Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar"

Transkript

1 6 th Itertiol Advced Techologies Symposium (IATS 11), My 2011, Elzığ, Turkey Euler Yötemi İle Gerçek Zmlı Syısl İtegrsyo İşlemii FPGA Ortmıd Gerçekleştirilmesi İ. Soy, T. Tucer, Y. Ttr Firt Üiversitesi Elzığ/Türkiye Implemettio of Rel Time Digitl Itegrtio Process with Euler Method o FPGA Eviromet Astrct I this pper reliztio of rel-time digitl itegrtio process o FPGA (Field Progrmmle Gte Arry) pltform is explied. To chieve this gol pplictio is developed o the flotig poit umer spce i FPGA usig Euler itegrtio method lso kow s the first order itegrtio method. I this pplictio, the itegrl vlue of the sigl creted i the FPGA is clculted d it ws oserved o the oscilloscope s cotiuous time sigl. Keywords Euler İtegrsyo, FPGA, Flotig Poit. I. GİRİŞ ÜRÜN geliştirme sürecide krmşık sistemleri dvrışıı elirlemek içi simülsyo çlışmlrı öemli kolylıklr sğlr. Sistem simülsyolrı içi sık kullıl yzılım rçlrı örek olrk MATLAB/SIMULINK, OrCAD, SABER sistem tlı vey devre tlı yzılımlr gösterileilir[1]. Tüm u simülsyolr gerçek olmy zmlrd çlışmktdır. Bu progrmlr sistem performsıı çeşitli yölerii icelemek içi yrrlı olmsı rğme, gerçek zmd sistemi dvrışıı lmk içi yeterli değildir. Sürekli zmlı sistemler difersiyel deklemler ile modelleir. Difersiyel deklemleri çözümü içi gerekli ol itegrl lm işlemi ise oldukç zm hrcyıcı ir işlemdir. Difersiyel deklemleri, gerçek zmlı olrk çözeile log hesplyıcılrd opersyol yükselticiler (OPAMP) kullılır. OPAMP lr itegrl lıcı, toplyıcı ve çrpıcı devreler olrk düzeleip difersiyel deklem çözümleri elde edileilir. Alog hesplyıcılrd her ir ktsyı değişikliğide yei ir elem değişikliği ypılmsı zoruludur. Difersiyel deklemleri gerçek zmlı olrk, syısl ortmd çözümlemesi içi güümüzde FPGA lı pltformlrı kullılmsı yygılşmıştır. FPGA lr, mimrilerii tekrr progrmlmy uyguluğu, tsrımıı koly ve hızlı, işlem hızıı gerçek zmlı çlışmy uygu olmsı gii vtjlr ship olmsı edeiyle güümüzde üyük çplı projeleri geliştirilmeside kullılmktdır. FPGA lr, geellikle syısl sistemler ve işretler ile çlıştığı hlde, ADC ve DAC devrelerii kullımıyl dış düydki sürekli zmlı işretlerle de gerçek zmd etkileşeilmektedirler. FPGA lrı içeriside uygu doımsl devreleri yrtılmsı içi doım tımlm dilleri kullılır. Bu ildiride; gerçek zmlı ir syısl itegrsyo işlemii FPGA pltformud gerçekleştirilme süreci çıklmıştır. Buu içi irici merteede itegrsyo yötemi olrk d ilie Euler itegrsyo yötemi kullılrk FPGA üzeride flotig poit syı düzlemide ir uygulm geliştirilmiştir. Uygulmd; FPGA içeriside gerçek zmd oluşturul ir kre dlg işretii euler yötemie göre itegrl değeri hesplmış ve ir DAC rcılığı ile sürekli zmlı işrete çevrilmiştir. Bildirii ud sorki ölümleride syısl itegrsyo yötemleri, gerçek zmlı uygulm ortmı, kullıl progrmlm dili, syısl itegrsyou FPGA ortmıd gerçekleştirilmesi ve gerçek zmd elde edile souçlr ve yorumlr çıklmıştır. II. SAYISAL İNTEGRASYON YÖNTEMLERİ Syısl olrk itegrl lm işlemi, litik olrk ir itegrli lımsıı çok zor vey olksız olduğu durumlrd vey ir işlevi değerlerii sdece elirli oktlrd ilimesi durumlrıd öem kzır. Ayrıc itegrsyo işlemlerii içere vey gerektire prolemleri ilgisyrl çözümüde kullıl lgoritmlrı d doğl olrk syısl yötemleri kullmsı şrttır. Gerçekte litik itegrl, syısl itegrle göre çözüleilme kolylığı ve soucuu kesiliği ile üstülük gösterir[1]. Elektroik devrelerdeki htrlm elemlrıı kım vey gerilim değerlerii hesıd tek ve çok ktlı itegrsyod yrrlılır[3]. Bu ölümde u gii mçlr içi kullılilecek tek ktlı elirli itegrlleri syısl çözüm yötemleri çıklmıştır. 202

2 İ. Soy T. Tucer, Y. Ttr Geel olrk ir f(x) işlevii x rlığıdki elirli itegrli (1) deki gii gösterilir. I f ( x) dx Bu itegrsyo işlemi ile Şekil 1 de gösterildiği gii geometrik olrk, itegrli hespl f(x) eğrisii ltıd kl x rlığıdki trlı l hesplmış olur[2]. (1) Şekil 3: Bir okt yklşımı I f ( x) dx x j f ( x j ) j1 j1 f ( x j ) (3) Şekil 1: İtegrl hesı Şekil 1 deki trlı lı, dolyısıyl itegrli syısl olrk hesplmsı içi geellikle x rlığı, Şekil 2 deki gii, x uzuluğud det öreğe ölüür. Bu işlem (2) deki gii verilir. x (2) Geellikle öreklemeler eşit x rlıklrıd olur. Bu durumd itegrl (4) ile hesplır. (5) e göre örekleme syısı olup, dir. I x ( ) f ( x) dx x j1 f ( x j ) B. Ymuk ( Trpez - İki Nokt Yklşımı) Yötemi Bu yötemde iriri rdıd gele her iki okt ir doğru ile irleştirilerek Şekil 4 te verile ymuk şekilli öreklemeler elde edilir. Böylece itegrl, llrıı toplmı eşit olur[2]. (4) Şekil 2: İtegrl hesıd örekleme Syısl olrk itegrl hesı ypılırke, her x içi f(x) işretii sıırldığı l hesplıp, ir öceki öreklemede elde edile l ile toplıp itegrsyo gerçekleştirilir. Aslıd çrpm ve toplm işlemleride oluş syısl itegrsyo işlemide öemli ol,. örek içi f(x) i sıırldığı lı doğru ir şekilde hesp edilmesidir. Buu içi değişik tekikler geliştirilmiş olup ulrd ir okt, iki okt, üç okt ve dört okt yklşımlrı yygı olrk kullılır[1,2,3]. Gerçek zmlı syısl itegrl lm işlemide e öemli olgu zmdır. Al hesplmsıı mümkü olduğu kdr kıs sürede ypılmsı isteir. Dolyısıyl gerçek zmlı itegrsyo işlemleride geellikle ir vey iki oktlı yklşımlr kullılır. Çükü u yklşımlrd dh z syıd mtemtiksel işlem söz kousudur. A. Euler Yötemi (Bir Nokt Yklşımı) Bir okt yklşımıd, Şekil 3 te görüleceği gii f(x) foksiyou, değeride şlrk x rlıklrl örekleir. Bu örek değerler kullılrk eleri x, oylrı f(+.x) ol dikdörtgeler elde edilir. Her ir dikdörtgei lı hesp edilip, llr toplrk itegrli değeri elde edilmiş olur. Eğer öreklemeler frklı x uzuluklrd ise itegrli hesı (3) ile ypılır. Şekil 4: İki okt yklşımı Ymuğu lı, prlel kerlrıı uzuluklrıı toplmıı u iki ker rsıdki uzklığı yrısı ile çrpımı eşittir. (5) te oluş ir ymuğu lıı hesı, (6) d ise f(x) işlevii ymuk yötemie göre x rlığıdki syısl itegrsyouu hesı verilmektedir[2]. x x j j 1 x f x) dx ( f 2 ( j1 f 1 x I f ( x) dx [ f ( ) f ( ) 2 ( )] 2 f jx j1 j ) Euler yötemide, ir lı ulumsı içi sdece 1 çrpm ve 1 toplm işlemi ypılcğıd, gerçek zmlı işlemler içi dh uygudur. Fkt itegrsyo soucudki ht miktrı fzl olilir. Ymuk yötemide ise elde edile souç dh doğru olmsı rğme, işlem syısı dh fzldır. Her iki yötemde de örekleme syısıı fzllığı soucu doğruluğuu etkileye e öemli fktördür. (6) (5) 203

3 Euler Yötemi İle Gerçek Zmlı Syısl İtegrsyo İşlemii FPGA III. FPGA PLATFORMU VE VHDL DİLİ Ypıl u çlışmd FPGA geliştirme pltformu kullılmsıı seei, ypıl syısl itegrsyo progrmıı gerçek zmlı olrk çlışmsıı istemesidir. Gerçekleştirile itegrsyo işlemii souçlrıı gözlemleyeilmek mcı ile ir DAC krtı kullılmış ve u syede elde edile log çıkışlr osiloskopt izlemiştir. FPGA ile DAC etegresi FPGA geliştirme krtı üzerideki HSMC koektör rcılığı ile olmkt ve FPGA krtıı progrmlmsı ise ilgisyr rcılığı ile ypılmktdır. Bilgisyr ortmıd FPGA geliştirme krtıı kotrol edileilmesi içi Qurtus II geliştirme ortmı kullılmıştır. Bilgisyr, FPGA geliştirme krtı ve DAC etegresi kullılrk oluşturulmuş ol sistemi lok diygrmı Şekil 5 te verilmektedir. ALTERA Cycloe III Developmet Bord DAC Etegresi Bilgisyr (USB ryüzü) Şekil 5: Gerçekleştirile sistemi lok diygrmı FPGA ile ilgisyr rsıdki iletişim ir RS232 sürücü devresi ve USB ririm krtı ile sğlmktdır. Herhgi ir işlevsel modül kedi eşdeğer devre modeli ile FPGA üzeride gerçekleştirileilir. Bu eşdeğer model rdışık mtık elemlrı ve komisyoel mtık elemlrıı komisyoudur ve kedide eklee işlemi gerçek zmd şrilir. Gerçekleştirile modülü cevp hızı, mtıksl elemlrı yyılm gecikme toplmıı göz öüe lımsıyl hesplmlıdır[4]. --Kütüphe Tımlmlrı lirry ieee ; use ieee.std_logic_usiged.ll; --Pket Tımlmlrı use ieee_proposed.fixed_pkg.ll; --Değişke Tımlmlrı etity islem is --tımlmlr ed islem; --Progrm Mimrisi rchitecture euleritegrsyo of islem is Compoet sym is Port( ); ed compoet; egi --tsrl sistemi mimrisi ed euleritegrsyo; Şekil 6: VDHL temel tpısı Ypıl u çlışmd VHDL doım tımlm dili kullılmıştır. VHDL dili kullılrk oluşturul ir progrmı temel ypısı Şekil 6 d verilmektedir. Qurtus II geliştirme ortmıd herhgi ir doım oluşturilmek içi Verilog vey VHDL ((VHSIC) Very High Speed Itegrted Circuits- Hrdwre Descriptio Lguge) doım tımlm dilleride irii kullılmsı gerekmektedir. VHDL doım tımlm dilide gerçekleştirile ir sistem Şekil 6 d d görüldüğü gii kütüphe tımlmsı, şlık (etity) kısmı ve mimri (rchitecture) kısmı olmk üzere 3 ölümde oluşmktdır. Progrmı geliştirilme şmsıd ilk olrk kullılck ol kütüpheleri tımlmlrı ypılır. Kullılck ol kütüpheler progrmd yer l değişke tipleri, kullıl foksiyo ve işlemlere göre değişmektedir. Kütüphe tımlmlrıı rdıd pket tımlmlrı ypılır. Pket tımlmsıı kullılm edei, progrm içeriside yrı ir VHDL progrmıı kullck foksiyolrı ulumsıdır. Kütüphe ve pket tımlmlrı tımldıkt sor şlık kısmı tımlır. Bu kısımd progrm içeriside kullılck ol giriş-çıkış değişkeleri, u değişkeleri tipleri ve oyutlrı elirleir. Bşlık kısmı gerçekleştirildikte sor mimri ölümüe geçilir. Mimri kısmı kedi içeriside iki ölümde oluşmktdır. İlk ölümü tımlm ikici kısmı ise gerçekleştirme kısmı olrk dldırılilir. Tımlm kısmıd ylızc gerçeklee mimri içeriside geçerli ol yerel değişkeleri ve kompoetleri tımlmlrı ypılır. Kompoetler; dh öce yzılmış ve geçerli VHDL kodu ile yı dizide ulu VHDL kodlrıı ve Qurtus II ortmıd yer l işlem loklrıı u kod içeriside çğrılilmesi içi ypıl tımlmlrdır. Mimri kısmıı ikici ölümüde ise sistemi dvrışı tımlır. Eğer sistem rdışıl ir ypıd ise u kısımd process loklrı oluşturulur. IV. GERÇEK ZAMAN İNTEGRASYON UYGULAMASI Syısl itegrsyolrd yüksek merteeli tekikler her zm e çok tercih edile yötemlerdir[2]. Ack çözüm tekiği seçilirke progrmlm mliyetleri ve prolemi doğruluk gereksiimleri gii fktörler göz öüde uludurulmlıdır. Gerçekleştirile u çlışmd 48kHz lik freks ship ir kre dlg siylii euler yötemie göre gerçek zmlı itegrsyo işlemi ypılmıştır. İtegrsyo işlemide, giriş işreti olrk RAM hfızy öcede kydedilmiş kre dlg işretii syısl değerleri kullılmıştır. Gerçek zmlı itegrsyo işlemi ky okt syı ritmetiğide ypılmıştır.gerçekleştirile sistemde kullıl euler yötemie göre itegrl lm işlemi (7) de verilmektedir. y ( ) y ( 1) e ( 1). t (7) i i i Burd,. örekleme sürecideki toplm itegrl değeri 204

4 İ. Soy T. Tucer, Y. Ttr y i (),. örekteki giriş değeri üyüklüğü e i, örekleme periyodu ise t ile gösterilmiştir. (7) deki deklemi FPGA ortmıd çözümü içi kullıl lok şem Şekil 7 de gösterilmektedir. e -1 Çrpıcı Toplyıcı toplm kydırmlı olrk çıkış verilmiştir. Giriş işretie fz kydırmsı uygulmsıı seei; DAC krtı uygulck ol clock siyli ile sistemi çlıştır clock siylii yüksele kerlrıı yı olmmsı dolyısı ile eş zmlı olrk çlışmsıı sğlmktır. Pll loğuu çıkışlrıdki clock işretleri Şekil 10 d verilmektedir. c0 toplm -1 D Flipflop Şekil 7: Euler yötemi i uygulm lok şemsı Şekil 7 de verile lok şemsıdki işlemler içi kış şemsı Şekil 8 de görülmektedir. Şekil 8 de verile kış şemsı göre; RAM de kyıtlı ky oktlı syı sistemideki veriler sırsı ile okurk oku değerler Euler yötemie göre örekleme zmı ile çrpılmış rdıd ir öceki toplm değeri ile toplmıştır. So olrk elde edile syısl veriler DAC krtıı girişie göderilmiştir. Şekil 8 deki kış şemsıı gerçekleştire doımsl ypıı, Qurtus ortmıdki görüümü Şekil 9 d verilmiştir. Bşl dres = 0 toplm = 0 dres < 32 veri = RAM de veriyi oku y = veri. EVET toplm = toplm -1 + y dres = dres +1 DAC girişi = toplm +1 t HAYIR Şekil 8: Gerçekleştirile sistemi kış şemsı Şekil 9 dki gii gerçekleştirile sistem 4 lokt oluşmktdır. Bu loklr sırsı ile pll loğu, hzirl loğu, FSM loğu ve işlem loğudur. Sistemdeki hzırl, FSM ve işlem loklrı VHDL dili kullılrk geliştirilmiştir. A. Pll Bloğu Geliştirile progrmd kullıl Alter Pll loğu tek girişli ve 2 çıkışlı olrk tımlmıştır[5]. Pll loğuu girişie 50 MHz lik ir clock işreti uygulmış ve giriş işreti fz B. Hzırl Bloğu c1 Şekil 10: Pll loğuu çıkışlrı Hzırl loğu FPGA krtıı şlgıç koşullrıı sğlyilmesi içi oluşturulmuştur. Bu lok sistemi 50Mzlik clock işretii giriş olrk lırke, 3 clock oyuc çıkış ir işret vermez. 3. Clock t sor strt iti sürekli lojik 1 seviyeside tutulrk, clock çıkışı d giriş işretii vermektedir. Dolyısıyl u lokt sistemi çlışmy şlmsı elirlemektedir. C. FSM Bloğu FSM (Fiite Stte Mchie Solu Durum Mkiesi) loğu 3 girişli ve 8 çıkışlı ir loktur. Bu lokt progrmd gerçekleştirile işlemleri çlışm sırlrıı elirlemek içi 9 durumlu ir solu durum mkiesi oluşturulmuştur. Bu lokt strt iti lojik 1 olduğu d her clock işretii yüksele kerıı syrk hgi işlemi ktif olmsı gerektiği elirlemektedir. Bu lok içeriside tıml 8 işlemi çl lışm süreleri tlo 1 de verilmektedir. İşlemleri kedileri ise gerçekleştirildikleri lok içeriside tımlcktır. Tlo 1: Solu durum mkiesideki durumlrı çlışm süreleri Durum o İşlem dı Çlışm süresi(clock) 1 Sym 1 2 Okum 1 3 Çrpm 5 4 Toplm 7 5 DFF_ Döüşüm 6 7 DFF_ DAC 1 Tlo 1 de verile işlem süreleri, progrm içeriside oluşilecek clock gecikmeleride etkilememek mcı ile 1 er clock fzl sürecek şekilde lımıştır. Dolyısı ile progrmı çlışmsı essıd RAM d ulu 1 verii tüm işlemlerde geçtikte sor log veriye çevrilmesie kdr geçe süre 32 clock olup, 32 clock x s = s de tmmlmktdır. Bir periyotluk kre dlgı itegrlii lımsı içi geçe süre ise 1024 clock x 20.83s = 21.33µs olmktdır. 205

5 Euler Yötemi İle Gerçek Zmlı Syısl İtegrsyo İşlemii FPGA Şekil 9: Qurtus II ortmıd gerçekleştirile progrmı lok diygrmı D. İşlem Bloğu İtegrl lm işlemii gerçekleştirildiği işlem loğu 8 yrı kompoet içermektedir. Her ir kompoet VHDL dilide yzılrk gerçekleştirilmiştir. Bu kompoetler, Şekil 6 dki gii VHDL dilide yzıl işlem loğu içeriside kullılmıştır. İşlem loğu içeriside kullıl kompoetleri çlışm sırlrı solu durum mkiesi olrk gerçekleştirile FSM loğu ile elirlemektedir. Bu lokt ulu kompoetler sırsı ile u ölümde verilmektedir: Sym: Hfız irimii hgi dresideki verii okucğıı elirleye 5 itlik ir syıcıdır. Bu kompoeti clock, ele ve reset olmk üzere 3 girişi ve ir de çıkışı ulumktdır. Ele iti lojik 1 olduğu zm clock işretii yüksele kerıd içeriği ir rtrk çıkış ktrır. Okum: Hfız elemıd Sym kompoeti ile gösterile dresteki verii okumsıı sğly lok olup, ele pii lojik 1 olduğu zm elirtile dresteki 32 it uzuluğudki flotig poit syıyı çıkışı ktrır. Çrpm: Bu kompoet 2 det 32 itlik flotig poit syıyı çrp lok olup, çrpıl değer hfız loğud oku değer ike çrp hfız loğu kydedilmiş verileri örekleme zmı (t) ol 400 s dir. Toplm: Bu kompoet 2 det 32 itlik flotig poit syıyı toply lok olup topldığı değerler; çrpm loğuu soucu ile ir öceki toplmı soucudur. DFF_32: Bu kompoet D tipi flip flop lrd oluşup toplm kompoetii soucuu sklmk içi kullılmıştır. Bu kompoeti kullılmsıı seei dögüü ir sorki değeride toplm kompoetii ir öceki değerii lmsıdır. Flip flop kullılmzs u değer kyedileilir. Ack flip flop kullıldığı içi kompoeti ele pii lojik 1 ol kdr içerisideki değer sit klmktdır. Döüşüm: Bu kompoet 32 itlik flotig poit syıı 14 itlik fixed poit syıy döüştürmek içi kullılmıştır. Bu kompoeti kullılmsıdki mç elde edile syısl verileri log veriye döüştüreilmek içi kullıl DAC krtıı 14 itlik çözüürlüğe ship olmsıdır. Bu edele flotig poit formtıdki veriler 14 it uzuluğudki işretli fixed poit verilere çevrilmektedir. DFF_14: Bu kompoet DAC krtıı girişie göderilecek 14 itlik fixed poit syı formtıdki syısl verileri skldığı D tipi ir flip floplrdır. DAC: So kompoet ise ele iti lojik 1 olduğu zm prllel iletişim yp DAC krtıı girişlerii ktif edilerek syısl verii göderildiği kısımdır. V. SİMÜLASYON SONUÇLARI Ypıl u çlışmd Euler yötemi kullılrk gerçek zmlı ir syısl itegrsyo işlemi gerçekleştirilmiştir. Buu içi VHDL dili ile FPGA ortmıd ilgili doımsl devreler oluşturulmuştur. Sistemi gerçekleştirildiği ortmı resmi Şekil 11 de verilmiştir. Sistem Qurtus II geliştirme ortmıd derlediğide; FPGA krtıı u progrmı çlıştırırke kullcğı değişik doımsl irimler ve hrc doımlr Şekil 12 de verilmektedir. Sisteme giriş olrk gele 48 khz lik kre dlg siylide elde edile syısl itegrsyo souçlrı Sigl T II Logic Alyzer ve osiloskop rcılığı ile gözlemiştir. Şekil 13 te sistemi Sigl T II Logic Alyzer ile gözlemlee gerçek zmlı souçlrı görülmektedir. 206

6 İ. Soy T. Tucer, Y. Ttr Şekil 11: Sistemi geliştirildiği ortm Şekil 12: FPGA krtıd kullıl doım irimleri Şekil 13: Sigl T II Logic Alyzer ile gözlee souçlr VI. SONUÇLAR Bu çlışmd, Euler itegrsyo yötemie göre gerçek zmlı itegrsyo işlemii FPGA ortmıd gerçekleştirilmesi çıklmıştır. Tsrım sürecide VHDL doım tımlm dili kullılmıştır. İtegrsyo flotig poit syı sistemiyle gerçekleştirilmiştir. Sistemi 1 periyotluk itegrsyo süresi 21.33µs olrk hesplmıştır. Bu süre uzudur. Ack itegrsyo işlemide flotig poit yerie fixed poit syı sistemi kullıldığıd u süre oldukç kıslilir. Fixed poit syı sistemide çlışıldığı zm doğruluk orı ispete zlcktır. Fkt gerçek zmlı çlışmlrd, ritmetik işlem sürelerii kıslttığı içi fixed poit syı sistemi dh vtjlı olcktır. KAYNAKLAR [1] L. T.Pıllce, R.A.Rohrer, C.,Visweswrih, Electroic Circuit d System Simultio Medthods, McGrwhill,pp 75-84,1994. [2] Ö. Klederli, Syısl Yötemler, ~ozc/difdeksyislcozumu.pdf. [3] S. C. Chpr, R. P. Cle, Numericl Methods for Egieers, 2 d editio, MC Grw-Hill Itertiol Editios, [4] K. Jylkshmi, V. Rmry, Rel Time Simultio of Electricl Mchies o FPGA Pltform, Proceedigs of idi itertiol coferece o power electroics,2006. [5] Alter Corprtio, AN507: Implemetig PLL Recofigurtio i Cycloe III Devices 207

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, erksdemir@homil.com (²)Büle Ecevi

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Fırt Üiversitesi Mühedislik Fkültesi Elektrik - Elektroik Mühedisliği Bölümü ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Hzırly: Arş. Gör. Göky BAYRAK ELAZIĞ-008 İletim Htlrıı Elektriksel Ypısı ) Sürekli Durum:Nomil

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş

MAT 202 SAYISAL YÖNTEMLER. Bahar Hafta 1. Bu Hafta. Ders Hakkında Bilgiler. Özet. Ders Hakkında Genel Bilgiler. Matris işlemlerine giriş MAT 202 SAYISAL YÖNTEMLER Bhr 2005-2006 Hft Bu Hft Özet Ders Hkkıd Geel Bilgiler Mtris işlemlerie giriş 2 Öğretim Üyesi: Öğr. Gör. Od No: 442, Tel: 293 3 00 / -- E-mil: ltuger@itu.edu.tr Ders Stleri: Slı

Detaylı

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER

SAYI ÖRÜNTÜLERİ VE CEBİRSEL İFADELER ÖRÜNTÜLER VE İLİŞKİLER Belirli bir kurl göre düzenli bir şekilde tekrr eden şekil vey syı dizisine örüntü denir. ÖRNEK: Aşğıdki syı dizilerinin kurlını bulunuz. 9, 16, 23, 30, 37 5, 10, 15, 20 bir syı

Detaylı

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ Geel olrk 4 tp yötem kullılır.. Düz çzg yötem: Mlı değer zml doğrusl olrk zldığı vrsyılır. Mlı hzmet ömrü boyuc her yıl ç yı mktr mortsm olrk yrılır. V V d = S d:

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme:

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme: Ardışık Syılr Toplm Formülleri Ardışık syılrı toplmı: 1 + + 3 +...+ =.(+1) Ardışık çift syılrı toplmı : + 4 + 6 +... + =.(+1) Ardışık tek syılrı toplmı: 1 + 3 + 5 +... + ( 1) =.= Ardışık tm kre syılrı

Detaylı

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 4 Algoritma ve Yazılımın Şekilsel Gösterimi. Mustafa Kemal Üniversitesi Algoritm Geliştirme ve Veri Ypılrı 4 Algoritm ve Yzılımın Şekilsel Gösterimi Mustf Keml Üniversitesi Algoritm ve Yzılımın Şekilsel Gösterimi Algoritmik progrm tsrımı, verilen ir prolemin ilgisyr ortmınd

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

ÜÇ FAZLI BIR ASENKRON MOTORDA MANYETIK SÜSPANSIYONLU YATAK UYGULAMASI

ÜÇ FAZLI BIR ASENKRON MOTORDA MANYETIK SÜSPANSIYONLU YATAK UYGULAMASI ÜÇ FAZL BR ASENKRON MOTORDA MANYETK SÜSPANSYONLU YATAK UYGULAMAS Osm GÜRDAL*, Yusuf ÖNER** *Gzi Üiversitesi, Tekik Egitim Fkültesi, Elektrik Egitimi Bölümü, Tekikokullr, ANKARA **Pmukkle Üiversitesi, Elektrik

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

74xx serisi tümdevrelere örnekler

74xx serisi tümdevrelere örnekler 74xx serisi tümdevrelere örnekler Tümdevreler halinde gerçekleştirilen lojik kapılara örnekler. ir tümdevrede lojik kapı ve giriş sayısına göre belirlenmiş birden fazla kapı bulunur. TÜMLEŞİK KOMİNSYONEL

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI KARŞI AKIŞI SU SOĞUTMA KUESİ BOYUTANIDIRIMASI Yrd. Doç. Dr. M. Turh Çob Ege Üiversitesi, Mühedislik Fkultesi Mkie Mühedisliği Bölümü turh.cob@ege.edu.tr Özet Bu yzımızd ters kışlı soğutm kulelerii boyut

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

BÖLÜM 3 SAYISAL TÜREV VE İNTEGRAL

BÖLÜM 3 SAYISAL TÜREV VE İNTEGRAL BÖLÜM SAYISAL TÜREV VE İNTEGRAL. Blgsyrl türe.. Bölümüş rk tblolrıyl türe.. Eşt rlıklı er oktlrı ç türe.. Eşt rlıklı er oktlrı ç er oktlrıd türe.. Yüksek mertebede türeler. Syısl tegrl.. Trpez krlı.. Romberg

Detaylı

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri

Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Sonbahar / Sayısal II / 27 Kasım Matematik Sorularının Çözümleri Akdemik Personel ve Lisnsüstü Eğitimi Giriş Sınvı ALES / Sonbhr / Syısl II / 7 Ksım 0 Mtemtik Sorulrının Çözümleri. Bölüm şeklindeki kreköklü ifdenin pydsını krekökten kurtrmk için py ve pydyı, pydnın

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ . BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ A. ÜSLÜ İFADELER 6.,, c R olmk üzere. Üslü İfdeler. +. c. = ( + c) dir. Bir syıı kedisi ile tekrrlı çrpımı o syıı kuvvetii lm y d üssüü lm deir. R ve Z + olmk

Detaylı

Dört Bacaklı Eviricinin KGK Uygulamasında Modülasyon Yöntemleri

Dört Bacaklı Eviricinin KGK Uygulamasında Modülasyon Yöntemleri ELECO 6, Elektrik-Elektroik-Bilgisyr Müh. emp., 6- Arlık 6, Burs, syf 9-95 Dört Bklı Eviriii KGK Uygulmsıd Modülsyo Yötemleri Eyyup Demirkutlu üleym Çetiky Ahmet M. Hv ODTÜ Elektrik ve Elektroik Mühedisliği

Detaylı

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ DENEY NO: 4 THÉENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DERE PARAMETRELERİ Mlzeme ve Cihz Litei:. 330 direnç det. k direnç 3 det 3.. k direnç det 4. 3.3 k direnç det 5. 5.6 k direnç det 6. 0 k direnç det

Detaylı

LOJİK DEVRELERDE SORUNLAR ve GİDERİLMESİ

LOJİK DEVRELERDE SORUNLAR ve GİDERİLMESİ Krdeniz Teknik Üniversitesi Bilgisyr Mühendisliği Bölümü Syısl Tsrım Lorturı LOJİK DEVRELERDE SORUNLAR ve GİDERİLMESİ 1. Giriş Şimdiye kdr ypıln teorik kominsyonel devre tsrımlrınd girişe uygulnn tüm işretlerin

Detaylı

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları Bilgisr Destekli Tsrım/İmlt Sistemlerinde Kllnıln Modelleme Yöntemleri: Béier ve Tiri Eğrileri ve İmlt Uglmlrı Bilimsel Hesplm II Dönem Projesi Hmdi Ndir Trl İçerik. Giriş. Bilgisrlı Destekli Tsrım (CAD

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Bazı Sert Çekirdekli Meyve Türlerinde Çiçek Tozu Çimlenmesi ve Çim Borusu Uzunluğunun Çoklu Regresyon Yöntemi ile Modellenmesi

Bazı Sert Çekirdekli Meyve Türlerinde Çiçek Tozu Çimlenmesi ve Çim Borusu Uzunluğunun Çoklu Regresyon Yöntemi ile Modellenmesi Süleymn Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt 19, Syı 3, 92-97, 2015 Süleymn Demirel University Journl of Nturl nd Applied Sciences Volume 19, Issue 3, 92-97, 2015 DOI: 10.19113/sdufed.04496

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüet BAYILMIŞ Doç.Dr. Cüet BAYILMIŞ Sısl Alz SAYISAL ANALİZ EĞRİ UYDURMA (Curve Fttg) Doç.Dr. Cüet BAYILMIŞ Sısl Alz İÇİNDEKİLER Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Doç.Dr.

Detaylı

c

c Mtemt ık Ol ımp ıytı Çlışm Sorulrı c www.sbelin.wordpress.com sbelinwordpress@gmil.com Bu çlışm kğıdınd mtemtik olimpiytlrı sınvlrın hzırlnn öğrenciler ve öğretmenler için hzırlnmış sorulr bulunmktdır.

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları...

İÇİNDEKİLER. Ön Söz...2. Matris Cebiri...3. Elementer İşlemler Determinantlar Lineer Denklem Sistemleri Vektör Uzayları... İÇİNDEKİLER Ön Söz... Mtris Cebiri... Elementer İşlemler... Determinntlr...7 Lineer Denklem Sistemleri...8 Vektör Uzylrı...6 Lineer Dönüşümler...48 Özdeğerler - Özvektörler ve Köşegenleştirme...55 Genel

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

Telekomünikasyon, bilginin haberleşme amaçlı

Telekomünikasyon, bilginin haberleşme amaçlı GÜNÜMÜZ HABERLEŞME TEKNOLOJİLERİNE KISA BİR BAKIŞ Mehmet Okty ELDEM Elektronik Y. Mühendisi EMO Ankr Şubesi Üyesi okty.eldem@gmil.com Telekomüniksyon, bilginin hberleşme mçlı olrk dikkte değer bir mesfeye

Detaylı

TG 15 ÖABT ORTAÖĞRETİM MATEMATİK

TG 15 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 5 ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hkkı sklıdır. Hgi mçl olurs olsu, testleri tmmıı vey ir kısmıı

Detaylı

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR

ORAN ORANTI 2 1 3 - - 4 4 2 1 1 2 ÖYS. = = yazılabilir. veya ALIŞTIRMALAR YILLAR 00 003 00 00 006 00 008 009 00 0 3 - - ÖYS ORAN ORANTI ve t. t. t.e zılilir. f Or: E z iri sıfır frklı ı iste iki çokluğu ölümüe or eir. Or irimsizir. Ortı : iki ve h fzl orı eşitliğie ortı eir.

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

DENEY 2 OHM YASASI UYGULAMASI

DENEY 2 OHM YASASI UYGULAMASI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 2 OHM YASASI UYGULAMASI Hzırlynlr: B. Demir Öner Sime

Detaylı

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI

İNTEGRAL 6 RİEMANN TOPLAMI : ALT TOPLAM,ÜST TOPLAM VE RİEMANN ALT TOPLAM ÜST TOPLAM. [a, b] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI [, ] R ARALIĞININ PARÇALANIŞI VE RİEMANN TOPLAMI f : [, ] R sürekli ir foksio olsu. Bu [,] kplı rlığı = <

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüe BAYILMIŞ Doç.Dr. Cüe BAYILMIŞ Sısl Aliz SAYISAL ANALİZ SAYISAL İNTEGRAL Numericl Iegrio Doç.Dr. Cüe BAYILMIŞ Sısl Aliz İÇİNDEKİLER Sısl İegrl Trpez Ymuk Yöemi Simpso Yöemi /

Detaylı

SAYILAR TEMEL KAVRAMLAR

SAYILAR TEMEL KAVRAMLAR YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - - 1-1 - 1 Pozitif tmsyılr,negtif tmsyılr ve 0 ın ererce oluşturduğu kümeye Tmsyılr kümesi denir Z ile gösterilir SAYILAR TEMEL KAVRAMLAR Temel

Detaylı

GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ

GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ Onur Ömer SÖĞÜT*, A. Fruk BAKAN**, Mesut AKGÜN* * YTÜ Dvutpş Kmpüsü, Kimy Mühendisliği Bölümü, 34210 Esenler, İstnul **YTÜ Elektrik

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

BİR VİNÇ ATÖLYESİNDE İKİLİ VERİLERE DAYALI HÜCRE OLUŞTURMA YÖNTEMLERİYLE HÜCRELERİN OLUŞTURULMASI

BİR VİNÇ ATÖLYESİNDE İKİLİ VERİLERE DAYALI HÜCRE OLUŞTURMA YÖNTEMLERİYLE HÜCRELERİN OLUŞTURULMASI 36 Erciyes Üiversitesi İktisdi ve İdri Bilimler Fkültesi Dergisi, Syı: 3, Ock-Hzir 009, ss.35-5 BİR VİNÇ ATÖLYESİNDE İİLİ VERİLERE DAYALI HÜCRE OLUŞTURMA YÖNTEMLERİYLE HÜCRELERİN OLUŞTURULMASI ÖZ Bület

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 17. MATEMATİK YARIŞMASI 11. SINIF TEST SORULARI EGE BÖLGESİ OKULLAR ARASI 7. MATEMATİK YARIŞMASI. SINIF TEST SORULARI. + işleminin sonucu kçtır? 5 5 A) 0 B) 0 C) 0 7 D) 0 9 E). y = x x + prbolünün y = x doğrusun en ykın noktsının koordintlrı toplmı

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

Faure Dizili Genetik Algoritmalar İle Toprak Özdirencinin Mevsimsel Değişiminde Transformatör Merkezi Topraklama Sisteminin Optimum Tasarım Stratejisi

Faure Dizili Genetik Algoritmalar İle Toprak Özdirencinin Mevsimsel Değişiminde Transformatör Merkezi Topraklama Sisteminin Optimum Tasarım Stratejisi Süleym Demrel Üverstes, Fe Blmler Esttüsü Dergs, 6- ), 6-76 Fure Dzl Geetk Algortmlr İle Toprk Özdrec Mevsmsel Değşmde Trsformtör Merkez Toprklm Sstem Optmum Tsrım Strtejs Brış GÜRSU *, Melh Cevdet İNCE

Detaylı

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK:

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK: ERİLER Cebir kurllrı ile ck olu te yıyı toplybiliriz. Bu krşılık mtemtik de ouz yıd yıı toplmı ile de ık ık krşılşmktyız. Öreği; 3 yııı odlık çılımı; 3 3 3 = 0,333... = + + +... gibi bir ouz toplmdır.

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Müendislik Mimrlık Fkültesi İnşt Müendisliği Bölümü E-Post: ogu.met.topu@gmil.om We: ttp://mmf.ogu.edu.tr/topu Bilgisyr Destekli Nümerik nliz Ders notlrı met OPÇU n>m 8 8..

Detaylı

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER . ÜNİTE Sılr ve Cebir 9. DENKLEM VE EŞİTSİZLİKLER Trihte ilk ölçme tekikleri prmk klılığı, el geişliği, krış, k gibi ort bodki bir isı vücududki prç ve mesfelerde ol çıkılrk oluşturulmuştur. Fkt ticret

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

ADE. Elektronik Bebek Tartısı İTHALATÇI. ve SERVİS FİRMA

ADE. Elektronik Bebek Tartısı İTHALATÇI. ve SERVİS FİRMA ADE Elektroik Bebek Trts M112600 M114400 M106600 M105600 -M114600 M107600 Modeller içi KULLANIM KILAVUZU İTHALATÇI ve SERVİS FİRMA TARTI DIŞ TİCARET VE PAZARLAMA LTD.ŞTİ. Dikilitş mh. Krfil sok. Krtl Apt.

Detaylı

Yard. Doç. Dr. Şehnaz DEMİRKOL. Yard. Doç. Dr. Suna Mugan ERTUĞRAL

Yard. Doç. Dr. Şehnaz DEMİRKOL. Yard. Doç. Dr. Suna Mugan ERTUĞRAL Sosyl Bilimler ergisi 2007, (2), 23-34 Yrd. oç. r. Şehz EMİRKOL Yrd. oç. r. Su Mug ERTUĞRAL İstbul Üiversitesi İktist Fkültesi, Turizm İşletmeciliği Bölümü İstbul Üiversitesi iktist Fkültesi, İktist Bölümü

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

LYS 2016 MATEMATİK ÇÖZÜMLERİ

LYS 2016 MATEMATİK ÇÖZÜMLERİ LYS 06 MATEMATİK ÇÖZÜMLERİ 6.. 5. 5. ( ) 8 6 65 buluruz. 5. 5 5 Doğru Cevp: C Şıkkı 8 7 ()... 9 buluruz. Doğru Cevp : D Şıkkı 9 8 8 9 8 9 8 9 9 9 9 9 8 buluruz. 8 8 8 8 8 Doğru Cevp : A Şıkkı (n )! (n

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

BASİT RASSAL ÖRNEKLEME. Örnekleme ve Tahmin Teorisi. Örnekleme RASSAL ÖRNEKLEME

BASİT RASSAL ÖRNEKLEME. Örnekleme ve Tahmin Teorisi. Örnekleme RASSAL ÖRNEKLEME BASİT RASSAL ÖRNEKLEME Örekleme ve Thmi Teorii Solu Kitle BüyüklüğüN ol olu bir kitlede büyüklüğüde lıck bir öreği eçilme şı, büyüklüğüdeki bir bşk öreği eçilmei şı ile yı ie bu tür öreklemeye bit rtl

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

Nümerik Analiz A A -1 =I. Bilgisayar Destekli. Ders notları TERS MATRİS HESABI GAUSS-JORDAN tekniği. m=n

Nümerik Analiz A A -1 =I. Bilgisayar Destekli. Ders notları TERS MATRİS HESABI GAUSS-JORDAN tekniği. m=n ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Mühedislik Mimrlık Fkültesi İşt Mühedisliği Bölümü EPost: ogu hmettopcu@gmilcom We: http://mmfoguedutr/topcu Bilgisyr Destekli Nümerik liz Ders otlrı hmet OPÇU m Kre mtrisi

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Müdslk Mmrlık Fkülts İşt Müdslğ Bölümü E-Post: ogu.mt.topcu@gml.com W: ttp://mmf.ogu.du.tr/topcu Blgsr Dstkl Nümrk Alz Drs otlrı 0 Amt TOPÇU I f ( x I x x ( x [ ( x f (

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

Liderlik ve Yönetim Tarzı Raporu

Liderlik ve Yönetim Tarzı Raporu Liderlik ve Yönetim Trzı Rporu Myıs 15 GİZLİ Liderlik ve Yönetim Trzı Rporu Giriş Myıs 15 Giriş LYTR, yönetii seçimi ve yönetim eerileri geliştirme ile ilgili kişilik konulrın odklnır. Bu rpor, profesyonel

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA)

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA) ölüm Đzosttik-Hipersttik-Elstik Şekil Değiştirme TESİR ÇİZGİSİ ÖRNEKLERİ Ypı sistemlerinin mruz kldığı temel yükler sit ve hreketli yüklerdir. Sit yükler için çözümler önceki konulrd ypılmıştır. Hreketli

Detaylı

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS)

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS) BOYU ANAİZİ- (IMENSIONA ANAYSIS Boyut nlizi deneysel ölçümlerde ğımlı ve ğımsız deney değişkenleri rsındki krmşık ifdeleri elirlemekte kullnıln ir yöntemdir. eneylerde ölçülen tüm fiziksel üyüklükler temel

Detaylı

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun

1992 ÖYS A) 0,22 B) 0,24 C) 0,27 D) 0,30 E) 0, Bir havuza açılan iki musluktan, birincisi havuzun tamamını a saatte, ikincisi havuzun 99 ÖYS. Bir öğrenci, hrçlığının 7 si ile, 000 lirlık otobüs biletinden 0 det lmıştır. Bun göre öğrencinin hrçlığı kç lirdır? 0 000 B) 0 000 C) 60 000 D) 80 000 E) 00 000. Bir stıcı, elindeki mlın önce

Detaylı

ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI

ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI V. Ulusl Üetim Aştımlı Sempozyumu, İstbul Ticet Üivesitesi, 25-27 Ksım 2005 ÖĞRENME ETKİLİ ÇİZELGELEME PROBLEMİNDE MAKSİMUM GECİKMENİN ENKÜÇÜKLENMESİ İÇİN ÇÖZÜM YAKLAŞIMLARI Tme EREN Kııkkle Üivesitesi

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

Yüzey Mıknatıslı Doğru Akım Motor Tasarımı Design Of Surface Mounted Permanent Magnet Machines

Yüzey Mıknatıslı Doğru Akım Motor Tasarımı Design Of Surface Mounted Permanent Magnet Machines Yüzey Mıkntıslı Doğru Akım Motor Tsrımı Design Of Surfe Mounted Permnent Mgnet Mhines Tyfun GÜNDOĞDU, Güven KÖMÜRGÖZ Elektrik Mühendisliği Bölümü İstnul Teknik Üniversitesi tyfun.gundogdu@gmil.om, komurgoz@itu.edu.tr

Detaylı

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b

Tablo 1: anket sorularına verilen cevapların % de dağılımı Anket soruları. % c. % a. % b PROJENİN ADI: Kimy Öğretiminde Alterntif Öğretim Metodu PROJE AMACI: Kimy öğretiminde lterntif uygulm olrk nimsyon sunumu tekniğinin uygulnilirliğini örneklerle göstermek ve dh iyi nsıl öğreteilirim sorusun

Detaylı

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y

ORAN ORANTI ORAN ORANTI ORANTININ ÖZELLİKLERİ ÖRNEK - 1 TANIM. x ve y tamsayıdır. x y ORAN ORANTI TANIM Anı irimden iki çokluğun iririle krşılştırılmsın orn denir. ornınd ve nı irimden olduğu için nin irimi oktur. ÖRNEK - 1 ve tmsıdır. = ve + = 0 olduğun göre, kçtır? A) 1 B) C) 0 9 D) 1

Detaylı