Algoritmalara Giriş 6.046J/18.401J

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Algoritmalara Giriş 6.046J/18.401J"

Transkript

1 Algoritmalara Giriş 6.046J/18.401J DERS 1 Algoritmaların Çözümlemesi Araya yerleştirme sıralaması Asimptotik çözümleme Birleştirme sıralaması Yinelemeler Prof. Charles E. Leiserson

2 Dersle ilgili bilgiler 1. Öğretim kadrosu. Uzaktan eğitim 3. Ön koşullar 4. Dersler 5. Etütler 6. Ders notları. Ders kitabı 8. Dersin WEB sitesi. Ek destek 10. Kayıt. Problem setleri. Algoritmaları tanımlamak. Not verme politikası 14. Ortak çalışma politikası September, 05 Introduction to Algorithms L1.

3 Algoritmaların çözümlemesi Bilgisayar program başarımı ve kaynak kullanımı konusunda teorik çalışmalar Başarımdan daha önemli ne vardır? modülerlik kullanıcı dostluğu doğruluk programcı zamanı bakım kolaylığı basitlik işlevsellik genişletilebilirlik sağlamlık güvenilirlik September, 05 Introduction to Algorithms L1.3

4 Neden algoritmalar ve başarımla uğraşırız? Algoritmalarla ölçeklenebilirlik anlaşılabilir. Başarım genelde yapılabilir olanla imkansızın arasındaki çizgiyi tanımlar. Algoritmik matematik program davranışlarını açıklamak için ortak dil oluşturur. Başarım bilgi işleme'nin para birimidir. Program başarımından alınan dersler diğer bilgi işleme kaynaklarına genellenebilir. Hız eğlencelidir! September, 05 Introduction to Algorithms L1.4

5 Sıralama (sorting) problemi Girdi: dizi a 1, a,, a n sayıları. Çıktı: permütasyon a' 1, a',, a' n öyle ki a' 1 a' a' n. Örnek: Girdi: Çıktı: September, 05 Introduction to Algorithms L1.5

6 Araya yerleştirme sıralaması (Insertion sort) pseudocode ( sözdekod ) INSERTION-SORT (A, n) A[1.. n] for j to n do key A[ j] i j 1 while i > 0 and A[i] > key do A[i+1] A[i] i i 1 A[i+1] = key (anahtar) September, 05 Introduction to Algorithms L1.6

7 Araya yerleştirme sıralaması (Insertion sort) pseudocode (sözde kod) INSERTION-SORT (A, n) A[1.. n] for j to n do key A[ j] i j 1 while i > 0 and A[i] > key do A[i+1] A[i] i i 1 A[i+1] = key A: 1 i j n key (anahtar) sorted (sıralı) September, 05 Introduction to Algorithms L1.

8 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.8

9 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.

10 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.10

11 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.

12 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.

13 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.

14 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.14

15 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.15

16 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.16

17 Araya yerleştirme sıralaması örneği September, 05 Introduction to Algorithms L1.1

18 Araya yerleştirme sıralaması örneği (bitti) September, 05 Introduction to Algorithms L1.18

19 Koşma süresi (Running time) Koşma süresi girişe bağımlıdır: Önceden sıralanmış bir diziyi sıralamak daha kolaydır. Koşma süresinin girişin boyutuna göre parametrelenmesi yararlıdır, çünkü kısa dizileri sıralamak uzun dizilere oranla daha kolaydır. Genellikle, koşma süresinde üst sınırları ararız, çünkü herkes garantiden hoşlanır. September, 05 Introduction to Algorithms L1.1

20 Çözümleme türleri En kötü durum (Worst-case): (genellikle) T(n) = n boyutlu bir girişte algoritmanın maksimum süresi Ortalama durum: (bazen) T(n) = n boyutlu her girişte algoritmanın beklenen süresi. Girişlerin istatistiksel dağılımı için varsayım gerekli. En iyi durum: (gerçek dışı) Bir giriş yapısında hızlı çalışan yavaş bir algoritma ile hile yapmak. September, 05 Introduction to Algorithms L1.

21 Makineden-bağımsız zaman Araya yerleştirme sıralamasının en kötü zamanı nedir? Bilgisayarın hızına bağlıdır: bağıl ( rölatif ) zaman ( aynı makinede), mutlak (absolüt ) zaman (farklı makinelerde). BÜYÜK FİKİR: Makineye bağımlı sabitleri görmezden gel. n 'ayaklaştıkça, T(n)'nin büyümesine bak. " Asimptotik Çözümleme" September, 05 Introduction to Algorithms L1.1

22 Θ- simgelemi (notation) Matematik: Θ(g(n)) = { f (n):öyle c 1, c, n 0 pozitif sabit sayıları vardır ki tüm n n0} için 0 c 1 g(n) f (n) c g(n). Mühendislik: Düşük değerli terimleri at; ön sabitleri ihmal et. Örnek: 3n 3 + 0n 5n = Θ(n 3 ) September, 05 Introduction to Algorithms L1.

23 Asimptotik başarım T(n) n yeterince büyürse, Θ(n ) algoritması bir Θ(n 3 ) algoritmasından her zaman daha hızlıdır. n n 0 Öte yandan asimptotik açıdan yavaş algoritmaları ihmal etmemeliyiz. Gerçek dünyada tasarımın mühendislik hedefleriyle dikkatle dengelenmesi gereklidir. Asimptotik çözümleme düşüncemizi yapılandırmada önemli bir araçtır. September, 05 Introduction to Algorithms L1.3

24 Araya yerleştirme sıralaması çözümlemesi En kötü durum: Giriş tersten sıralıysa. T ( n) = n j= Θ( j) = Θ ( n ) Ortalama durum:tüm permutasyonlar eşit olasılıklı. T ( n) = n j= Θ( j / ) = Θ ( n ) [aritmetik seri] Araya yerleştirme sıralaması hızlı bir algoritma mıdır? Küçük n değerleri için olabilir. Büyük n değerleri için asla! September, 05 Introduction to Algorithms L1.4

25 Birleştirme sıralaması BİRLEŞTİRME-SIRALAMASI A[1.. n] 1. Eğer n = 1 ise, işlem bitti.. A[ 1.. n/ ]ve A[ n/ +1.. n ]'yi özyinelemeli sırala. 3. sıralanmış listeyi Birleştir. Anahtar altyordam: Birleştirme September, 05 Introduction to Algorithms L1.5

26 Sıralı iki dizilimi birleştirme 1 September, 05 Introduction to Algorithms L1.6

27 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.

28 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.8

29 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.

30 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.30

31 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.31

32 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.3

33 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.33

34 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.34

35 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.35

36 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.36

37 Sıralı iki dizilimi birleştirme 1 1 September, 05 Introduction to Algorithms L1.3

38 Sıralı iki dizilimi birleştirme 1 1 Süre = Θ(n), toplam n elemanı birleştirmek için (doğrusal zaman). September, 05 Introduction to Algorithms L1.38

39 Birleştirme sıralamasının çözümlenmesi Suistimal T(n) Θ(1) T(n/) Θ(n) BİRLEŞTİRME-SIRALAMASI A[1.. n] 1. Eğer n = 1'se, bitir.. Yinelemeli olarak A[ 1.. n/ ] ve A[ n/ +1.. n ]'yi sırala. 3. sıralı listeyi Birleştir Özensizlik: T( n/ ) + T( n/ ) olması gerekir, ama asimptotik açıdan bu önemli değildir. September, 05 Introduction to Algorithms L1.3

40 Birleştirme sıralaması için yineleme T(n) = Θ(1) eğer n = 1ise; T(n/) + Θ(n) eğer n > 1ise. Genellikle n'nin küçük değerleri için taban durumu ( base case ) olan T(n) = Θ(1) 'i hesaplara katmayacağız; ama bunu sadece yinelemenin asimptotik çözümünü etkilemiyorsa yapacağız.. Derste T(n)'nin üst sınırını bulmanın birkaç yolunu inceleyeceğiz. September, 05 Introduction to Algorithms L1.40

41 Yineleme ağacı T(n) = T(n/) + cn'yi çözün; burada c > 0 bir sabittir. September, 05 Introduction to Algorithms L1.41

42 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. T(n) September, 05 Introduction to Algorithms L1.4

43 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. cn T(n/) T(n/) September, 05 Introduction to Algorithms L1.43

44 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. cn cn/ cn/ T(n/4) T(n/4) T(n/4) T(n/4) September, 05 Introduction to Algorithms L1.44

45 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir.'i cn cn/ cn/ cn/4 cn/4 cn/4 cn/4 Θ(1) September, 05 Introduction to Algorithms L1.45

46 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. cn cn/ cn/ h = lg n cn/4 cn/4 cn/4 cn/4 Θ(1) September, 05 Introduction to Algorithms L1.46

47 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. cn cn cn/ cn/ h = lg n cn/4 cn/4 cn/4 cn/4 Θ(1) September, 05 Introduction to Algorithms L1.4

48 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. cn cn cn/ cn/ cn h = lg n cn/4 cn/4 cn/4 cn/4 Θ(1) September, 05 Introduction to Algorithms L1.48

49 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. cn cn cn/ cn/ cn h = lg n cn/4 cn/4 cn/4 cn/4 cn Θ(1) September, 05 Introduction to Algorithms L1.4

50 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. cn cn cn/ cn/ cn h = lg n cn/4 cn/4 cn/4 cn/4 cn Θ(1) yaprak sayısı = n Θ(n) September, 05 Introduction to Algorithms L1.50

51 Yineleme ağacı T(n) = T(n/) + cn'i çözün; burada c > 0 bir sabittir. cn cn cn/ cn/ cn h = lg n cn/4 cn/4 cn/4 cn/4 cn Θ(1) yaprak sayısı = n Θ(n) Toplam = Θ(n lg n) September, 05 Introduction to Algorithms L1.51

52 Sonuçlar Θ(n lg n), Θ(n )'dan daha yavaş büyür. En kötü durumda, birleştirme sıralaması asimptotik olarak araya yerleştirme sıralamasından daha iyidir. Pratikte, birleştirme sıralaması araya yerleştirme sıralamasını n > 30 değerlerinde geçer. Bunu kendiniz deneyin! September, 05 Introduction to Algorithms L1.5

Problem Set 1 Çözümler

Problem Set 1 Çözümler Algoritmalara Giriş Eylül 30, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 8 0J Professors Erik D. Demaine ve Charles E. Leiserson

Detaylı

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K);

F(A, N, K) // A dizi; N, K integer if N<0 then return K; if A[N]>K then K = A[N]; return F(A, N-1, K); 2009-2010 BAHAR DÖNEMİ MC 689 ALGORİTMA TASARIMI ve ANALİZİ I. VİZE ÇÖZÜMLERİ 1. a) Böl ve yönet (divide & conquer) tarzındaki algoritmaların genel özelliklerini (çalışma mantıklarını) ve aşamalarını kısaca

Detaylı

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15.

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15. Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15 Problem Seti 4 Okumalar: Bölüm 12 13 ve 18 Hem egzersizler

Detaylı

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson

6.046J/18.401J DERS 7 Kıyım Fonksiyonu (Hashing I) Prof. Charles E. Leiserson Algoritmalara Giriş 6.046J/8.40J DERS 7 Kıyım Fonksiyonu (Hashing I) Doğrudan erişim tabloları Çarpışmaları ilmekleme ile çözmek Kıyım fonksiyonu seçimi Açık adresleme Prof. Charles E. Leiserson October

Detaylı

Problem Seti 2 Çözümler

Problem Seti 2 Çözümler Algoritmalara Giriş Ekim 7, 2005 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik D. Demaine ve Charles E. Leiserson Dağıtım 12 Problem Seti 2 Çözümler Problem 2-1. Bu (yaklaşık) sıralanmış

Detaylı

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR

Algoritmaların Karşılaştırılması. Doç. Dr. Aybars UĞUR Algoritmaların Karşılaştırılması Doç. Dr. Aybars UĞUR Giriş Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar zamanı ve belleğidir. Bir programın zaman karmaşıklığı

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/18.401J DERS 14 Yarışmacı Çözümleme Kendini Düzenleyen Listeler Öne Taşıma - Buluşsal Yaklaşım Öne Taşımanın Yarışmacı Çözümlemesi Prof. Charles E. Leiserson Kendini Düzenleyen

Detaylı

Selection Sort Insertion Sort

Selection Sort Insertion Sort Ozet Selection Sort Selection Sort Insertion Sort Linear Search.. Growth Rates. Implementation. Once dizinin en buyuk element ini bul ve bunu en son pozisyondaki element le degistir, daha sonra en buyuk

Detaylı

Alıştırma 1: Yineleme

Alıştırma 1: Yineleme Alıştırma 1: Yineleme Alıştırma 2: Yineleme H10->H2 çevrimini yapınız 7 2 1 3 2 1 1 1 2 0 Hafta 3: Yineleme Alıştırmaları(1) E1. (44/174) S değerini yineleme kullanarak hesap ediniz S = 1 + 2 + 3 + n Hafta3:

Detaylı

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036. atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİL-341 ALGORİTMALAR BÜYÜK O NOTASYONU AHMET ATAKAN 0904.01036 atakanahmet@hotmail.com KIRGIZİSTAN-TÜRKİYE MANAS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİŞKEK 2012 Ahmet Atakan

Detaylı

Algoritmalar ve Karmaşıklık

Algoritmalar ve Karmaşıklık Algoritmalar ve Karmaşıklık Ders 11 Algoritma Ayrık matematikte karşılaşılan bir çok problem sınıfı mevcuttur. Örneğin, verilen tamsayı grubu içindeki en büyük olanının bulunması, verilen bir kümenin bütün

Detaylı

Dağıtık Sistemler CS5001

Dağıtık Sistemler CS5001 Dağıtık Sistemler CS5001 Th. Letschert Çeviri: Turgay Akbaş TH Mittelhessen Gießen University of Applied Sciences Biçimsel model nedir Biçimsel model matematiksel olarak tanımlanmış olan bir modeldir.

Detaylı

Veri Yapıları ve Algoritmalar 2006-2007 2.dönem

Veri Yapıları ve Algoritmalar 2006-2007 2.dönem Veri Yapıları ve Algoritmalar 2006-2007 2.dönem Öğretim Elemanları: Dr. A. Şima Etaner-Uyar Dr. Gülşen Cebiroğlu-Eryiğit Dersle ilgili bilgiler Ders Kitabı Data Structures and Algorithms in Java, 4th Ed.,

Detaylı

Makine Öğrenmesi 3. hafta

Makine Öğrenmesi 3. hafta Makine Öğrenmesi 3. hafta Entropi Karar Ağaçları (Desicion Trees) ID3 C4.5 Sınıflandırma ve Regresyon Ağaçları (CART) Karar Ağacı Nedir? Temel fikir, giriş verisinin bir kümeleme algoritması yardımıyla

Detaylı

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI

2 ALGORİTMA VE AKIŞ DİYAGRAMLARI İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Insertion Sort. (Sokuşturma Sıralaması)

Insertion Sort. (Sokuşturma Sıralaması) Insertion Sort (Sokuşturma Sıralaması) Bu sıralama Bubble Sort algoritmasının iyileştirilmiş biçimidir. Zaman karmaşası (time complexity) O(n 2 ) dir. Bu algoritmayı açıklayan basit bir örnek verebiliriz.

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS PROGRAMLAMA BG-213 2/1 2+0+2 2+1 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Algoritmalara Giriş Kasım 7, 2005 Massachusetts Institute of Technology Profesör Erik D. Demaine ve Charles E. Leiserson Dağıtım 22.

Algoritmalara Giriş Kasım 7, 2005 Massachusetts Institute of Technology Profesör Erik D. Demaine ve Charles E. Leiserson Dağıtım 22. Algoritmalara Giriş Kasım 7, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesör Erik D. Demaine ve Charles E. Leiserson Dağıtım 22 Problem Seti 7 Okumalar: Bölüm 15, 16.1 16.3, 22.1 ve

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Algoritmalara Giriş Ekim 31, 2005 Massachusetts Institute of Technology Professors Erik D. Demaine ve Charles E. Leiserson Dağıtım 19.

Algoritmalara Giriş Ekim 31, 2005 Massachusetts Institute of Technology Professors Erik D. Demaine ve Charles E. Leiserson Dağıtım 19. Algoritmalara Giriş Ekim 31, 2005 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik D. Demaine ve Charles E. Leiserson Dağıtım 19 Problem Seti 6 Okumalar: Bölüm 17 ve karşılaştırmalı

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu

Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Algoritmalar, Akış Şemaları ve O() Karmaşıklık Notasyonu Öğr. Gör. M. Ozan AKI r1.0 Algoritmalar (Algorithms) Algoritma, bir problemin çözümünü sağlayan ancak deneme-yanılma ve sezgisel çözüme karşıt bir

Detaylı

Java, Python ve Ruby Dillerinin Performans Karşılaştırması

Java, Python ve Ruby Dillerinin Performans Karşılaştırması Java, Python ve Ruby Dillerinin Performans Karşılaştırması Çanakkale Onsekiz Mart Üniversitesi Mustafa ŞAHİN Akademik Bilişim 2007 1 Dillerin seçim nedeni Java, Pyton ve Ruby Programlama dillerinin popülerliği

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI. 2011-12 Bahar Yarıyılı

T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI. 2011-12 Bahar Yarıyılı T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI 2011-12 Bahar Yarıyılı ALGORİTMA VE PROGRAMLAMA BİL 133 5 AKTS Kredisi 1. yıl 1. yarıyıl Lisans Zorunlu 4 saat/hafta

Detaylı

O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026

O NOTASYONU. Abdullah Gazi Emre DAĞLI 0804.01026 O NOTASYONU Abdullah Gazi Emre DAĞLI 0804.01026 Program Çalışma Hızı ve Bellek Gereksinimi Programın çalışma hızı karmaşıklıkla ifade edilir; bu kavram zaman birimiyle ifade edilmeyip doğrudan işlem adedi

Detaylı

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Çarpışma çözümleme yöntemleri Sunum planı Bağlantıları kullanarak çarpışmaların çözümlenmesi. Coalesced Hashing (Birleştirilmiş

Detaylı

İÇİNDEKİLER İÇİNDEKİLER KODLAB

İÇİNDEKİLER İÇİNDEKİLER KODLAB İÇİNDEKİLER IX İÇİNDEKİLER 1 GİRİŞ 1 Kitabın Amacı 1 Algoritmanın Önemi 2 Bilgisayarın Doğuşu ve Kullanım Amaçları 3 Programlama Dili Nedir? 3 Entegre Geliştirme Ortamı (IDE) Nedir? 4 2 ALGORİTMA VE AKIŞ

Detaylı

Bu materyallerden alıntı yapmak veya kullanım şartları hakkında bilgi almak için:

Bu materyallerden alıntı yapmak veya kullanım şartları hakkında bilgi almak için: MIT Açık Ders malzemeleri http://ocw.mit.edu 6.046J Algoritmalara Giriş, Güz 2005 Bu materyallerden alıntı yapmak veya kullanım şartları hakkında bilgi almak için: Erik Demaine ve Charles Leiserson, 6.046J

Detaylı

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ. DERS TANITIM ve UYGULAMA BİLGİLERİ. Ders. Yarıyılı

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ. DERS TANITIM ve UYGULAMA BİLGİLERİ. Ders. Yarıyılı TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ DERS TANITIM ve UYGULAMA BİLGİLERİ Dersin Adı Kodu Yarıyılı Ders (Saat/Hafta) Uygulama 3 Kredisi ECTS (Saat/Hafta) Veri Yapıları ve

Detaylı

ÜNİT E ÜNİTE GİRİŞ. Algoritma Mantığı. Algoritma Özellikleri PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA

ÜNİT E ÜNİTE GİRİŞ. Algoritma Mantığı. Algoritma Özellikleri PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA PROGRAMLAMA TEMELLERİ ÜNİTE 3 ALGORİTMA GİRİŞ Bilgisayarların önemli bir kullanım amacı, veri ve bilgilerin kullanılarak var olan belirli bir problemin çözülmeye çalışılmasıdır. Bunun için, bilgisayarlar

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net

Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Bilgisayar Programlama Ders 9 Dr. Fatih AY Tel: 0 388 225 22 55 fatihay@fatihay.net www.fatihay.net Dizileri Fonksiyonlara Dizileri Fonksiyonlara Bir dizi argümanını fonksiyon içinde bir değer olarak kullanabilmek

Detaylı

Yazılım Nedir? 2. Yazılımın Tarihçesi 3. Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5. Yazılımın Önemi 6

Yazılım Nedir? 2. Yazılımın Tarihçesi 3. Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5. Yazılımın Önemi 6 ix Yazılım Nedir? 2 Yazılımın Tarihçesi 3 Yazılım Grupları 4 Sistem Yazılımları 4 Kullanıcı Yazılımları 5 Yazılımın Önemi 6 Yazılımcı (Programcı) Kimdir? 8 Yazılımcı Olmak 9 Adım Adım Yazılımcılık 9 Uzman

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

ÜRETİM ÇİZELGELEME. Yrd. Doç. Dr. Pınar Mızrak Özfırat. Celal Bayar Üniversitesi Yayınları Yayın No: 0010

ÜRETİM ÇİZELGELEME. Yrd. Doç. Dr. Pınar Mızrak Özfırat. Celal Bayar Üniversitesi Yayınları Yayın No: 0010 ÜRETİM ÇİZELGELEME Yrd. Doç. Dr. Pınar Mızrak Özfırat Celal Bayar Üniversitesi Yayınları Yayın No: 0010 2013 Celal Bayar Üniversitesi Yönetim Kurulu'nun 2013/13 sayılı ve X no'lu kararı ile basılmıştır.

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

ELN1001 BİLGİSAYAR PROGRAMLAMA I

ELN1001 BİLGİSAYAR PROGRAMLAMA I ELN1001 BİLGİSAYAR PROGRAMLAMA I DEPOLAMA SINIFLARI DEĞİŞKEN MENZİLLERİ YİNELEMELİ FONKSİYONLAR Depolama Sınıfları Tanıtıcılar için şu ana kadar görülmüş olan özellikler: Ad Tip Boyut Değer Bunlara ilave

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER Veri Yapıları Yrd. Doç. Dr. Şadi Evren ŞEKER Not: Bu sunumun amacı, İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü, Bilgisayar Mühendisliğine Giriş Dersi için genel amaçlı veri yapıları hakkında

Detaylı

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT

Birliktelik Kuralları Analizi. Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İş Zekası Çözümleri için i Çok Boyutlu Birliktelik Kuralları Analizi Yard. Doç. Dr. Derya BİRANT Prof. Dr. Alp KUT İçerik 1 Veri Madenciliği 2 Birliktelik Kuralları Analizi 3 Uygulama 4 Algoritma 5 Sonuçlar

Detaylı

Algoritmanın Hazırlanması

Algoritmanın Hazırlanması Algoritmanın Hazırlanması Algoritma, herhangi bir sorunun çözümü için izlenecek yol anlamına gelmektedir. Çözüm için yapılması gereken işlemler hiçbir alternatif yoruma izin vermeksizin sözel olarak ifade

Detaylı

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay.

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay. PROGRAMLAMAYA GİRİŞ Öğr. Gör. Ayhan KOÇ Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay., 2007 Algoritma ve Programlamaya Giriş, Ebubekir YAŞAR, Murathan Yay., 2011

Detaylı

Standard Template Library

Standard Template Library Standard Template Library Uluslararası Bilgisayar Enstitüsü Ege Üniversitesi Ahmet Bilgili & Serkan Ergun STL ANSI/ISO Standard C++ ın içerdiği algoritmalar ANSI/ISO Standard C++ ın içerdiği algoritmalar

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Otoma Teorisi Ve Biçimsel Diller BIL445 7 3+0 3 4 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu

Detaylı

Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic

Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic BİLGİSAYAR DONANIM Donanım birimleri ekran, klavye, harddisk, ram YAZILIM Yazılımlar ise bilgisayarın donanım yapısını kullanılır hale

Detaylı

Bilgi Güvenliği Eğitim/Öğretimi

Bilgi Güvenliği Eğitim/Öğretimi Bilgi Güvenliği Eğitim/Öğretimi İbrahim SOĞUKPINAR Gebze Yüksek Teknoloji Enstitüsü İçerik Bilgi Güvenliği Eğitim/Öğretimi Dünyadaki Örnekler Türkiye deki Örnekler GYTE de Bilgi Güvenliği Dersi Sonuç ve

Detaylı

C Dersleri Bölüm 3 : Program akışı

C Dersleri Bölüm 3 : Program akışı İzmir Ekonomi Üniversitesi Bilgisayar Topluluğu www.ieubt.org C Dersleri Bölüm 3 : Program akışı Sorularınız için : programlama@ieubt.org Hazırlayan : Görkem PAÇACI (gorkem.pacaci@std.ieu.edu.tr) C Program

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

Mikroişlemcilerde Aritmetik

Mikroişlemcilerde Aritmetik Mikroişlemcilerde Aritmetik Mikroişlemcide Matematiksel Modelleme Mikroişlemcilerde aritmetik işlemler (toplama, çıkarma, çarpma ve bölme) bu iş için tasarlanmış bütünleşik devrelerle yapılır. Bilindiği

Detaylı

Abstract: Özet: 1. Giriş

Abstract: Özet: 1. Giriş Karakterden Bağımsız Birçok Dile Uyarlanabilir Dizin Sıralama Algoritması Applicable Index Sorting Algorithm Regardless of Character For Many Languages 1 Burhan BARAKLI and 1 Ahmet KÜÇÜKER 1 Faculty of

Detaylı

Bosch Genel Seslendirme Sistemi Akustik mükemmelliğe giden yolda öncü

Bosch Genel Seslendirme Sistemi Akustik mükemmelliğe giden yolda öncü Bosch Genel Seslendirme Sistemi Akustik mükemmelliğe giden yolda öncü 2 Akustik mükemmelliğe giden yolda öncü Gelişmiş akustik uzmanlık Tasarımda ve elektro-akustik teknolojisinde 60 yıldan fazla deneyime

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

Java Koleksiyonları (Java Collections)

Java Koleksiyonları (Java Collections) Java Koleksiyonları (Java Collections) Giriş Bu bölümde, java standart kütüphanesinde yer alan Collections topluluğunu ele alacağız. Amaçlar Bu dersin sonunda öğrenci şunları biliyor olacaktır: Java Collctions

Detaylı

=~ Metodu 92 Karakter Sınıfları 94 sub ve gsub metotları 101 Hızlı Tekrar 102 Kontrol Noktası 103 Düello 106 Sonraki Bölümde 109

=~ Metodu 92 Karakter Sınıfları 94 sub ve gsub metotları 101 Hızlı Tekrar 102 Kontrol Noktası 103 Düello 106 Sonraki Bölümde 109 vii 1 Neden Ruby? 2 Ruby Kurulumu 5 Windows ta Ruby Kurulumu 5 Linux ve Mac OS ta Ruby Kurulumu 6 Doğru Geliştirme Ortamının Seçimi 6 Diğer Ruby Uyarlamaları 9 Örnek Kodlar Hakkında 10 İnternet Adresi

Detaylı

BLG4146 - Sistem Analizi ve Tasarımı. Öğr. Grv. Aybike ŞİMŞEK

BLG4146 - Sistem Analizi ve Tasarımı. Öğr. Grv. Aybike ŞİMŞEK BLG4146 - Sistem Analizi ve Tasarımı Öğr. Grv. Aybike ŞİMŞEK Tasarım Evresi Analiz evresinde sorulan NE sorusuyla elde edilen bilgilerin NASIL yapılacağı, NASIL gerçekleştirileceğinin ortaya konulduğu

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

ALGORİTMA KAVRAMI. Bir sorunu / problemi çözmek veya belirli bir amaca ulaşmak için gerekli olan sıralı mantıksal adımların tümüne algoritma denir.

ALGORİTMA KAVRAMI. Bir sorunu / problemi çözmek veya belirli bir amaca ulaşmak için gerekli olan sıralı mantıksal adımların tümüne algoritma denir. ALGORİTMA KAVRAMI Bir sorunu / problemi çözmek veya belirli bir amaca ulaşmak için gerekli olan sıralı mantıksal adımların tümüne algoritma denir. Algoritma bir sorunun çözümü için izlenecek yolun tanımıdır.

Detaylı

SİSTEM ANALİZİ ve TASARIMI. ÖN İNCELEME ve FİZİBİLİTE

SİSTEM ANALİZİ ve TASARIMI. ÖN İNCELEME ve FİZİBİLİTE SİSTEM ANALİZİ ve TASARIMI ÖN İNCELEME ve FİZİBİLİTE Sistem Tasarım ve Analiz Aşamaları Ön İnceleme Fizibilite Sistem Analizi Sistem Tasarımı Sistem Gerçekleştirme Sistem Operasyon ve Destek ÖN İNCELEME

Detaylı

2013-2014 EĞİTİM ÖĞRETİM MÜNEVVER ÖZTÜRK ORTAOKULU II. DÖNEM BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ DERS NOTLARI

2013-2014 EĞİTİM ÖĞRETİM MÜNEVVER ÖZTÜRK ORTAOKULU II. DÖNEM BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ DERS NOTLARI 2013-2014 EĞİTİM ÖĞRETİM MÜNEVVER ÖZTÜRK ORTAOKULU II. DÖNEM BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ DERS NOTLARI Bilgi BİLİŞİM TEKNOLOJİLERİ VE YAZILIM DERSİ (BTY) Türkiye de orta eğitimde bilgisayar eğitimi,

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 VERİ YAPILARI Sunu Planı Kendini-gösteren Yapılar Dinamik Bellek Tahsisi Bağlı Listeler Yığınlar Kuyruklar Ağaçlar 1 Veri Yapıları Şu ana kadar, diziler, matrisler ve yapılar

Detaylı

ALGORİTMA İ VE PROGRAMLAMA

ALGORİTMA İ VE PROGRAMLAMA ALGORİTMA İ VE PROGRAMLAMA II Öğr.Gör.Erdal GÜVENOĞLU Hafta 2 Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ 2 Neden algoritmayı analiz ederiz? Algoritmanın performansını ölçmek

Detaylı

4- ALGORİTMA (ALGORITHM)

4- ALGORİTMA (ALGORITHM) (ALGORITHM) Algoritma: Bir Problemin çözümünün, günlük konuşma diliyle adım adım yazılmasıdır. Algoritma sözcüğü Ebu Abdullah Muhammed İbn Musa el Harezmi adındaki Türkistan'lı alimden kaynaklanır. Bu

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Veri Organizasyonu ve Yönetimi BIL303 5 3+0 3 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Veri Organizasyonu ve Yönetimi BIL303 5 3+0 3 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Veri Organizasyonu ve Yönetimi BIL303 5 3+0 3 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz

Detaylı

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem

3.3. İki Tabanlı Sayı Sisteminde Dört İşlem 3.3. İki Tabanlı Sayı Sisteminde Dört İşlem A + B = 2 0 2 1 (Elde) A * B = Sonuç A B = 2 0 2 1 (Borç) A / B = Sonuç 0 + 0 = 0 0 0 * 0 = 0 0 0 = 0 0 0 / 0 = 0 0 + 1 = 1 0 0 * 1 = 0 0 1 = 1 1 0 / 1 = 0 1

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

Matris İşlemleri Uygulaması

Matris İşlemleri Uygulaması Matris İşlemleri Uygulaması Uygulama Konusu Uygulama 3x3 boyutlu matrislerle toplama, çıkarma ve çarpma işlemleri üzerinedir. Toplama İşlemi AA = aa iiii mmmmmm ve BB = bb iiii mmmmmm aynı tipte iki matris

Detaylı

Deneme. Doç.Dr. Güner Gürsoy BİLGİSAYAR PROGRAMCILIĞI (YGS-1)

Deneme. Doç.Dr. Güner Gürsoy BİLGİSAYAR PROGRAMCILIĞI (YGS-1) Deneme Doç.Dr. Güner Gürsoy BİLGİSAYAR PROGRAMCILIĞI (YGS-1) Bilgisayar Programcılığı Bilgisayar Programcılığı bölümü, bilgisayar sistemlerinin yapısı, geliştirilmesi ve bu sistemlerin etkin kullanım yöntemleri

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Katlı Giriş Geçitleri

Katlı Giriş Geçitleri Katlı Giriş Geçitleri Eviriciler ve tamponlar tek-girişli geçit devresi için olasılıkları çıkartır. Tamponlamak yada evirmekten başka tek mantık sinyali ile daha fazla ne yapılabilir? Daha fazla mantık

Detaylı

STP1 +2 FONKSİYON. Step Motor Eğitim Seti. Tamamen mekatronik özel tasarım. Pratik Becerileri kazanmak ve Proje Odaklı Uzmanlık İçin

STP1 +2 FONKSİYON. Step Motor Eğitim Seti. Tamamen mekatronik özel tasarım. Pratik Becerileri kazanmak ve Proje Odaklı Uzmanlık İçin STP1 Step Motor Eğitim Seti Tamamen mekatronik özel tasarım %100 kendi imalatımız Pratik Becerileri kazanmak ve Proje Odaklı Uzmanlık İçin +2 FONKSİYON Konum göstrge cetveli 24V PLC kontrollü lazer pointer

Detaylı

Mantıksal çıkarım yapmak. 9 ve üzeri

Mantıksal çıkarım yapmak. 9 ve üzeri Aktivite 6 Savaş gemileri Arama algoritmaları Özet Bilgisayarların sıklıkla bir yığın verinin içerisinde bilgi bulmaları gerekir. Hızlı ve verimli yöntemler kullanarak bunu becerirler. Bu aktivitede 3

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları

BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları BMB204. Veri Yapıları Ders 12. Dizgi Eşleme (String Matching) Algoritmaları İleri Veri Yapıları Erdinç Uzun NKÜ Çorlu Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Dersin Planı Dizgi Eşleme Algoritmaları

Detaylı

BİLGİSAYAR PROGRAMCISI

BİLGİSAYAR PROGRAMCISI TANIM Değişik konularda ve çok miktardaki bilgiyi, bilgisayar ortamında hızlı ve sistematik bir biçimde çözümlemek ve değerlendirebilmek amacı ile program yazan kişidir. A- GÖREVLER - Bilgilerin bilgisayarda

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Matlab Programlama BIL449 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

BMÜ-101 ALGORİTMA VE PROGRAMLAMAYA GİRİŞ LABORATUARI

BMÜ-101 ALGORİTMA VE PROGRAMLAMAYA GİRİŞ LABORATUARI BİR BOYUTLU DİZİLER Amaçlar: 1. 1 BOYUTLU DİZİLERİ TANIMLAMAK 2. 1 BOYUTLU DİZİ UYGULAMALARI YAPMAK Örnek 5-1 Aşağıdaki program öğrenci notlarını bularak en iyi notu hesaplar. Harf notu şu şekilde hesaplanır:

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

DERS TANITIM ve UYGULAMA BİLGİLERİ COURSE INTRODUCTION AND APPLICATION INFORMATION

DERS TANITIM ve UYGULAMA BİLGİLERİ COURSE INTRODUCTION AND APPLICATION INFORMATION EK-1 DERS TANITIM ve UYGULAMA BİLGİLERİ COURSE INTRODUCTION AND APPLICATION INFORMATION Dersin Adı/ Course Name Ön Koşul Dersleri/ Pre-requisites Kesikli Matematik Discrete Mathematics : - Kodu/ Code MAT1030

Detaylı

İNTERNET PROGRAMCILIĞI DERSİ

İNTERNET PROGRAMCILIĞI DERSİ İNTERNET PROGRAMCILIĞI DERSİ Dersin Modülleri İnternet Programcılığı 1 İnternet Programcılığı 2 İnternet Programcılığı 3 İnternet Programcılığı 4 İnternet Programcılığı 5 Kazandırılan Yeterlikler Programlama

Detaylı

İşletim Sistemlerine Giriş

İşletim Sistemlerine Giriş İşletim Sistemlerine Giriş Bellek Yönetimi (Memory Management) İşletim Sistemlerine Giriş - Ders08 1 Bellek Yönetimi Bellek önemli bir kaynaktır ve dikkatli yönetilmelidir. İşletim sistemlerinde bellek

Detaylı

bilişim ltd İş Zekâsı Sistemi

bilişim ltd İş Zekâsı Sistemi BI İş Zekâsı Sistemi Bilişim Ltd. 1985 te kurulan Bilişim Ltd, Türkiye nin üstün başarıyla sonuçlanmış önemli projelerine imza atan öncü bir yazılımevi ve danışmanlık kurumu dur. Önemli kuruluşların bilgi

Detaylı

RotamNet Ticari Programı Kısa Tanıtım Dökümanı

RotamNet Ticari Programı Kısa Tanıtım Dökümanı RotamNet Ticari Programı Kısa Tanıtım Dökümanı RotamNet ; Kolay kurulumu ve kullanımıyla ön plana çıkan, teknolojik alt yapısıyla işletmelere pratik çözümler sunan ve büyük avantajlar sağlayan tam bir

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Algoritmalar ve Programlama. Algoritma

Algoritmalar ve Programlama. Algoritma Algoritmalar ve Programlama Algoritma Algoritma Bir sorunu / problemi çözmek veya belirli bir amaca ulaşmak için gerekli olan sıralı mantıksal adımların tümüne algoritma denir. Algoritma bir sorunun çözümü

Detaylı

BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2. Öğretim planındaki AKTS 524048200001205 2 1 0 3 5

BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2. Öğretim planındaki AKTS 524048200001205 2 1 0 3 5 BEYKENT ÜNİVERSİTESİ - DERS İZLENCESİ - Sürüm 2 Ders Kodu Teorik Uygulama Lab. Kimya Mühendisliğinde Bilgisayar Uygulamaları Ulusal Kredi Öğretim planındaki AKTS 524048200001205 2 1 0 3 5 Ön Koşullar :

Detaylı

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011

Adım Adım SPSS. 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü. Y. Doç. Dr. İbrahim Turan Nisan 2011 Adım Adım SPSS 1- Data Girişi ve Düzenlemesi 2- Hızlı Menü Y. Doç. Dr. İbrahim Turan Nisan 2011 File (Dosya) Menüsü Excel dosyalarını SPSS e aktarma Variable View (Değişken Görünümü 1- Name (İsim - Kod)

Detaylı

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi Bil101 Bilgisayar Yazılımı I Bilgisayar Yüksek Mühendisi Yazılım, değişik ve çeşitli görevler yapma amaçlı tasarlanmış elektronik araçların birbirleriyle haberleşebilmesini ve uyumunu sağlayarak görevlerini

Detaylı

Eln 1002 Bilgisayar Programlama II

Eln 1002 Bilgisayar Programlama II Eln 1002 Bilgisayar Programlama II Recursive Fonksiyonlar Ne ÖĆreneceĆiz? Recursion nedir? Recursive Fonksiyon tanımı Uygulama ve Örnekler Recursive Çözüm Tasarlama Recursion Nedir? Birçok problem, kendisinin

Detaylı

VERİ YAPILARI VE PROGRAMLAMA (BTP104)

VERİ YAPILARI VE PROGRAMLAMA (BTP104) VERİ YAPILARI VE PROGRAMLAMA (BTP104) Yazar: Doç.Dr. İ. Hakkı CEDİMOĞLU S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı