Bar Diyagramı ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 3 Minitab da Grafiksel Analiz-III. Bar Diyagramı İçin Checklist.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bar Diyagramı ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 3 Minitab da Grafiksel Analiz-III. Bar Diyagramı İçin Checklist."

Transkript

1 ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 3 Minitab da Grafiksel Analiz-III (Bar-Pareto-Neden Sonuç-Saçılım Diagramları) Sayıları, ortalamaları veya diğer özet istatistiksileri kıyaslamak için grupları yada kategorileri temsil eden barları kullanabilirsiniz. Barların yüksekliği ya sayıları, ya ortalama, standart sapma vb. istatistikleri yada bir grubun özet değerini gösterir. Yukarıdaki örnekte barlar, bir otomobil parçası üzerindeki boya kusur nedenlerinin sayısını göstermektedir. İçin Checklist Özet veri yada ham veri kullan Özet veri yada ham veri için diyagramı oluşturabilirsiniz. Özet veriler için her bir gözlem bir kategoriyi özetler. Özet veri bir sayı yada örneğin ortalama gibi hesaplanmış bir değer olabilir. Ham veri için her bir gözlem, bir olay yada bir hata olabilir. Tüm ham veri, her bir gözlem ayrı bir satırda olacak şekilde bir sütuna yazılır. Rassal Örneklem İstatistikte bir popülasyon hakkında çıkarımda bulunmak yada sonuçları genelleştirmek için rassal örneklemler kullanılır. Eğer veriler rassal olarak toplanmazsa, sonuçlar populasyonu temsil etmeyebilir. Bir otomotiv parçası tedarikçisinde çalışan kalite mühendisi boya çatlakları nedeniyle reddedilen kapı panelleri sayısını düşürmek istemektedir. Mühendis, ön araştırma için boya çatlağı sayılarını karşılaştırmak amacıyla bar diyagramı oluşturmuştur. Paintflawsbyshift.MTW dosyasındaki örneklem verisini aç. GRAPH > Bar Chart > Counts of Unique Values > Simple Categorical variable, enter Flaws. Click OK. 1

2 Bir elektronik tasarım mühendisi ortam sıcaklığının ve 3 farklı siper ayna tablasının osiloskop tüpünün ışık çıktısı üzerindeki etkisini incelemektedir. Ön araştırmanın bir parçası olarak mühendis çeşitli ısı ve tabla tipi kombinasyonlarının ışık çıktılarını kıyaslamak için bar diyagramı oluşturmuştur. Bu bar diyagramı, boya kabarması en yaygın boya kusur nedenidir. En az boya çatlağı nedeni leke ve diğer nedenlerdir. Örneklem verisi, Lightoutput.MTW. GRAPH > Bar Chart > Function of a variable > Single Y Variable: Clustered In Function, select Mean. In Continuous variable, enter LightOutput. In Categorical variable, enter Temperature and GlassType. Click OK. Bir şemsiye fabrikasında, şemsiye sapları ölçülür ve eğer spesifikasyonları sağlamıyorsa montajdan çıkarılır. Üç vardiyanın her birinde 3 presin hangisinde ne kadar hatalı şemsiye sapı üretildiği günlük olarak raporlanır. Kalite mühendisi pres ve vardiya arasındaki ilişkiyi belirlemek istemektedir. Başlangıç araştırması olarak mühendis her bir makine ve vardiyada reddedilen şemsiye sapı sayısını kıyaslamak için bir bar diyagramı oluşturmuştur. Örneklem verisi, UmbrellaHandles.MTW. En yüksek ışık çıktısı üreten sıcaklık çoğunlukla 150 derecedir. Tabla tipleri arasındaki ışık çıktısı farkı az olmasına karşın, en yüksek ışık çıktısını çoğunlukla 1. tip tabla tipi üretir. Grafiğin tümüne baktığımızda, en yüksek ışık çıktısı 150 derece sıcakla ve 1. tip tablada üretilir. GRAPH > Bar Chart > Summarized Data > Data in a Two-Way Table > Clustered In Summary variables, enter 1st shift, 2nd shift, and 3rd shift. In Column of row labels, enter Machine ID. Click OK. 2

3 Pareto Diyagramı Pareto diyagramı, çizilen değerlerin büyükten küçüğe doğru sıralandığı bar diyagramlarının özel bir tipidir. Pareto diyagramları en sık karşılaşılan hataları, hataların en yaygın nedenlerini veya en sık karşılaşılan müşteri şikâyetlerini belirlemek için kullanılır. En fazla reddedilen şemsiye ilk vardiyada 2. makine tarafından üretilmiştir. En düşük ise 3. vardiya ve 2. makinede üretilmiştir. Pareto diyagramı ismi, Vilfredo Pareto dan ve onun "80/20 kuralı prensibinden gelir. Buna göre zenginliğin % 80 i nüfusun % 20 si tarafından kontrol edilir; yada müşteri şikâyetlerinin % 80 i, müşterilerin % 20 si tarafından yapılır vb. Pareto Diyagramı Pareto Diyagramı Detergent.mtw dosyası 3

4 Pareto Diyagramı Pareto Diyagramı By variable in: line Neden Sonuç Diyagramı Öncelikle potansiyel nedenleri yaz. Neden Sonuç Diyagramı Tüm potansiyel nedenler i bir sayfada yazdiktan sonra Sütunlar birincil nedenleri içerir Birincil nedenlerin isimleri Ikincil seviye nedenleri girmek için 4

5 Neden Sonuç Diyagramı Pulse.mtw dosyası X variables bölümü icin X (yatay) eksende yer alacak veri sutunu; Y variables bolumu icinse Y (dikey) ekseninde yer alacak veri sutununu sec. Boy ve kilo arasındaki ilişkinin saçılım diyagramı ile değerlendirilmesi 5

6 Cars.mtw Cinsiyet bağlamında boy ve kilo arasındaki ilişkinin saçılım diyagramı ile değerlendirilmesi Fiyat (Y) ve Güç (X) arasındaki ilişkinin değerlendirilmesi 6

7 Reheat.mtw Dondurulmuş Gıda Üretimi Marginal Plots Cars.mtw 7

8 8

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II Tanımlayıcı İstatistikler

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II Tanımlayıcı İstatistikler ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Nokta Grafikleri Nokta grafikleri örnek veri dağılımlarını değerlendirmek ve karşılaştırmak için kullanılır. Bir nokta grafiği örneklem verilerini gruplandırır

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II. Nokta Grafikleri İçin Koşullar

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II. Nokta Grafikleri İçin Koşullar ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Nokta Grafikleri Nokta grafikleri örnek veri dağılımlarını değerlendirmek ve karşılaştırmak için kullanılır. Bir nokta grafiği örneklem verilerini gruplandırır

Detaylı

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Örnek Olay 1 (Sayfa 61) Ders 3 Minitab da Grafiksel Analiz-III Örnek Olaylar. Örnek Olay 1 (Sayfa 61)

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Örnek Olay 1 (Sayfa 61) Ders 3 Minitab da Grafiksel Analiz-III Örnek Olaylar. Örnek Olay 1 (Sayfa 61) ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 3 Minitab da Grafiksel Analiz-III Örnek Olaylar Örnek Olay 1 (Sayfa 61) Bir zeytinyağı üretim işletmesi şişe etiketleme süreci boyunca açığa çıkan hata

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) Data Editör iki arayüzden oluşur. 1. Data View 2. Variable

Detaylı

01.02.2013. Statistical Package for the Social Sciences

01.02.2013. Statistical Package for the Social Sciences Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat...

Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Hipotezlerin test edilip onaylanması için çeşitli istatistiksel testler kullanılmaktadır. Fakat... Her istatistik teknik her tür analize elverişli değildir. Modele veya hipoteze uygun test istatistiği

Detaylı

SPSS (Statistical Package for Social Sciences)

SPSS (Statistical Package for Social Sciences) SPSS (Statistical Package for Social Sciences) SPSS Data Editor: Microsoft Excel formatına benzer satır ve sütunlardan oluşan çalışma sayfası (*sav) SPSS Data Editör iki arayüzden oluşur. 1. Data View

Detaylı

Data View ve Variable View

Data View ve Variable View SPSS i çalıştırma 0 SPSS İlk Açılışı 1 Data View ve Variable View 2 Değişken Tanımlama - 1 3 Değişken Tanımlama - 2 4 Boş Veri Sayfası 5 Veri Girişi - 1 6 Veri Girişi - 2 7 Dosya Kaydetme 1 2 3 8 File

Detaylı

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME

4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME 4. BÖLÜM: REGRESYON ANALİZİNİ KULLANMAYI ÖĞRENME Bu bölümde; Bir grup değişkenin çalışma sayfası görüntüsünü görüntüleme Bir grup değişkenin tanımlayıcı istatistiklerini görüntüleme Bir grup içerisindeki

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 2 AÇIKLAYICI (BETİMLEYİCİ) İSTATİSTİK Yrd. Doç. Dr. Fatih TOSUNOĞLU 1-Açıklayıcı (Betimleyici) İstatistik İnceleme sonucu elde edilen ham verilerin istatistiksel

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır:

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU ÖDEV: Aşağıda verilen 100 öğrenciye ait gözlem değerlerinin aritmetik ortalama, standart sapma, ortanca ve tepe değerini bulunuz. (sınıf aralığını 5 alınız) 155 160 164 165 168

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

3/29/2011. Create PDF files without this message by purchasing novapdf printer (http://www.novapdf.com)

3/29/2011. Create PDF files without this message by purchasing novapdf printer (http://www.novapdf.com) Problem Çözme Teknikleri: Pareto Prensibi, Tabakalama Analizi, Çeteleler Prof. Dr. Burak BİRGÖREN Endüstri Mühendisliği Bölümü - Kırıkkale Üniversitesi Pareto Prensibi ve Diyagramı Wilfredo Pareto: İtalyan

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS DERS NOTLARI I 5 Nisan 2012 Aşağıdaki analizlerde http://yunus.hacettepe.edu.tr/~tonta/courses/spring2010/bby208/bby208

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

NİTELİKSEL KONTROL GRAFİKLERİ

NİTELİKSEL KONTROL GRAFİKLERİ NİTELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Ölçülemeyen ancak hatalı / hatasız, geçer / geçmez, tekstil sektöründe leke sayısı, dokuma kaçağı vb nin analiz edilmesi için oluşturulan kontrol grafikleridir.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 2: Prof. Dr. İrfan KAYMAZ Tanım İnceleme sonucu elde edilen ham verilerin istatistiksel yöntemler kullanılarak özetlenmesi açıklayıcı istatistiği konusudur. Açıklayıcı istatistikte

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Kök Neden Belirlemede Excel Destekli Pareto Analizi ve İyileştirme Alanının Hesaplanması

Kök Neden Belirlemede Excel Destekli Pareto Analizi ve İyileştirme Alanının Hesaplanması 326 Kök Neden Belirlemede Excel Destekli Pareto Analizi ve İyileştirme Alanının Hesaplanması 1 Prof.Dr. Yılmaz ÖZKAN and 2 Abdulkadir ALTINSOY * 1 Prof.Dr. Faculty of Political Science, Sakarya University,

Detaylı

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY GÜVEN ARALIKLARI ALISTIRMA SORULARI 2012 Aras.Gör. Efe SARIBAY 1) Bir bankada bir gün içerisinde açılan vadeli TL. hesaplarının ortalamasını incelemek amacıyla yapılan bir araştırmada 12 günlük yapılan

Detaylı

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2

BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 1 BÖLÜM 8 BİLGİSAYAR UYGULAMALARI - 2 Bu bölümde bir veri seti üzerinde betimsel istatistiklerin kestiriminde SPSS paket programının kullanımı açıklanmaktadır. Açıklamalar bir örnek üzerinde hareketle

Detaylı

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi

5.HAFTA. Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi 5.HAFTA Yrd. Doç. Dr. Sedat ŞEN Harran Üniversitesi Bu sunumda kullanılan verimizde bulunan değişkenler: İsim CİNSİYET KİTAP YAŞ VİZE VİZE2 FİNAL DÖNEMSONUNOTU Bu dersimizde daha önce hesapladığımız basit

Detaylı

Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir.

Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir. Veri Madenciliği Çok fazla bilgiden gizli kalmış örüntüleri ortaya çıkarma sürecine Veri Madenciliği denir. istatistik + makine öğrenmesi + yapay zeka = veri madenciliği Veri madenciliği süreçleri CRISP-DM

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi

3. Ders Çok Boyutlu (Değişkenli) Veri Analizi 3. Ders Çok Boyutlu (Değişkenli) Veri Analizi Veri: Boy ölçüleri (boy-kol-omuz-kalça-bacak uzunluğu) Ölçü birimi: cm boy kol omuz kalca bacak 18 77 98 12 11 163 66 72 9 97 183 73 99 113 91 16 86 7 95 12

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

İSTATİSTİK SPSS UYGULAMA

İSTATİSTİK SPSS UYGULAMA İSTATİSTİK SPSS UYGULAMA Yrd. Doç. Dr. H. İbrahim CEBECİ SPSS UYGULAMA Bu bölümde SPSS veri girişi, Basit grafik hazırlama, örneklem çekimi ve tanımlayıcı istatistiksel analizler hakkında SPSS uygulamaları

Detaylı

GRAFİKLER WORD PROGRAMINDA GRAFİK OLUŞTURMA DERS KİTABI. HAZIRLAYAN Mehmet KUZU

GRAFİKLER WORD PROGRAMINDA GRAFİK OLUŞTURMA DERS KİTABI. HAZIRLAYAN Mehmet KUZU GRAFİKLER WORD PROGRAMINDA GRAFİK OLUŞTURMA DERS KİTABI HAZIRLAYAN Mehmet KUZU GRAFİKLER GRAFİKLER Grafik Nedir? Grafik nasıl oluşturulur? Word de ne tür grafikler oluşturulur? Grafik Oluşturma? Grafikler,

Detaylı

UYGULAMALI EKONOMETRİ I. Veri Analizi

UYGULAMALI EKONOMETRİ I. Veri Analizi UYGULAMALI EKONOMETRİ I Veri Analizi Temel Veri Analizi İstatistiksel yada ekonometrik araçları kullanmadan önce veriyi hissetmek için ön analiz oldukça önemlidir. Bu süreç regresyon analizi ve sonuçların

Detaylı

İSG PROJE YÖNETİMİ ve ACİL DURUM PLÂNI

İSG PROJE YÖNETİMİ ve ACİL DURUM PLÂNI 29 İSG011 1/7 ve ACİL DURUM PLÂNI AMAÇ: Kazaların kök nedenlerinin araştırılması için Balık kılçığı metodu ile bulma yönteminin uygulaması 20 Slayt II BÖLÜM BALIK KILÇIĞI METODU ve UYGULAMALARI 2016 Güz

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

PARETO Analizi. İş Sağlığı ve Güvenliği Konularında. PARETO Analizi. Uygulamaları. Nurdoğan İNCİ Öğretim Görevlisi Elektrik Mühendisi

PARETO Analizi. İş Sağlığı ve Güvenliği Konularında. PARETO Analizi. Uygulamaları. Nurdoğan İNCİ Öğretim Görevlisi Elektrik Mühendisi İş Sağlığı ve Güvenliği Konularında Uygulamaları Nurdoğan İNCİ Öğretim Görevlisi Elektrik Mühendisi 1 Pareto analizi, değişik sayıdaki önemli nedenleri daha az önemde olan nedenlerden ayırmak için kullanılan

Detaylı

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi

Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Sıralı Verilerle Yapılan Testler Mann-Whitney U Testi Parametrik testlerin, normal dağılım varsayımına dayandığını, normal dağılıma sahip olmayan veriler üzerinde kullanıldığında, elde edilen sonuçların

Detaylı

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme

www.mehmetaksarayli.com www.mehmetaksarayli.com 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Grafikle gösterme VERİLERİN TABLO VE GRAFİKLARLE GÖSTERİLMESİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayli@deu.edu.tr Bölümün Amaçları Bu Bölümü tamamladıktan sonra neleri yapabileceksiniz:

Detaylı

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Grafikler Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Hangi Grafik?Neden? 1. Veri çeşidine

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Telekom da çalışan bir operatör A ve B şehirleri arasında yapılan telefon görüşmelerinin ortalamasının 6 dakikadan daha fazla sürdüğünü iddia

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III. Yrd. Doç. Dr. Pembe GÜÇLÜ

İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III. Yrd. Doç. Dr. Pembe GÜÇLÜ İŞLETMECİLER İÇİN İSTATİSTİK II UYGULAMA III Yrd. Doç. Dr. Pembe GÜÇLÜ 2 Yrd. Doç.Dr. Pembe GÜÇLÜ SORU 1. Toplu sözleşme görüşmeleri sırasında bir şirket, yeni bir teşvik planının, üretimdeki bütün işçiler

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9

EME 3105 SİSTEM SİMÜLASYONU. Girdi Analizi Prosedürü. Dağılıma Uyum Testleri. Dağılıma Uyumun Kontrol Edilmesi. Girdi Analizi-II Ders 9 EME 3105 1 Girdi Analizi Prosedürü SİSTEM SİMÜLASYONU Modellenecek sistemi (prosesi) dokümante et Veri toplamak için bir plan geliştir Veri topla Verilerin grafiksel ve istatistiksel analizini yap Girdi

Detaylı

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,

Detaylı

Aşağıdaki tabloyu inceleyin. Sorgulama işlemlerini bu tabloya göre yapacağız.

Aşağıdaki tabloyu inceleyin. Sorgulama işlemlerini bu tabloya göre yapacağız. Bu Derste Öğrenecekleriniz: 1- Basit Sorgulamalar a. Tablodan tüm alanları sorgulama b. Tablodan alanları belirterek sorgulama c. Tekrarlı satırları önleme d. Belirli sayıda veya oranda sorgulama yapma

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

1. MİCROSOFT EXCEL 2010 A GİRİŞ

1. MİCROSOFT EXCEL 2010 A GİRİŞ 1. MİCROSOFT EXCEL 2010 A GİRİŞ 1.1. Microsoft Excel Penceresi ve Temel Kavramlar Excel, Microsoft firması tarafından yazılmış elektronik hesaplama, tablolama ve grafik programıdır. Excel de çalışılan

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

Probability Density Function (PDF, Sürekli fonksiyon)

Probability Density Function (PDF, Sürekli fonksiyon) Varyans Bir serideki her elemanın ortalamadan farklarının karelerinin toplamının, serideki eleman sayısına bölümü ile elde edilir. Standart Sapma Varyansın kareköküdür. Eğer birçok veri ortalamaya yakın

Detaylı

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA )

REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) REPEATED MEASURES ANOVA (Tekrarlı Ölçümler ANOVA ) 6.SUNUM 1 Tekrarlı Ölçümler ANOVA Repeated Measures Design: Yinelenmis Ölçüler Tasarımı ya da tekrarlanmış ölçüler tasarımı olarak adlandırılabilir. Repeated

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

MICROSOFT WORD 2002. Şekil 1 TABLO HAZIRLAMA : Word 2002/II TAB AYARLARI :

MICROSOFT WORD 2002. Şekil 1 TABLO HAZIRLAMA : Word 2002/II TAB AYARLARI : MICROSOFT WORD 2002 TAB AYARLARI : Yazımı belli bir sütundan başlatmak için kullanılır. Tab (durak) ayarı yapıldıktan sonra her Tab tuşuna basıldığında eklenti noktası yerleştirilen tab ayarlarına gelir.

Detaylı

13 Aralık 2007. Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL. Đlgili Modül/ler : Raporlar. Kullanıcı Tanımlı Raporlar Bölümünden Yapabildiklerimiz

13 Aralık 2007. Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL. Đlgili Modül/ler : Raporlar. Kullanıcı Tanımlı Raporlar Bölümünden Yapabildiklerimiz 13 Aralık 2007 Đlgili Versiyon/lar : ETA:SQL, ETA:V.8-SQL Đlgili Modül/ler : Raporlar KULLANICI TANIMLI RAPORLAR Kullanıcı Tanımlı Raporlar Bölümünden Yapabildiklerimiz Kendi isteklerinize özel rapor tasarımları

Detaylı

3.SUNUM. Yrd. Doç. Dr. Sedat Şen

3.SUNUM. Yrd. Doç. Dr. Sedat Şen 3.SUNUM 1 Daha önce gösterdiğimiz gibi SPSS e manual olarak (elle) veri girişi yapabildiğimiz gibi daha önce başka bir dosyaya girilmiş olan bir veriyi de SPSS e file>open >data seçeneklerini kullanarak

Detaylı

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir.

Eğer Veri Çözümleme paketi Araçlar menüsünde görünmüyor ise yüklenmesi gerekir. Bölüm BİLGİSAYAR DESTEKLİ İSTATİSTİK EXCEL DESTEKLİ İSTATİSTİK Excel de istatistik hesaplar; Genel Yöntem ve Excel Ġçerikli Çözümler olmak üzere iki esasa dayanabilir. Genel Yöntem; Excel in matematiksel

Detaylı

veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi, değerlendirilmesi ve alternatif çözümler

veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi, değerlendirilmesi ve alternatif çözümler 911-00-TA 004 10.12.22 1/5 1.Amaç Bu talimatin amacı; ürün tedarikinden başlayarak müşteri şikayetlerine kadar olan tüm aşamalarda sağlıklı veriler elde edebilmek için bilgilerin toplanması, düzenlenmesi,

Detaylı

VeritabanıYönetimi Varlık İlişki Diyagramları. Yrd. Doç. Dr. Tuba KURBAN

VeritabanıYönetimi Varlık İlişki Diyagramları. Yrd. Doç. Dr. Tuba KURBAN VeritabanıYönetimi Varlık İlişki Diyagramları Yrd. Doç. Dr. Tuba KURBAN VeritabanıTasarımı - Projenin tasarım aşamasında veritabanı tasarımı çok iyi yapılmalıdır. Daha sonra yapılacak değişiklikler sorunlar

Detaylı

BLG 1306 Temel Bilgisayar Programlama

BLG 1306 Temel Bilgisayar Programlama BLG 1306 Temel Bilgisayar Programlama Öğr. Grv. M. Mustafa BAHŞI WEB : mustafabahsi.cbu.edu.tr E-MAIL : mustafa.bahsi@cbu.edu.tr Bilgisayar ile Problem Çözüm Aşamaları Programlama Problem 1- Problemin

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 8 Prof. Dr. Ali ŞEN İki Populasyonun Karşılaştırılması: Eşleştirilmiş Örnekler için Wilcoxon İşaretli Mertebe Testi -BÜYÜK ÖRNEK Bağımsız populasyonlara uygulanan

Detaylı

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi

İstatistiksel Süreç Kontrolu. Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolu Doç.Dr.Nihal ERGİNEL Anadolu Üniversitesi İstatistiksel Süreç Kontrolü Bir üretim/ hizmet sürecinin kontrol altında olup olmadığına karar vermek için kullanılan teknikler bütünüdür.

Detaylı

www.deltaenerjisistemleri.com.tr

www.deltaenerjisistemleri.com.tr www.deltaenerjisistemleri.com.tr Türkiye Merkezi: Güneş Enerji Sistemleri Güneş Enerji Sistemleri Kaynak: YEGM Bölge Topl. Gün Enerji (kwhm²-yıl) Güneşl. Süresi (saat/yıl) G.Doğu Anadolu 1460 2993 Akdeniz

Detaylı

M i c r o s o f t E X C E L ÇALIŞMA SORULARI

M i c r o s o f t E X C E L ÇALIŞMA SORULARI M i c r o s o f t E X C E L ÇALIŞMA SORULARI 1. Elektronik tablolama veya hesaplama programı olarak adlandırılan uygulama aşağıdakilerden hangisidir? a. Microsoft Windows b. Microsoft Excel c. Microsoft

Detaylı

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler.

GRAFİKLER. Grafikler gözlem sonuçlarının daha iyi anlaşılmasını sağlar ve değişik şekillerde sınıflandırılabilirler. GRAFİKLER Verilerin matematiksel temellere sahip şekiller olarak gösterilmelerine grafik adı verilir. Araştırmalarda elde edilen veriler genellikle düzensiz ham verilerdir. Grafikler gözlem sonuçlarının

Detaylı

CELAL BAYAR ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ STAJ YÖNERGESİ

CELAL BAYAR ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ STAJ YÖNERGESİ Bu staj yönergesi Celal Bayar Üniversitesi Endüstri Mühendisliği öğrencilerinin Üretim ve Yönetim stajları sırasında yapmaları gereken çalışmaları içermektedir. Staj, öğrencinin öğrenim hayatı boyunca

Detaylı

Veritabanı ve Yönetim Sistemleri

Veritabanı ve Yönetim Sistemleri Veritabanı ve Yönetim Sistemleri Öğr. Gör. M. Mutlu YAPICI Ankara Üniversitesi Elmadağ Meslek Yüksekokulu Ders İzlencesi Hafta Modüller/İçerik/Konular 1. Hafta Temel Kavramlar 2. Hafta Veri Modelleri 3.

Detaylı

Chapter 24: Frezeleme. DeGarmo s Materials and Processes in Manufacturing

Chapter 24: Frezeleme. DeGarmo s Materials and Processes in Manufacturing Chapter 24: Frezeleme DeGarmo s Materials and Processes in Manufacturing 24.1 Giriş Frezeleme, düz bir yüzey elde etmek için yapılan temel bir talaş kaldırma işlemidir Freze bıçakları bir veya birden fazla

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm

Detaylı

TEKSTİLDE KALİTE DERSİ. Reklamasyon durumlarını belirlemek. İstatistik hesaplamaları yapmak

TEKSTİLDE KALİTE DERSİ. Reklamasyon durumlarını belirlemek. İstatistik hesaplamaları yapmak TEKSTİLDE KALİTE DERSİ Dersin Modülleri Kalite Güvence I Kalite Güvence II Kalite prosedörleri I Kalite prosedörleri II Reklamasyon İstatistik Kazandırılan Yeterlikler Kalite güvence sistemini hazırlamak

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

Veri Akış Diyagramı (VAD)

Veri Akış Diyagramı (VAD) Veri Akış Diyagramı (VAD) Bir veri akış diyagramı (VAD), süreç yönlerini modellendiren bir bilgi sistemi vasıtasıyla verilerin "akışını" gösteren bir grafiktir. Bir VAD, daha sonra detaylandırılamayacak

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr - 1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi gerekenler -

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI KARADENİZ TEKNİK ÜNİVERSİTESİ BEŞİKDÜZÜ MESLEK YÜKSEKOKULU İSTATİSTİK DERS NOTLARI BÖLÜM 2 İSTATİSTİK VE GRAFİK ÖĞR. GÖR. COŞKUN ALİYAZICIOĞLU BEŞİKDÜZÜ - 2017 1 İstatistik çalışmaları sonucu elde edilen

Detaylı

İTÜ SEM KALİTE YÖNETİCİLİĞİ SÜREÇ ve DOKÜMANTASYON YÖNETİMİ PROJESİ

İTÜ SEM KALİTE YÖNETİCİLİĞİ SÜREÇ ve DOKÜMANTASYON YÖNETİMİ PROJESİ İTÜ SEM KALİTE YÖNETİCİLİĞİ SÜREÇ ve DOKÜMANTASYON YÖNETİMİ PROJESİ ÜLKER GIDA BİSKÜVİ SANAYİ A.Ş BİSKÜVİ FABRİKASININ ÇEVRE BOYUTLARI VE GERİ DÖNÜŞÜM PROJESİ Muhammed Fatih SERTKAYA mfatih.sertkaya@gmail.com

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

MICROSOFT WORD Word 2000/II TAB AYARLARI :

MICROSOFT WORD Word 2000/II TAB AYARLARI : MICROSOFT WORD 2000 TAB AYARLARI : Yazımı belli bir sütundan başlatmak için kullanılır. Tab (durak) ayarı yapıldıktan sonra her Tab tuşuna basıldığında eklenti noktası yerleştirilen tab ayarlarına gelir.

Detaylı

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ

BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ BÖLÜM 4 FREKANS DAĞILIMLARININ GRAFİKLE GÖSTERİLMESİ Frekans dağılımlarının betimlenmesinde frekans tablolarının kullanılmasının yanı sıra grafik gösterimleri de sıklıkla kullanılmaktadır. Grafikler, görselliği

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ KAYA MEKANİĞİ LABORATUVARI TEK EKSENLİ SIKIŞMA (BASMA) DAYANIMI DENEYİ (UNIAXIAL COMPRESSIVE STRENGTH TEST) 1. Amaç: Kaya malzemelerinin üzerlerine uygulanan belirli bir basınç altında kırılmadan önce ne kadar yüke dayandığını belirlemektir.

Detaylı

Microsoft Excel 1.BÖLÜM

Microsoft Excel 1.BÖLÜM Microsoft Excel 1.BÖLÜM Dersin Amacı İş hayatını ve günlük yaşamı kolaylaştırmada yardımcı olan işlem tabloları hakkında bilgi vermek. Bu işlem tablolarından en yaygın olarak kullanılan Excel programını,

Detaylı

Yedi Temel Araç. Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler. 7M Araçları (Yedi Yeni Araç) Nicel ve nitel veriler

Yedi Temel Araç. Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler. 7M Araçları (Yedi Yeni Araç) Nicel ve nitel veriler Yedi Temel Araç Kalite Kontrol Araçları (Yedi Temel Araç) Nicel veriler Histogram Sebep Sonuç Diyagramı Kontrol Çizelgesi Pareto Diyagramı Kontrol Kartları Yayılım (Scatter) Diyagramları 7M Araçları (Yedi

Detaylı

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler

Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Tek Değişkenli ve Çok Değişkenli Tablolar ve Grafikler Umut Al umutal@hacettepe.edu.tr BBY 375, 24 Ekim 2014-1 Plan İlgili kavramlar Tablo ne zaman kullanılır? Grafik nasıl üretilir? Örnekler Dikkat edilmesi

Detaylı

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI

BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI BİYOİSTATİSTİK TABLO VE FRAFİK YAPIMI B Doç. Dr. Mahmut AKBOLAT *Tablo, araştırma sonucunda elde edilen bilgilerin sayısal olarak *anlaşılabilir bir nitelikte sunulmasını sağlayan bir araçtır. *Tabloda

Detaylı

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV SETİ Ödev 1. Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

SPSS (Statistical Package for the Social Sciences)

SPSS (Statistical Package for the Social Sciences) SPSS (Statistical Package for the Social Sciences) Genel Yapı ve Tanıtım : Tahmine Dayalı Analitik Yazılımı SPSS Yazılımları ilk olarak 1967 yılında 2 doktora öğrencisinin tez çalışmaları için geliştirilmeye

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

ÖZEL EGE İLKÖĞRETİM OKULU

ÖZEL EGE İLKÖĞRETİM OKULU ÖZEL EGE İLKÖĞRETİM OKULU 4.SINIF MATEMATİK DERSİ PROJESİ PROJE KONUSU : GRAFİKLER, KULLANIM ALANLARI VE GRAFİK UYGULAMALARI HAZIRLAYANLAR : Egem ERASLAN F.Sarper TEK Göktürk ERBAYSAL Mert KAHVECİ ÖNSÖZ

Detaylı

Veritabanı Tasarımı. Basit Eşleme: Dönüşüm İşlemi

Veritabanı Tasarımı. Basit Eşleme: Dönüşüm İşlemi Veritabanı Tasarımı Basit Eşleme: Dönüşüm İşlemi Amaç Bu ders aşağıdaki hedefleri kapsamaktadır: Kavramsal model ile fiziksel modeli ayırt etme İki model arasındaki terminoloji eşleşmesini uygulama Tablolar

Detaylı

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta

İstatistiksel proses kontrol ve kontrol diyagramı. 3. hafta İstatistiksel proses kontrol ve kontrol diyagramı 3. hafta İstatistiksel proses kontrol Prosesteki değişkenliği ölçerek ve analiz ederek istatistiksel kontrolünü sağlamak ve sürdürmek için istatistiksel

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER TEMEL İSTATİSTİK YÖNTEMLER DERS I - 1/63 İstatistik nedir? 1. 2. tanımı) 3. (En eski tanımı) (Yöntembilim olarak (Kelime anlamı) DERS I - 2/63 İstatistik nedir? 1. Veri toplama Araştırma 2. Verilerin sınıflandırılması

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

*Bir boyutlu veri (bir özellik, bir rasgele değişken, bir boyutlu dağılım): ( x)

*Bir boyutlu veri (bir özellik, bir rasgele değişken, bir boyutlu dağılım): ( x) 4. Ders Tablolar: Hazırlama ve Analiz *Bir boyutlu veri (bir özellik, bir rasgele değişken, bir boyutlu dağılım): Örnek1: 4 çocuklu bir ailede kız çocukların sayısı X rasgele değişkeni olsun. Mendel yasalarına

Detaylı