmesi için, doğrusal olmayan ve çoğunlukla da konveks olmayan optimizasyon problemlerinin çözümü gerekir. Bu çalışmada, integral tabanlı algoritma ile Sequential Quadratic Programming (SQP), Genetik Algoritma (GA) ve Tavlama Benzetimi (TB) optimizasyon teknikleri kullanılarak literatürden alınan örnekler çözülmüştür. Sonrasında, amaç fonksiyonu değerleri ve işlemci zamanı açısından her üç yöntem için bir kıyaslama yapılmıştır. İntegral tabanlı algoritmanın optimizasyon adımında SQP yöntemi kullanıldığında hem işlemci zamanı hem de amaç fonksiyonu bakımından diğer iki yönteme nazaran çok daha iyi sonuçlar elde edilmiştir. Anahtar Kelimeler: belirleme, Optimizasyon, Kinetik model GİRİŞ belirleme, gerçek zamanlı optimizasyon ve tepkime kinetiği modelleme uygulamalarını içeren genel bir problemdir. Dinamik veriler kullanılarak kinetik ifadelerdeki parametrelerin belirlenmesi kimyasal sistemlerin tasarımı, optimizasyonu ve kontrolü için önemlidir. Kimyasal proseslerin dinamik davranışını sağlıklı olarak öngörebilmek için gerekli temel koşullardan ilki iyi bir model ve ikincisi ise güvenilir bir çözüm algoritmasıdır. Genellikle bu modeller diferansiyel-cebirsel eşitlikler şeklinde tanımlanırlar. Bu durumda, doğrusal olmayan ve çoğunlukla da konveks olmayan optimizasyon problemlerinin çözümü gerekir [1, 2]. belirleme problemlerinde çözüme ulaşmak için farklı yaklaşımlardan yararlanılabilinir. Ancak bütün yaklaşımlarda ki amaç, deneysel ve modelden alınan veriler arasındaki farkı en aza indirgemektir. Model parametrelerinin hesaplanmasında uygun deneysel verilerin elde edilmesi önemlidir. Güvenilir bir model ve etkin bir çözüm algoritması ile kimyasal proseslerin dinamik davranışı sağlıklı bir şekilde öngörülebilir. Modelin prosesi temsil yeteneği büyük ölçüde, modelin içerdiği parametrelerin doğru belirlenmiş olması ile orantılıdır. Bu çalışmada, literatürden [3, 4, 5, 6] alınan örnekler için integral tabanlı algoritma ile Matlab yazılımı optimizasyon araçları içerisinde yer alan SQP, Genetik Algoritma ve Tavlama Benzetimi yöntemleri kullanılarak parametre belirleme çalışmaları gerçekleştirilmiştir. Bu üç yöntemin performans kıyaslanması yapılmıştır. YÖNTEM Kinetik modellerde parametre belirleme problemi dinamik bir optimizasyon problemi olup, Eşitlik 1 de verildiği gibi ifade edilebilir. Dinamik optimizasyon probleminin çözümü için kontrol vektör parametrelemesine dayalı pratik bir yaklaşım kullanılmıştır. Karar değişkenleri belirli aralıklara bölünmüştür. Optimizasyon değişkenlerinin başlangıç değerlerinden başlayarak her aralıkta model integrasyonu yapılmış ve bir aralığın sonunda elde edilen hal değişkeni değerleri, takip eden

2 aralık için başlangıç değerleri olarak kullanılmıştır. Bu şekilde incelenen zaman ufkunun sonunda amaç fonksiyonunun değerine ulaşılmıştır. Yöntemle ilgili detaylı bilgi literatürde mevcuttur [1, 2]. Model parametrelerinin belirlenmesinde, sınırlı optimizasyonda etkin bir yöntem olan SQP ve sezgisel optimizasyon yöntemlerinden GA [7, 8, 9] ve TB [10] algoritmaları kullanılmıştır. Amaç fonksiyonu olarak, tüm hal değişkenleri için tahmin değerleri ve literatür verileri arasındaki hata farkının kareleri toplamı seçilmiştir (Eşitlik 2). Diferansiyel denklem integrasyonu için 4. dereceden Runge-Kutta yöntemi kullanılmıştır. : amaç fonksiyonu, : hesaplanan hal değişkenleri, : literatür verisi, : hal değişkeni sayısı, : gözlem sayısıdır. Literatürden alınan dört farklı örnek problem değişik 3 yöntem ile çözülmüştür. Tüm hesaplamalar MATLAB ortamında gerçekleştirilmiştir. Örnek 1. Birinci mertebeden tersinir seri tepkime [3, 4, 5]. Model 3 hal değişkeni ve 4 kinetik parametreden oluşmaktadır. Tepkime ve diferansiyel denklemler aşağıda verilmiştir (Eşitlik 3). hal değişkeni vektörü olup olarak tanımlanır., kinetik parametreleri göstermektedir. Örnek 2. Birinci mertebeden tersinmez seri tepkime [3, 4, 5]. 2 hal değişkeni ve 2 parametreden oluşan model Eşitlik 4 te verilmiştir. hal değişkeni vektörü olup olarak tanımlanmaktadır., kinetik parametreleri temsil etmektedir. Örnek 3. Cinnamaldehyde in katalitik hidrojenasyonu [6].Tepkime şeması aşağıdaki gibidir. Model eşitlikleri aşağıda verilmiştir (Eşitlik 5).

3 : tepkime hızı, : hız sabiti, : adsorpsiyon terimi, : parametreler olarak tanımlanmıştır. Örnek 4. Katalitik Kraking [3, 4]. Bu model madesinin maddesine ve diğer yan ürünlere (S) katalitik krakingini temsil etmektedir. Tepkime doğrusal olmayan iki diferansiyel denklemden (Eşitlik 6) oluşmuştur. burada hal değişkeni vektörünü ve kinetik parametreleri ifade etmektedir. SONUÇLAR VE TARTIŞMA Çalışmada, SQP, GA ve TB teknikleri kullanılarak integral tabanlı optimizasyon yöntemi ile literatürden alınan 4 örnek problem çözülmüş ve elde edilen sonuçlar kıyaslanmıştır. İşlemci zamanı () ve amaç fonksiyonunun değeri açısından yapılan kıyaslamaya göre SQP yönteminin diğer iki yönteme nazaran çok daha iyi sonuçlar verdiği bulunmuştur (Çizelge 1 4). Çizelge 1. Örnek 1 için optimizayon sonuçları Fonksiyonu SQP x GA x TB x Alt limit Üst limit Optimum

4 Örnek 1 için parametreleri integral tabanlı algoritma + SQP yöntemi ile belirlenmiş modelden elde edilen sonuçlar ve literatür verilerinin kıyaslanması Şekil 1 de verilmiştir. Fonk. Şekil 1. Örnek 1 için literatür verisi model uyumu Çizelge 2. Örnek 2 için optimizayon sonuçları Fonksiyonu SQP x GA x TB x Alt limit 0 0 Üst limit Optimum 5 1 Çizelge 3. Örnek 3 için optimizayon sonuçları SQP GA TB Alt x10-17 Üst Optimum

5 Çizelge 4. Örnek 4 için optimizayon sonuçları Fonksiyonu SQP x GA x TB x Alt limit Üst limit Optimum Örnek 4 ün SQP yöntemi ile optimizasyonu sonucu bulunan parametreler kullanılarak model benzetimi gerçekleştirilmiş ve literatür verisi model uyumu Şekil 2 de verilmiştir. Şekilden de anlaşılacağı üzere iyi bir literatür verisi model uyumu sağlanmıştır. Şekil 2. Örnek 4 için literatür verisi model uyumu Burada verilen 4 örnek için de SQP yöntemi diğer iki yönteme kıyasla çok daha başarılı bulunmuştur. Buna ek olarak GA yönteminin TB yöntemine nazaran daha iyi sonuçlar verdiği görülmüştür. Sonuç olarak, kinetik model parametrelerinin belirlenmesinde SQP yöntemini kullanan integral tabanlı algoritmanın oldukça etkin olduğu tespit edilmiştir. Bu bildirinin sonuçlarına göre kinetik modellerde parametre belirleme çalışmaları yapanlar için kısa sürede optimum değere en yakın sonuçlar sağlayan integral tabanlı algoritmayla birlikte kullanılan SQP yönteminin seçilmesi önerilmektedir.

6 Kaynaklar [1] Yuceer, M., Atasoy, I., Berber, R., An integration based optimization approach for parameter estimation in dynamic models, Computer Aided Chemical Engineering, 20 (1), , [2] Yuceer, M., Atasoy, I. and Berber, R., A software for parameter estimation in dynamic models, Brazilian J. of Chem. Engineering, 25, 04, , [3] Tjoa, I B, and Biegler, L T, Simultaneous Solution and Optimization Strategies for Parameter Estimation of Differential-Algebraic Equations Systems, Ind. Eng. Chem. Res. 30, , [4] Esposito, W. R. and Floudas, C. A., Global optimization for the parameter estimation of differential algebraic systems, Ind. Eng. Chem. Res., 39, , [5] Michalik, C., Chachuat, B. and Marquardt, W. Incremental Global Parameter Estimation in Dynamical Systems, Ind. Eng. Chem. Res., 48 (11), , [6] Zamostny, P. and Belohlav, Z., A Software for Regression Analysis of Kinetic Data, Computers and Chemistry, 23, , [7] Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, [8] Conn, A. R., Gould, N. I. M. and Toint, Ph. L., "A Globally Convergent Augmented Lagrangian Algorithm for Optimization with General Constraints and Simple Bounds", SIAM Journal on Numerical Analysis, 28 (2), , [9] Conn, A. R., Gould, N. I. M. and Toint, Ph. L., "A Globally Convergent Augmented Lagrangian Barrier Algorithm for Optimization with General Inequality Constraints and Simple Bounds", Mathematics of Computation, 66(217), , [10] Kirkpatrick, S., Gelatt Jr., C. D., and Vecchi, M. P., Optimization by simulated annealing, Science, 220, , 1983.

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ

ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ ÇİMENTO BASMA DAYANIMI TAHMİNİ İÇİN YAPAY SİNİR AĞI MODELİ Ezgi Özkara a, Hatice Yanıkoğlu a, Mehmet Yüceer a, * a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü, Malatya, 44280 myuceer@inonu.edu.tr

Detaylı

2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU EŞDEĞER YAPILACAK DERSLER FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği

2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU EŞDEĞER YAPILACAK DERSLER FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği 2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği Dersin Açıldığı Bölüm Dersin Dersin 501001042010 Matematik 1 Fen Fak. Fizik Bölümü MAT0157 Matematik

Detaylı

Endüstriyel Bir Hidrokraker Reaktörünün Modellenmesi

Endüstriyel Bir Hidrokraker Reaktörünün Modellenmesi Endüstriyel Bir Hidrokraker Reaktörünün Modellenmesi Ümmühan Canan a, Berna Çakal a, Fırat Uzman a, Dila Gökçe a, Emre Kuzu a Yaman Arkun b,* a Türkiye Petrol Rafinerileri A.Ş., Kocaeli, 41790 b Kimya

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Istanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi Yıl:8 Sayı:15 Bahar 2009 s.167-178 DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Timur KESKİNTÜRK * Serap ŞAHİN ÖZET

Detaylı

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI

TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI TUĞLA VE KİREMİT FABRİKALARININ HAVA KİRLİLİĞİNE KATKILARININ YAPAY SİNİR AĞI MODELLEMESİ İLE ARAŞTIRILMASI Merve ARABACI a, Miray BAYRAM a, Mehmet YÜCEER b, Erdal KARADURMUŞ a a Hitit Üniversitesi, Mühendislik

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 1104001062003

Detaylı

1.SINIF 1. DÖNEM DERS MÜFREDATI

1.SINIF 1. DÖNEM DERS MÜFREDATI 1.SINIF 1. DÖNEM MÜFREDATI (3)SINIFI : 1 İN ADI MATH 101 Matematik I Calculus I Zorunlu 4-6 PHYS 101 Fizik I Physics I Zorunlu 3 2 6 MSE 101 Malzeme Mühendisliğine Giriş Introduction to Materials Engineering

Detaylı

IMPORTANT ANNOUNCEMENT ON 2015 SUMMER SCHOOL

IMPORTANT ANNOUNCEMENT ON 2015 SUMMER SCHOOL FACULTY OF ARTS AND SCIENCES FACULTY OF ECONOMICS AND ADMINISTRATIVE SCIENCES FOREIGN LANGUAGES TURKISH LANGUAGE CHEM 101 FİZ 101 FİZ 102 FİZ 224 HUM 302 İNB 302 KİM 101 MATE 102 MATE 111 MATE 112 MATE

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu

Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Üstel Öğrenme ve Genel Bozulma Etkili Akış Tipi Çizelgeleme Problemi: Maksimum Tamamlanma Zamanı Minimizasyonu Tamer Eren Kırıkkale Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü, 71451,

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik

Detaylı

İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM-ÖĞRETİM YILI, YENİ DERS PROGRAMI İLE İLGİLİ İNTİBAK

İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ EĞİTİM-ÖĞRETİM YILI, YENİ DERS PROGRAMI İLE İLGİLİ İNTİBAK İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ 2012-2013 EĞİTİM-ÖĞRETİM YILI, YENİ DERS PROGRAMI İLE İLGİLİ İNTİBAK Eski Adı Eski Kredisi ECTS kredisi Eski Yarıyılı Yeni Adı Yeni

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-16 GÜZ YARIYILI VE SONRASINDA UYGULANACAK LİSANS PROGRAMI (%100 İNGİLİZCE) BİRİNCİ YIL 1. DÖNEM Ön

Detaylı

1. DÖNEM Kodu Dersin Adı T U K. Matematik II Mathematics II (İng) Fizik I 3 2 4. Bilgisayar Programlama I (Java) Computer Programming I (Java) (İng)

1. DÖNEM Kodu Dersin Adı T U K. Matematik II Mathematics II (İng) Fizik I 3 2 4. Bilgisayar Programlama I (Java) Computer Programming I (Java) (İng) Müfredat: Mekatronik Mühendisliği lisans programından mezun olacak bir öğrencinin toplam 131 kredilik ders alması gerekmektedir. Bunların 8 kredisi öğretim dili Türkçe ve 123 kredisi öğretim dili İngilizce

Detaylı

Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA

Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA Geliştirilmiş Yerçekimsel Arama Algoritması: MSS-GSA * 1 Nihan Kazak ve 2 Alpaslan Duysak * 1 Mühendislik Fakültesi, Bilgisayar Mühendisliği, Bilecik Şeyh Edebali Üniversitesi, Türkiye 2 Mühendislik Fakültesi,

Detaylı

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması

Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması Karaciğerde Oluşan Hastalıkların Tespitinde Makine Öğrenmesi Yöntemlerinin Kullanılması 1 Emre DANDIL Bilecik Ş. Edebali Üniversitesi emre.dandil@bilecik.edu.tr +90228 214 1613 Sunum İçeriği Özet Giriş

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

Ç.Ü. BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2014-2015 GÜZ YARIYILI DERS PROGRAMI

Ç.Ü. BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2014-2015 GÜZ YARIYILI DERS PROGRAMI Ç.Ü. BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1. Sınıf 08:15 Normal ve İkinci Öğretim BİL 141 BİL 151 BİL 131 BIL 101 BİL 103 BİL 121 lik-3 TD 111 ENF 101 ENF 101 LAB. ENF 101 LAB. AİİT 101 AİİT 101* - Atatürk İlkeleri

Detaylı

YAZ OKULU TARİHLERİ. Yaz Okulu için yeni ders kayıtları 18-19 Temmuz 2012 tarihlerinde OASIS sistemi üzerinden yapılacaktır.

YAZ OKULU TARİHLERİ. Yaz Okulu için yeni ders kayıtları 18-19 Temmuz 2012 tarihlerinde OASIS sistemi üzerinden yapılacaktır. 27.06.2012 YAZ OKULU TARİHLERİ 2011-2012 öğretim yılı Yaz Okulu dersleri 23 Temmuz - 7 Eylül 2012 tarihleri arasında yapılacak ve 10-15 Eylül 2012 tarihleri arasında da Yaz Okulu sınavları gerçekleştirilecektir.

Detaylı

Ç.Ü. BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013-2014 GÜZ YARIYILI DERS PROGRAMI. 1. Sınıf. Normal ve İkinci Öğretim. Pazartesi Salı Çarşamba Perşembe Cuma

Ç.Ü. BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013-2014 GÜZ YARIYILI DERS PROGRAMI. 1. Sınıf. Normal ve İkinci Öğretim. Pazartesi Salı Çarşamba Perşembe Cuma 1. Sınıf 08:15 Normal ve BİL 141 BİL 151 BİL 131 BİL 101 ENF 101 BİL 121 ENF 101 LAB BİL 103 TD 111 AİİT 101 AİİT 101* - Atatürk İlkeleri ve İnkılap Tarihi I (2+0) BİL 101* - Algoritmalar ve Programlama

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

English for Academic Reading & Speaking II İngilizce Akademik Okuma ve

English for Academic Reading & Speaking II İngilizce Akademik Okuma ve T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ LİSANS PROGRAMI (%100 İNGİLİZCE) BİRİNCİ YIL 1. DÖNEM Ön şart D. Kodu Dersin Adı T U L AKTS MAT101 Calculus

Detaylı

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü

Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü 322 Polinom olmayan denklemlerin genetik algoritma tabanlı çözümü Nihat ÖZTÜRK *, Emre ÇELİK * Gazi Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği Bölümü, ANKARA ÖZET Anahtar Kelimeler:

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DERS KİTAPLARI LİSTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DERS KİTAPLARI LİSTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DERS KİTAPLARI LİSTESİ *Ders kitaplarını almadan önce dersi veren öğretim üyesine mutlaka danışın. Birinci Yıl 1.Yarıyıl BLM101 Bilgisayar Yazılımı I Ana Ders Kitabı: C How

Detaylı

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D.

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Ö Z G E Ç M İ Ş 1. Adı Soyadı: Mustafa GÖÇKEN 2. Doğum Tarihi: 12 Haziran 1976 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Derece Alan Üniversite Yıl Lisans Endüstri Mühendisliği Çukurova Üniversitesi

Detaylı

ANKARA ÜNİVERSİTESİ ÖĞRENCİ İŞLERİ DAİRE BAŞKANLIĞI

ANKARA ÜNİVERSİTESİ ÖĞRENCİ İŞLERİ DAİRE BAŞKANLIĞI Sıra Numarası Dersin ön koşulu var mı? *** Dersin önceki eğitim programında eşdeğer bir dersi var mı? **** Kuramsal Uygulama ve Laboratuvar TOPLAM SAAT Ulusal kredi AKTS Kredisi ANKARA ÜNİVERSİTESİ ANADAL

Detaylı

BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2. Öğretim planındaki AKTS 524000000001301 3 0 0 3 5

BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2. Öğretim planındaki AKTS 524000000001301 3 0 0 3 5 ). BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2 Ders Kodu Teorik Uygulama Lab. Kimyasal Reaksiyon Mühendisliği Ulusal Kredi Öğretim planındaki AKTS 524000000001301 3 0 0 3 5 Ön Koşullar : Yok: Bu dersin

Detaylı

ETİL ASETAT-ETANOL AZEOTROP KARIŞIMININ DAMITILDIĞI BİR EKSTRAKTİF DOLGULU DAMITMA KOLONUNUN SICAKLIK KONTROLÜ

ETİL ASETAT-ETANOL AZEOTROP KARIŞIMININ DAMITILDIĞI BİR EKSTRAKTİF DOLGULU DAMITMA KOLONUNUN SICAKLIK KONTROLÜ ETİL ASETAT-ETANOL AZEOTROP KARIŞIMININ DAMITILDIĞI BİR EKSTRAKTİF DOLGULU DAMITMA KOLONUNUN SICAKLIK KONTROLÜ Levent Taştimur a, Abdulwahab Giwa b, Süleyman Karacan b,* a Ankara Patent Bürosu Limited

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2013-2014 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2013-2014 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik I 08.00-12.00 Mat. 1.gr. Prof.Dr.A.FIRAT A 003 405001072003 Soyut Matematik I 08.00-12.00 Mat. 2.gr.

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği (İngilizce)

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği (İngilizce) Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği (İngilizce) - 2015 Genel Toplam Ortalama Yarıyıl Ders = [52 / 8 = 6,5] + 3 = 10 T = 126 U = 36 Toplam Saat = 162 Kredi = 260 ECTS = 260 1. YARIYIL

Detaylı

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI

OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI OPTİMUM GÜÇ AKIŞININ YAPAY ARI KOLONİSİ İLE SAĞLANMASI A. Doğan 1 M. Alçı 2 Erciyes Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü 1 ahmetdogan@erciyes.edu.tr 2 malci@erciyes.edu.tr

Detaylı

Araştırma Makalesi / Research Article. Yapı Sistemlerinin MATLAB Optimizasyon Araç Kutusu ile Optimum Boyutlandırılması

Araştırma Makalesi / Research Article. Yapı Sistemlerinin MATLAB Optimizasyon Araç Kutusu ile Optimum Boyutlandırılması BEÜ Fen Bilimleri Dergisi BEU Journal of Science 4(2), 189-197, 2015 4(2), 189-197, 2015 Araştırma Makalesi / Research Article Yapı Sistemlerinin MATLAB Optimizasyon Araç Kutusu ile Optimum Boyutlandırılması

Detaylı

SE Engineering Sciences 30 Mayıs 2011, Pazartesi 13:00 M1-2 İNG 152 -İngilizce II 31 Mayıs 2011, Salı 14:00 Yabancı Diller Binası

SE Engineering Sciences 30 Mayıs 2011, Pazartesi 13:00 M1-2 İNG 152 -İngilizce II 31 Mayıs 2011, Salı 14:00 Yabancı Diller Binası MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ FİNAL TARİHLERİ 2010-2011 BAHAR DÖNEMİ 1. SINIF Dersin Adı Sınav Tarihi Saat Sınav Yeri TRD 158 / 99 - Türk Dili II 30 Mayıs 2011, 10:00 Mühendislik Amfi SE 104

Detaylı

Đsrafil GÜZEL, Tercan ÇATAKLI, Habib AKYAZI, Erdal KARADURMUŞ

Đsrafil GÜZEL, Tercan ÇATAKLI, Habib AKYAZI, Erdal KARADURMUŞ AKARSU SĐSTEMLERĐNDE LĐNEER OLMAYAN PARAMETRE BELĐRLEME TEKNĐKLERĐ VE DĐNAMĐK SĐMÜLASYON NONLĐNEER PARAMETER ESTIMATION TECHNICS AND DYNAMIC SIMULATION IN RIVER STREAMS Đsrafil GÜZEL, Tercan ÇATAKLI, Habib

Detaylı

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ

GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ 3. İzmir Rüzgâr Sempozyumu // 8-10 Ekim 2015 // İzmir 29 GÜNEŞ ENERJİSİ VE RÜZGÂR ENERJİSİ DÂHİL OLAN HİBRİT GÜÇ SİSTEMİNDE FARKLI ALGORİTMALAR İLE EKONOMİK YÜK DAĞITIMININ İNCELENMESİ Gül Kurt 1, Deniz

Detaylı

AKIŞ TĐPĐ ÇĐZELGELEME PROBLEMLERĐNĐN GENETĐK ALGORĐTMA ile ÇÖZÜM PERFORMANSININ ARTIRILMASINDA DENEY TASARIMI UYGULAMASI

AKIŞ TĐPĐ ÇĐZELGELEME PROBLEMLERĐNĐN GENETĐK ALGORĐTMA ile ÇÖZÜM PERFORMANSININ ARTIRILMASINDA DENEY TASARIMI UYGULAMASI AKIŞ TĐPĐ ÇĐZELGELEME PROBLEMLERĐNĐN GENETĐK ALGORĐTMA ile ÇÖZÜM PERFORMANSININ ARTIRILMASINDA DENEY TASARIMI UYGULAMASI Alpaslan FIĞLALI 1 Orhan ENGĐN 2 Đ.T.Ü. Đşletme Fakültesi Endüstri Mühendisliği

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 06.04.2015 17:00-18:30 A 003, A 009, A 004 Scientific English II Mat. 1. Grup Yrd.Doç.Dr.N.BAŞ 10.04.2015 20:10-21:40 C 013, C 015, C 012 Analytic

Detaylı

Self Organising Migrating Algorithm

Self Organising Migrating Algorithm OPTİMİZASYON TEKNİKLERİ Self Organising Migrating Algorithm Kendini Organize Eden Göç/Geçiş Algoritması MELİH HİLMİ ULUDAĞ Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği Bölümü İletişim: www.melihhilmiuludag.com

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

NOHUT SAMANI HIZLI PİROLİZİNİN DENEY TASARIMI İLE MODELLENMESİ

NOHUT SAMANI HIZLI PİROLİZİNİN DENEY TASARIMI İLE MODELLENMESİ NOHUT SAMANI HIZLI PİROLİZİNİN DENEY TASARIMI İLE MODELLENMESİ Görkem Değirmen a, Ayşe E. Pütün a, Murat Kılıç a, Ersan Pütün b, * a Anadolu Üniversitesi, Mühendislik Fakültesi, Kimya Mühendisliği Bölümü,

Detaylı

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ

PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ PSM 11 PEM YAKIT HÜCRELERİNİN YAPAY SİNİR AĞLARI İLE MODELLENMESİ U. Özveren 2, S. Dinçer 1 1 Yıldız Teknik Üniversitesi, Kimya Müh. Bölümü, Davutpaşa Kampüsü, 34210 Esenler / İstanbul e-posta: dincer@yildiz.edu.tr

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması

Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması Kaotik Tabanlı Diferansiyel (Farksal) Gelişim Algoritması 1 Mehmet Eser * 1 Uğur Yüzgeç 1 Bilecik Şeyh Edebali Üniversitesi, Bilgisayar Mühendisliği Bölümü, 111, Gülümbe, Bilecik 1. Giriş Abstract Differential

Detaylı

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI

ERCİYES ÜNİVERSİTESİ KİMYA ANABİLİM DALI İlaç Tasarımında Yeni Yazılımların Geliştirilmesi: Elektron Konformasyonel-Genetik Algoritma Metodu ile Triaminotriazin Bileşiklerinde Farmakofor Belirlenmesi ve Nicel Biyoaktivite Hesabı; ERCİYES ÜNİVERSİTESİ

Detaylı

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR

CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR CETP KOMPOZİTLERİN DELİNMELERİNDEKİ İTME KUVVETİNİN ANFIS İLE MODELLENMESİ MURAT KOYUNBAKAN ALİ ÜNÜVAR OKAN DEMİR Çalışmanın amacı. SUNUM PLANI Çalışmanın önemi. Deney numunelerinin üretimi ve özellikleri.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

RM26 KOLEMANİTİN CO 2 VE SO 2 İLE DOYURULMUŞ SULU ÇÖZELTİLERDEKİ ÇÖZÜNÜRLÜĞÜNÜN OPTİMİZASYONU

RM26 KOLEMANİTİN CO 2 VE SO 2 İLE DOYURULMUŞ SULU ÇÖZELTİLERDEKİ ÇÖZÜNÜRLÜĞÜNÜN OPTİMİZASYONU Yedinci Ulusal Kimya Mühendisliği Kongresi, 5-8 Eylül 006, Anadolu Üniversitesi, Eskişehir RM6 KOLEMANİTİN CO VE SO İLE DOYURULMUŞ SULU ÇÖZELTİLERDEKİ ÇÖZÜNÜRLÜĞÜNÜN OPTİMİZASYONU ZAFER EKİNCİ, ENES ŞAYAN,

Detaylı

Derece Bölüm/Program Üniversite Yıl

Derece Bölüm/Program Üniversite Yıl DR. ALI S. NAZLIPINAR Dumlupınar Üniversitesi, Fen Ed. Fakültesi Matematik Bölümü, Kütahya, TÜRKİYE ali.nazlipinar@dpu.edu.tr Tel: +90 274 2652031 /3065 (Dahili) Öğrenim Durumu Derece Bölüm/Program Üniversite

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

FİZ 181 03 FİZ 181 04 FİZ 181 0301 FİZ 181 0401 İNG 111 İNG 112 03 İNG 111 İNG 112 03 FİZ 184 04 FİZ 184 03 BİL 134 03 MZ-4 FİZ 184 04 KİM 151 03

FİZ 181 03 FİZ 181 04 FİZ 181 0301 FİZ 181 0401 İNG 111 İNG 112 03 İNG 111 İNG 112 03 FİZ 184 04 FİZ 184 03 BİL 134 03 MZ-4 FİZ 184 04 KİM 151 03 YAZILIM MÜHENDİSLİĞİ TÜRKÇE BÖLÜMÜ HAFTALIK DERS PROGRAMI 1.SINIF Pazartesi Salı Çarşamba Perşembe Cuma BİL 133 01 BİL 134 01 MAT 181 03 MAT 182 03 MAT 181 04 MAT 182 04 FİZ 181 03 FİZ 181 04 FİZ 181 03

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı BİM618 Evrimsel Algoritmalar Öğretim Üyesi Prof. Dr. Derviş Karaboğa Görüşme Saatleri 8.00-17.00 E posta: karaboga@erciyes.edu.tr http://abis.erciyes.edu.tr/sorgu.aspx?sorgu=236 Erciyes Üniversitesi, Mühendislik

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

KISMİ DİFERANSİYEL DENKLEMLERİN PARALEL ÇÖZÜM YÖNTEMLERİ

KISMİ DİFERANSİYEL DENKLEMLERİN PARALEL ÇÖZÜM YÖNTEMLERİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ YIL PAMUKKALE UNIVERSITY ENGINEERING COLLEGE CİLT MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ SAYI JOURNAL OF ENGINEERING SCIENCES SAYFA : 998 : : 3 : 837-8 KISMİ

Detaylı

ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI

ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI ÜÇ BİLEŞENLİ REAKSİYON SİSTEMLERİ İÇEREN REAKTİF DİSTİLASYON KOLONU VE REAKTÖR/DİSTİLASYON KOLONU PROSESLERİNİN NİCELİKSEL KARŞILAŞTIRMASI Denizhan YILMAZ, Saliha YILMAZ, Eda HOŞGÖR, Devrim B. KAYMAK *

Detaylı

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3)

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3) Doktora Programı Ders İçerikleri: SHA 600 Seminer (0 2 0) Öğrencilerin ders aşamasında; tez danışmanı ve seminer dersi sorumlusu öğretim elemanının ortak görüşü ile tespit edilen bir konuyu hazırlayarak

Detaylı

VALF NOKTA ETKİLİ KONVEKS OLMAYAN EKONOMİK GÜÇ DAĞITIM PROBLEMLERİNİN HARMONİ ARAMA ALGORİTMASIYLA ÇÖZÜMÜ

VALF NOKTA ETKİLİ KONVEKS OLMAYAN EKONOMİK GÜÇ DAĞITIM PROBLEMLERİNİN HARMONİ ARAMA ALGORİTMASIYLA ÇÖZÜMÜ VALF NOKTA ETKİLİ KONVEKS OLMAYAN EKONOMİK GÜÇ DAĞITIM PROBLEMLERİNİN HARMONİ ARAMA ALGORİTMASIYLA ÇÖZÜMÜ Serdar ÖZYÖN 1,*, Celal YAŞAR 2, Hasan TEMURTAŞ 3 1 Dumlupınar Üniversitesi, Mühendislik Fakültesi,

Detaylı

COMPUTER AIDED OPTIMISATION OF MACHINING PARAMETERS IN MILLING OPERATIONS

COMPUTER AIDED OPTIMISATION OF MACHINING PARAMETERS IN MILLING OPERATIONS Niğde Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 7 Sayı1-2, (2003), 1-14 FREZELEME İŞLEMLERİNDE EKONOMİK İŞLEME ŞARTLARININ OPTİMİZASYONU Metin ZEYVELİ*, Mahmut GÜLESİN** *ZKÜ Karabük Teknik Eğitim

Detaylı

ÇOK BOYUTLU KISITLI SAYISAL OPTİMİZASYONDA MATLAB OPTİMİZASYON TOOLBOX VE GENETİK ALGORİTMA KARŞILAŞTIRMASI:TOPRAKLAMA AĞI TASARIMI UYGULAMASI

ÇOK BOYUTLU KISITLI SAYISAL OPTİMİZASYONDA MATLAB OPTİMİZASYON TOOLBOX VE GENETİK ALGORİTMA KARŞILAŞTIRMASI:TOPRAKLAMA AĞI TASARIMI UYGULAMASI 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS 09), 13-15 Mayıs 2009, Karabük, Türkiye ÇOK BOYUTLU KISITLI SAYISAL OPTİMİZASYONDA MATLAB OPTİMİZASYON TOOLBOX VE GENETİK ALGORİTMA KARŞILAŞTIRMASI:TOPRAKLAMA

Detaylı

İNŞAAT MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI AKIŞ DİYAGRAMI

İNŞAAT MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI AKIŞ DİYAGRAMI İNŞAAT MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI AKIŞ DİYAGRAMI Programa Kabul Lisansüstü Danışmanı nın belirlenmesi Kayıt Tez Danışmanı Tez Konusu 1. Yarıyıl Ders 2. Yarıyıl Ders Tez Danışmanı ve Tez Konusu

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

2016 - YAZ ÖĞRETİMİ İLE İLGİLİ ÖNEMLİ DUYURU

2016 - YAZ ÖĞRETİMİ İLE İLGİLİ ÖNEMLİ DUYURU FİZ 101 Fizik I FİZ 102 Fizik II FİZ 224 Modern Fizik I MATE 111 Matematik I MATE 112 Matematik II MATE 213 Lineer Cebir MATH 111 Calculus I MATH 112 Calculus II MATH 213 Linear Algebra FEN - EDEBİYAT

Detaylı

SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ. Öğr. Gör. Mehmet Fatih Tefek Doç. Dr.

SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ. Öğr. Gör. Mehmet Fatih Tefek Doç. Dr. SEZGİSEL ALGORİTMA KULLANILARAK RÜZGÂR ÇİFTLİKLERİNİN GÜÇ SİSTEMİNE ETKİSİNİN İNCELENMESİ Öğr. Gör. Mehmet Fatih Tefek Doç. Dr. Harun Uğuz * Rüzgâr kaynaklı enerji üretimi, yenilenebilir enerji kaynakları

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

ÖZGEÇMİŞ. Unvan Bölüm Üniversite Yıl Yrd. Doç. Dr. Yazılım Mühendisliği Bahçeşehir Üniversitesi 2007

ÖZGEÇMİŞ. Unvan Bölüm Üniversite Yıl Yrd. Doç. Dr. Yazılım Mühendisliği Bahçeşehir Üniversitesi 2007 1. Adı Soyadı: Mehmet Alper TUNGA 2. Doğum Tarihi: 11/06/1975 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: ÖZGEÇMİŞ Derece Bölüm/Program Üniversite Yıl Lisans Matematik Mühendisliği İstanbul Teknik Üniversitesi

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak GAMS Giriş GAMS (The General Algebraic Modeling System) matematiksel proglamlama ve optimizasyon için tasarlanan yüksek seviyeli bir dildir. Giriş dosyası:

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı : Ömer AKGÖBEK Doğum Tarihi : 01.01.1970 Unvanı : Yardımcı Doçent Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Endüstri Mühendisliği İstanbul

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

Ardışık Doğrusal Programlama ile En Hafif Kafes Yapı Tasarımı Least Weight Design of Truss Structures By Sequential Linear Programming

Ardışık Doğrusal Programlama ile En Hafif Kafes Yapı Tasarımı Least Weight Design of Truss Structures By Sequential Linear Programming Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Cilt 17, Sayı 1, 2011, Sayfa 1-8 Ardışık Doğrusal Programlama ile En Hafif Kafes Yapı Tasarımı Least Weight Design of Truss Structures By Sequential

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 ÇEVRE (GÖZ) AKIMLARI YÖNTEMİ Arş. Gör. Sümeyye BAYRAKDAR Arş. Gör.

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatistikciler.org İstatistikçiler Dergisi (28) 6-22 İstatistikçiler Dergisi COX REGRESYON MODELİ VE AKCİĞER KANSERİ VERİLERİ İLE BİR UYGULAMA Durdu KARASOY Hacettepe Üniversitesi Fen Fakültesi İstatistik

Detaylı

Küre Üzerinde 3 Boyutlu Gezgin Satıcı Problemi Çözümünde Parçacık Sürü Optimizasyonu Uygulaması

Küre Üzerinde 3 Boyutlu Gezgin Satıcı Problemi Çözümünde Parçacık Sürü Optimizasyonu Uygulaması Küre Üzerinde 3 Boyutlu Gezgin Satıcı Problemi Çözümünde Parçacık Sürü Optimizasyonu Uygulaması Hüseyin Eldem 1, Erkan Ülker 2 1 Karamanoğlu Mehmetbey Üniversitesi, Bilgisayar Teknolojileri Bölümü, Karaman

Detaylı

MAKİNE MÜHENDİSLİĞİ MÜFREDATI

MAKİNE MÜHENDİSLİĞİ MÜFREDATI SINIF-DÖNEM : 1. Sınıf - Güz DERS KODU MATH 101 PHYS 101 CHEM 101 MCE 101 MCE 103 ENG 101 TDL 101 Matematik I Calculus I Z 4 0 6 Fizik I Physics I Z 3 2 6 Genel Kimya General Chemistry Z 3 0 5 Makina Mühendisliğine

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 22.06.2015 17:00-18:30 C 012, C 013 Scientific English II Mat. 1. Grup Yrd.Doç.Dr.N.BAŞ 23.06.2015 17:00-18:30 C 012, C 013 Analytic Geometry

Detaylı

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU

EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU EKSPONANSİYEL AĞIRLIKLI PARÇACIK SÜRÜ ALGORİTMASI İLE TORNALAMA İŞLEMLERİNDE KESME KOŞULLARININ OPTİMİZASYONU *Yasin CANTAŞ 1, Burhanettin DURMUŞ 2 1 Sakarya Üniversitesi, Teknoloji Fakültesi, Elektrik-Elektronik

Detaylı

1.SINIF 1. DÖNEM DERS MÜFREDATI. (9) TEORİ/UYG. (SAAT) MATH 101 Matematik I Calculus I Zorunlu 4-6 PHYS 101 Fizik I Physics I Zorunlu 3 2 6 ECE 101

1.SINIF 1. DÖNEM DERS MÜFREDATI. (9) TEORİ/UYG. (SAAT) MATH 101 Matematik I Calculus I Zorunlu 4-6 PHYS 101 Fizik I Physics I Zorunlu 3 2 6 ECE 101 1.SINIF 1. DÖNEM MÜFREDATI (3)SINIFI : 1 MATH 101 Matematik I Calculus I Zorunlu 4-6 PHYS 101 Fizik I Physics I Zorunlu 3 2 6 ECE 101 Elektronik ve Haberleşme Introduction to Electronics and Mühendisliğine

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

İki-Seviyeli SHEPWM İnverter için Genetik Algoritma Kullanılarak Anahtarlama Açılarının Belirlenmesi

İki-Seviyeli SHEPWM İnverter için Genetik Algoritma Kullanılarak Anahtarlama Açılarının Belirlenmesi Fırat Üniv. Mühendislik Bilimleri Dergisi Firat Univ. Journal of Engineering 27(1), 35-42, 2015 27(1), 35-42, 2015 İki-Seviyeli SHEPWM İnverter için Genetik Algoritma Kullanılarak Anahtarlama Açılarının

Detaylı

ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ

ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ Mete ÇUBUKÇU1 mecubuk@hotmail.com Doç. Dr. Aydoğan ÖZDAMAR2 aozdamar@bornova.ege.edu.tr ÖZET 1 Ege Üniversitesi

Detaylı

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ YÜKSEK LİSANS TEZİ Hakan TEMİZ Danışman Doç. Dr. Mustafa Kemal YILDIZ MATEMATİK ANABİLİM DALI Haziran, 2014 AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Kabul Edilmiş Araştırma Makalesi (Düzenlenmemiş Sürüm) Accepted Research Article (Uncorrected Version)

Detaylı

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler

Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Tedarik Zinciri Yönetiminde Yapay Zeka Teknikler Doç.Dr.Mehmet Hakan Satman mhsatman@istanbul.edu.tr İstanbul Üniversitesi 2014.10.22 Doç.Dr.Mehmet Hakan Satmanmhsatman@istanbul.edu.tr Tedarik Zinciri

Detaylı

Problemlerine Geliştirilmiş Parçacık

Problemlerine Geliştirilmiş Parçacık Çankaya University Journal of Science and Engineering Volume 9 (2012), No. 2, 89 106 Yasak İşletim Bölgeli Ekonomik Güç Dağıtım Problemlerine Geliştirilmiş Parçacık Sürü Optimizasyonu Yaklaşımı Serdar

Detaylı

Ders Kodu Dersin Adı Dersin Ġntibak Durumu

Ders Kodu Dersin Adı Dersin Ġntibak Durumu ENDÜSTRĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ ĠNTĠBAK ÇĠZELGESĠ 2010-2011 1.SINIF / GÜZ DÖNEMĠ IUE100 Akademik ve Sosyal Oryantasyon CS 115 Programlamaya Giriş I Bu ders 1. Sınıf güz döneminden 2. Sınıf güz

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler 1104001062003 Soyut Matematik

Detaylı

Sezgisel Algoritmalarla Hareket Denetimi: Servo Pres Uygulaması

Sezgisel Algoritmalarla Hareket Denetimi: Servo Pres Uygulaması Sezgisel Algoritmalarla Hareket Denetimi: Servo Pres Uygulaması R. Halıcıoğlu * L. C. Dülger A. T. Bozdana Gaziantep Üniversitesi Gaziantep Üniversitesi Gaziantep Üniversitesi Gaziantep Gaziantep Gaziantep

Detaylı

OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ

OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ OSPF PROTOKOLÜNÜ KULLANAN ROUTER LARIN MALİYET BİLGİSİNİN BULANIK MANTIKLA BELİRLENMESİ Resul KARA Elektronik ve Bilgisayar Eğitimi Bölümü Teknik Eğitim Fakültesi Abant İzzet Baysal Üniversitesi, 81100,

Detaylı

TOPRAKTA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-400.2014.

TOPRAKTA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-400.2014. TOPRAKTA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI Rapor No: KAR-G3RM-400.2014.02 Koordinatör: Dr. Fatma AKÇADAĞ 24 Aralık 2014 Gebze/KOCAELİ

Detaylı