GENEL FİZİK II DERS NOTLARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GENEL FİZİK II DERS NOTLARI"

Transkript

1 GENEL FİZİK II DERS NOTLARI Hazırlayanlar: Dr. Mustafa POLAT Dr. Leyla TATAR YILDIRIM 1

2 BÖLÜM-1 Elektrik Yükü Bu bölümde, maddenin özelliklerinden birisi olan elektrik yükü ile tanışacağız. Atomu meydana getiren elektron, proton ve nötron nun yüklerini öğreneceğiz ve devamında da şu konulara değineceğiz: Elektrik yükünün çeşitleri İki yük arasındaki kuvvet (Coulomb yasası) Yükün kuantalığı Yükün korunumu (1-1)

3 Bir kumaş parçası ile ovuşturulan kehribarın tüy gibi hafif nesneleri çektiği antik çağlardan beri bilinen bir şeydir. Bu olgu, maddenin yeni bir özelliği olan elektrik yükü ile ilgilidir. Birçok deney, iki tür elektrik yükünün varlığını göstermiştir: pozitif (renk kodu: kırmızı) ve negatif (renk kodu: siyah). pozitif ve negatif isimleri Benjamin Franklin tarafından verilmiş isimlerdir. Cam bir çubuğu ipek bir kumaşla ovuşturduğumuzda, ikisi de elektrik yükü kazanır. Cam çubuğun kazandığı yükün işareti pozitif olarak tanımlanır. Benzer şekilde, plastik bir çubuğu bir kürk ile ovuşturduğumuzda, ikisi de elektrik yükü kazanır. Plastik çubuğun kazandığı yükün işareti negatif olarak tanımlanır. (1-)

4 Yüklü cisimlerle yapılan bir çok deneysel çalışmalardan elde edilen sonuçlar şu şekilde özetlenebilir: 1. Aynı işaretli yükler (her ikisi de pozitif veya negatif) birbirlerini iterler (Şekil-a).. İşaretleri farklı olan yükler (biri pozitif, diğeri negatif) birbirlerini çekerler (Şekil-b). Yükünün işareti bilinen bir cisimle, yükünün işareti bilinmeyen cisim arasındaki etkileşme kuvvetinin yönünden yararlanarak, bilinmeyen cismin yükünün işaretini belirleyebiliriz. Aynı işaretli yükler birbirini iter. Zıt işaretli yükler birbirini çeker. (1-3)

5 Yöntem: İpek bir kumaşla ovuşturulan cam çubuğun pozitif yüklü olduğunu biliyoruz. Bu çubuğu, yükü kaybolmayacak ve etrafında serbestçe dönebilecek şekilde ortasından asalım. Sonra da, yükünü bilmediğimiz bir cismi cam çubuğa doğru yaklaştıralım. Mümkün olan iki durum söz konusudur: Şekil- a: İki cisim birbirini iter. Bu durumda bilinmeyen yük pozitif işaretlidir. Şekil-b: İki cisim birbirini çeker. Bu durumda bilinmeyen yük negatif işaretlidir. (1-4)

6 Atomun çapı m. Çekirdeğin çapı m. Benjamin Franklin zamanında (18. yy) elektrik yükünün bir çeşit ağırlıksız, sürekli akışkan olduğu kabul ediliyordu.. yy başlarında Ernest Rutherford un atomun yapısı üzerinde yürüttüğü araştırmalar, maddenin ne şekilde meydana geldiğini ortaya koydu ve bileşenlerinin sahip oldukları yüklerin belirlenmesini sağladı. Atomlar elektronlardan ve çekirdekten oluşur. Çekirdeğin kendisi de, proton ve nötronlardan oluşur. Elektronlar negatif yüklü, protonlar pozitif yüklü, nötronlar ise yüksüzdür. Bu durumda elektrik yükü, atomu oluşturan parçacıkların (elektron, proton, nötron) temel bir özelliğidir. (1-5)

7 Atomik Bileşenlerin Kütleleri ve Yükleri: Nötron (n) : Kütle m = kg; Yük q = Proton (p) : Kütle m = kg; Yük q = C Elektron (e) : Kütle m = kg; Yük q = C Not-1: Elektron ve protonun yükleri için, sırasıyla, -e ve +e sembolleri kullanılır. Bunlar temel yük olarak bilinirler. Not-: Bir atomdaki elektron ve proton sayıları eşitse, atom elektriksel olarak nötr olarak adlandırılır. Bu sayı atom numarası (Z) dır. Not-3: Bir atomdaki proton ve nötron sayılarının toplamı ise kütle numarası (A) dır. Gösterim: 35 9 U Z = 9 = elektron/proton sayısı A = 35 =proton + nötron sayısı (1-6)

8 Yükün Quantalanması: Bir nesnenin toplam yükü, o nesnedeki temel parçacıkların sayısına (elektron, proton, nötron) bağlıdır. Elektron sayısı N p ve nötron sayısı net N n ( ) olan bir nesnenin net yükü, ( ) Q = en + en + N = e N N = ne olur. Burada, e p n p e n= N N p e N e, proton sayısı ve tamsayıdır. Bu, net yükün elektron yükünün tamsayı katları kadar olacağını gösterir. Yani yük quantalıdır. N e N n N p (1-7)

9 Yükün Korunumu: Her ikisi de yüksüz olan cam bir çubuk ile ipek bir kumaşımız olsun. Cam çubuğu ipek kumaşla ovuşturduğumuzda, cam çubuk pozitif yüklenir. Aynı anda, toplam yük sıfır olacak şekilde, ipek kumaş da eşit miktarda negatif olarak yüklenir. Buradan, ovuşturma işleminin herhangi bir yük oluşturmadığı ancak, birinden diğerine yük akışı sağladığı anlaşılır. Yükün korunumu şöyle özetlenebilir: Herhangi bir işlemin öncesindeki toplam yük, işlemden sonraki toplam yüke eşittir. Önceki Net Yük = Sonraki Net Yük Q i = Q f (1-8)

10 İletkenler ve Yalıtkanlar : İletkenler, yüklerin içlerinde serbestçe dolaşabilmelerine izin veren malzemelerdir. Bakır, aliminyum, civa bunlardan bazılarıdır. Yalıtkanlar, yüklerin içlerinde serbestçe dolaşmalarına izin vermeyen malzemelerdir. Plastik, lastik, cam, seramik bunlardan bazılarıdır. İletkenlerde, atomun son yörüngesindeki bir veya daha fazla elektron kolayca atomdan ayrılıp serbest hale gelebilir ve iletken içinde hareket eder. Bunlara iletim elektronları diyoruz. İletim elektronları geride iyon dediğimiz pozitif yüklü atomlar bırakırlar. İletkenin içinde sadece iletim elektronları serbestçe hareket edebilir, pozitif yüklü iyonların konumları değişmez. Yalıtkanlar ise iletim elektronu içermezler. (1-9)

11 Bir İletkeni İndüksiyon Yoluyla Yüklemek : Şekil- a' da bir iletken yalıtkan bir iple asılmıştır ve başlangıçta yüksüzdür. Negatif yüklü plastik çubuğu yavaşça yaklaştıralım. Plastik yalıtkandır ve üzerindeki negatif yükler hareketsizdir. Ancak, iletken içindeki negatif yükleri sağ uca doğru itecektir. İletkenin sol ucunda elektron boşluğu meydana geldiğinden pozitif yüklenmiş olacaktır. Şekil- b 'de toprağa bağlı bir iletim yolu oluşturulmuş, böylece elektronların toprağa akması sağlanmıştır. Toprak bağlantısını iptal eder ve plastik çubuğu uzaklaştırırsak, iletken çubuk pozitif yüklenmiş olacaktır. Not -1: İletken üzerinde indüklenen yük, plastik çubuğun Not - : yükü ile ters işaretlidir. Plastik çubuk aynı amaçlı çok defa kullanılabilir. (1-1)

12 F = k q q 1 r mm F = G r 1 Coulomb Yasası: Aralarındaki mesafe r olan, q ve q yükleri olsun. Bu yükler 1 birbirlerine, aşağıda özellikleri verilen kuvvetler uygularlar. 1. Kuvvetler, yükleri birleştiren doğru boyuncadır.. Yükler aynı işaretliyse, kuvvet iticidir. Yükler zıt işaretliyse, kuvvet çekicidir. 3. Kuvvetin büyüklüğü, Coulomb Yasası olarak bilinen 1 k = olmak üzere, F = k 4πε q q 1-1 olarak bilinir ve değeri N m /C dir. r eşitliği ile verilir. Burada ε, boşluğun veya havanın elektriksel geçirgenliği Coulomb kuvveti ve Newton'un gravitasyonel kuvveti aynı formdadır. Tek fark, gravitasyonel kuvveti her zaman çekici bir kuvvettir. Buna karşın Coulomb kuvveti, yüklerin işaretine bağlı olarak çekici veya itici olabilir. (1-11)

13 Örnek : Hidrojen atomunda çekirdekteki proton ile yörüngedeki elektron arasındaki 11 uzaklık ortalama m' dir. Bunlar arasındaki elektriksel ve gravitasyonel kuvvetlerin büyüklüklerini bulunuz. Coulomb yasasından, bu iki yük arasındaki kuvvetin büyüklüğü: F E 19 e = k = 9 1 = 8. 1 N. r 11 ( ) İki kütle arasındaki çekim kuvvetinin büyüklüğü, Newton' un gravitasyon yasasından: = mm e Fg G r p 31 7 ( ) ( ) 11 ( ) = = N. Atomik boyutta, parçacıklar arasındaki kütle çekim kuvveti önemsenmeyecek düzeyde küçüktür. (1-1)

14 Coulomb Yasası ve Üstüste Binme İlkesi : Bir yük grubunun belirli bir yüke uyguladığı net kuvvet, tüm yüklerin uyguladığı kuvvetlerin vektörel toplamına eşittir. Örneğin, q ve q3 yükleri tarafından q1 yüküne uygulanan net kuvvet ( F1), F1 = F1 + F31 ile verilir. Burada, F ve F sırasıyla q ve q yüklerinin q yüküne uyguladığı kuvvetlerdir. durumunda ise net kuvvet, n F = F + F + F F = F n1 i1 i= ile ifade edilir q 1 yüküne etkiyen n tane nokta yük olması F = F + F (1-13)

15 Örnek : uzunluğu 3 Şekildeki gibi üç nokta yük, dik kenarlarının a= 1 cm olan ikizkenar üçgenin köşelerine yerleştirilmiştir. q =q = 5 µ C ve q = µ C olduğuna göre q 1 3 yüküne etkiyen net kuvveti bulunuz. Coulomb yasasından, q ve q yüklerinin q yüküne uyguladıkları kuvvetlerin büyüklükleri: F ( a) ( 5 1 )( 5 1 ) q q = k = 9 1 = 11 N ( ) 6 6 ( 1 )( 5 1 ) q q3 9 F3 = k = 9 1 = 9 N a F = F + F = (11cos 45 9)i + 11sin 45 ˆj = 1.1i ˆ+ 7.9j ˆ N net Fnet (.1) ˆ ( ) 7.9 = ( 1.1) + ( 7.9) = 8 N ; θ = tan = o (1-14)

16 Örnek : Şekildeki gibi üç nokta yük, x-ekseni üzerine yerleştirilmiştir. q = 15 µ C'luk yük x= m noktasında, 1 q = 6 µ C'luk yük ise orijinde bulunmaktadır. q nokta 3 yükü x-eksini üzerinde hangi noktada olmalıdırki, üzerine etkiyen net kuvvet sıfır olsun? q ve q yükleri aynı işaretli olduğu için, işareti ne olursa olsun q yükü 1 3 bunların arasına konulmalıdır. Bu durumda: q q q q F = k ; F = k x ( x) q1 q F13 = F3 = 3x 8x+ 8= x x =.775 m bulunur. ( x) (1-15)

17 Örnek : Aynı noktadan asılmış, kütleleri 3 1 kg olan yüklü iki özdeş küre şekildeki gibi dengededirler. İplerin boyu 15 cm ve θ = o 5 olduğuna göre, kürelerin yükü nedir? Denge durumunda yükler arasındaki uzaklık: a = Lsin θ olacaktır. Küreler dengede olduğuna göre: q T sin θ = k ; T cosθ = mg ( a) 8 q C ( a) mg tanθ ( a) tanθ = q = = mg k bulunur. k = q 16 (1-16)

18 Örnek : Kütleleri m, yükleri de q =Qve q = Qolan 1 iki parçacık L uzunluğundaki iplerle aynı noktadan düşey olarak asılı halde dengededirler. Yükleri asılı oldukları noktaya bağlayan iplerin düşeyle yaptıkları θ ve θ açıları 1 çok küçüktür. Bu iki açı arasındaki ilişkiyi ve yükler arasındaki mesafeyi bulunuz. T1sinθ1 = FE FE q1 yükü için tanθ1 = T1cos θ1 = mg mg θ1 = θ Tsinθ = FE FE q tan yükü için θ = Tcosθ mg = mg r1 = Lsinθ1 r r = Lsinθ1 Ltan θ1 tanθ1 = r = Lsinθ L F E bulunur. = mg tan θ Q r 4kQ L k = mg r = r L mg 1 1/3 (1-17)

19 Örnek : Yükleri +q olan iki özdeş parçacık, aralarındaki mesafe d olacak şekilde y-ekseni üzerinde sabitlenmişlerdir. Yükü Q ve kütlesi m olan üçüncü bir parçacık ise, iki yükün ortasından dik olarak geçen eksen üzerinde, merkezden x kadar uzaktaki bir noktaya konuyor. Q yükü bu eksen üzerinde rahatça hareket edebilmektedir. x d durmunda, Q yükünün basit harmonik hareket yapacağını gösteriniz. Hareketin periyodunu bulunuz. Basit harmonik hareket yapan bir cisim için, F = Cx olmalıdır ( ω = C ). qq kqqx Q yüküne etkiyen geri çağırıcı kuvvet: F = k sinθ = x + ( d / ) x + ( d / ) kqqx 16kqQ x d F = = 3 3/ 3 x ( d / ) 1 + ( x/ d) d 3 d ω = π / T T = π 16kqQ 3/ (1-18)

20 Örnek : Yükleri +q olan dört özdeş parçacık, xy-düzleminde bulunan, kenar uzunluğu L olan bir karenin köşelerine şekildeki gibi sabitlenmişlerdir. Q yüküne sahip başka bir parçacık ise, karenin merkezinden dik olarak geçen z-ekseni üzerinde, kare merkezinden z kadar uzaktaki bir noktaya konuluyor. Q yükü üzerine etkiyen net kuvveti bulunuz. qq + q yüklerinden birisinin Q yüküne uyguladığı çekici kuvvet: F = k z + a ( ) ( ) a = L/ + L/ = L / z cosθ = z + a 4kqQz F = 4Fcosθ F = kˆ net bulunur. net ( z + a ) 3/ (1-19)

21 BÖLÜM- Elektrik Alanlar Bu bölümde durgun yüklerin oluşturduğu elektrik alan ( ) kavramıyla tanışacağız. Yüklerin durgun olması halinde, yükler arasındaki etkileşmeleri belirlemek için Coulomb yasası yeterlidir. Yükler durgun olmasaydı, bu etkileşmeleri belirlemek için başka alternatif yollar bulmak gerekirdi. Bu konu kapsamında şu konulara değinilecektir: Nokta yükün oluşturduğu elektrik alanın bulunması Nokta yük gruplarının ve sürekli yük dağılımlarının oluşturduğu elektrik alanların bulunması Elektrik alan içindeki yüke etkiyen kuvvetin bulunması elektrik dipol kavramını öğrenmek. Düzgün elektrik alan içindeki dipole etkiyen kuvveti, bu kuvvetin oluşturduğu torku ve dipolün potansiyel enerjisini belirlemek. E (-1)

22 Aralarında r mesafesi olan q 1 ve q nokta yükleri arasındaki etkileşme kuvveti Coulomb yasasına göre, F = 1 q q k 4πε r = q q 1 1 r bağıntısına sahiptir. Nokta yükler arasında herhangi bir temas olmadığı halde, yüklerin birbirlerine kuvvet uygulamalarını nasıl açıklayabiliriz? q 1 yükü, yakınlarında q yükünün bulunduğunu nerden biliyor? Bu nokta ancak, yeni bir kavram olan elektrik alan vektörü ile aydınlatılabilir. q 1 nokta yükü q üzerine doğrudan kuvvet uygulamaz. Bunun yerine, q nin bulunduğu noktada bir elektrik alan oluşturur ve kuvveti bu alan uygular. q yükü E le ktrik Alan ( E) Eq, üzerine Fkuvveti uygular 1 (-)

23 Elektrik Alan Vektörünün Tanımı : Yandaki pozitif yüklü çubuğu ele alalım. Çubuğu çevreleyen uzaydaki tüm P noktalarında elektrik alan vektörü ( E) şöyle bulunur: 1. P noktasına pozitif bir q test yükü konur.. Yüklü çubuğun q test yüküne uyguladığı F kuvveti ölçülür. E = F q 3. P noktasındaki elektrik alan vektörü: F E = (N/C) q Görüldüğü gibi E ile F aynı yöndedir. Not : q test yükü, çubuktaki yük dağılımını değiştirmeyecek kadar küçüktür. (-3)

24 Nokta Yükün Elektrik Alan : Şekildeki q pozitif yükünü ele alalım. Yükten r kadar uzaktaki etkiyen kuvvet ve noktadaki elektrik alan: F = k qq r q q test yüküne ' ın bulunduğu F qq q E = = k = k q qr r ile verilir. E, q yükünden dışarı doğrudur. q nokta yükü negatif olsaydı E, q yüküne doğru olurdu. (-4)

25 Nokta Yük Grubunun Oluşturduğu Elektrik Alan : Bir nokta yük grubunun oluşturduğu net elektrik alan E, herbir yükün oluşturduğu elektrik alanların vektörel toplamına eşittir. Yukarıda verilen nokta yük grubunun orijinde oluşturduğu elektrik alan, E = E1+ E + E3 olur. Burada E, E ve E sırasıyla, q, q ve q yüklerinin orijinde 1 3 oluşturdukları elektrik alan vektörleridir. 1 3 (-5)

26 Örnek : Şekilde gösterildiği gibi, q= 7. µ C' luk bir yük orijinde ve q = 5. µ C' luk diğer bir yük ise x=.3 m noktasındadır. Koordinatları (;.4) olan P noktasındaki elektrik alanını bulunuz. q ve q yüklerinin P noktasında oluşturdukları 1 elektrik alanların büyüklükleri, sırasıyla, q q E = k = N / C ; E = k = N / C r1p rp değerlerine sahiptir. Buradan da P noktasındaki net elektrik alan, ( 5 ) ( 5 5 E = E ) 1+ E ˆ ˆ = cosθ i sinθ j 5ˆ 5 E = i ˆj N / C sinθ =.8 5 cosθ = o φ = tan ( ) = bulunur. 1 (-6)

27 Örnek : Dört adet nokta yük, şekilde gösterildiği gibi, kenar uzunluğu a olan bir karenin köşelerine konmuştur. Sağ üst köşedeki q yükünün bulunduğu noktada, diğer yükler tarafından oluşturulan elektrik alanını ve q yüküne etki eden kuvveti bulunuz. q, 3 q ve 3 q yüklerinin, q yükünün bulunduğu noktada oluşturdukları elektrik alanların büyüklükleri, sırasıyla, q 3q 4q Eq = k ; E 3q = k ; E 4q = k a a a ifadelerine sahiptir. İlgi duyulan noktadaki net elektrik alan : kq 3 ˆ kq 3 E = E ˆ q + E3q + E4q = cos 45 i 4 cos 45 j a a 5 kq ( ˆ ˆ) o E = 3.6i j ; φ = tan ( ) = 58.8 a bulunur. (-7)

28 Örnek : şekilde gösterildiği gibi, +x-ekseni yönünde yönelmiş düzgün bir E elektrik alanı içinde ilk hızsız serbest bırakılıyor. Cismin hareketini tanımlayınız. (Yer-çekimi kuvvetini ihmal ediniz). Yükü q ve kütlesi m olan bir parçacık, qe max = qe ax = m x = ve v = olduğundan, i 1 qe qe xs = at x = t ; vs = at x = t m m W= F x = K K = qex bulunur. i s (-8)

29 Örnek : Bir proton, elektrik alanının E= 6 1 5ˆ i olduğu bir bölgeye +x - ekseni yönünde fırlatılıyor. Proton duruncaya kadar elektrik alan içinde 7 cm yol alıyor. Protonun ivmesini, ilk hızını ve ne kadar sürede durduğunu bulunuz. (Yer-çekimi kuvvetini ihmal ediniz). ma = qe 16 qe ˆ 16ˆ a = = ( 6 1 i) = i m / s 7 m v = v + a x = v v = 9 1 m / s ( )( ) 16 7 s i i i 7 vi 9 1 vs = vi + at x t= = 16 a bulunur. x =1.57 ns (-9)

30 Örnek : Bir noktadan ağırlıksız iple asılmış q yüküne ve m kütlesine sahip küçük bir küre, şekilde gösterildiği gibi E= A ˆi +Bˆj (N/C) ile verilen düzgün bir elektrik alan içinde dengededir. A ve B pozitif sabitlerdir. Kürenin yükünü ve ipte oluşan gerilmeyi bulunuz. F = T sinθ = qex = qa qa mg tan tanθ = q = T cosθ + qb = mg mg qb A + B tan T sinθ = qa T qa A mg tanθ mga = = = sinθ sinθ A+ Btanθ cosθ A+ Btanθ bulunur. ( ) θ θ (-1)

31 Elektrik Dipol : Aralarında d uzaklığı olan, eşit ve zıt işaretli iki ( ±q) elektrik dipol yükten oluşan sisteme " " denir. H er el ektrik dipol, " elektrik dipol moment ( p) " vektörü ile tanımlanır. Büyüklüğü p=qd ve yönü de - q yükünden q yüküne doğrudur. Su molekülü (H O) gibi birçok molekül kendiliğinden bir dipol momente sahiptir. Oksijen atomu ile iki hidrojen atomu arasındaki bağ, 1 değerlik elektron paylaşımı ile sağlanır (8 tane O' dan, 1' er tane de H' den). Bu 1 değerlik elektronu O atomuna yakın olma eğilimindedir. Bu nedenle su molekülünde, O' nun bulunduğu taraf H atomlarının bulunduğu tarafa göre daha negatiftir. (-11)

32 Dipolün Oluşturduğu Elektrik Alan : Dipolü oluşturan yüklerin P noktasında oluşturdukları elektrik alanların büyüklükleri: E E 1 q 1 q E = ve E = E = E E net net d z E net ( + ) ( ) net ( + ) ( ) 4πε r+ 4πε r 1 q q 1 = = 4πε r+ r 4πε q d d = πε z z z ( 1 x) ( z d /) ( z+ d /) 1 yaklaşımı yapılırsa + 1 x : q d d qd 1 p = 1 1 = 3 3 4πε z + z z = πε z πε z q q (-1)

33 Sürekli Yük Dağılımlarının Oluşturduğu Elektrik Alan : Q, A Q, V dq da dq dv Q λ = = L dq dl (C/m) Q σ = = A dq da (C/m ) Q ρ = = V dq dv 3 (C/m ) - Q yükü L uzunluğunda bir çubuğa düzgün dağılmış ise, çizgisel yük dağılımı söz konusudur. - Q yükü A yüzey alanına sahip bir plakaya düzgün dağılmış ise, yüzeysel yük dağılımı söz konusudur. - Q yükü V hacmine sahip katı bir cisme düzgün dağılmış ise, hacimsel yük dağılımı söz konusudur. (-13)

34 Yanda verilen hacimsel yük dağılımını gözönüne alalım. Bu yük dağılımının P noktasında oluşturduğu elekrik alanı hesaplamak için izlenmesi gereken yol şöyle özetlenebilir: 1.. Yük dağılımını, hacmi dv olan sonsuz küçük elemanlara ayıralım. Her eleman dq = ρdv yüküne sahiptir ve P noktası dq yükünden r kadar uzaktadır. dq yükünü nokta yük kabul ederek P noktasında oluşturduğu de elektrik alanını yaz ve yük dağılımı üzerinden integralini al (topla). dq 1 dv de = ρ E rˆ 4πε r = 4πε r (-14)

35 Örnek : Homojen yüklü sonsuz uzunluktaki bir çubuk şekildeki gibi x-ekseni üzerinde bulunmaktadır. Çubuk λ çizgisel yük yoğunluğuna sahip ise, çubuktan y kadar uzaktaki bir noktada elektrik alan ifadesini bulunuz. dq λdx de = k = k r x y ( + ) E = de cosθ = kλy = ( ) y x + y ( 1 + x / y ) tan θ = x/ y kλ ( 1+ tan θ) dθ k E = 3/ = ( 1+ tan θ) θ = / ( 1+ tan θ ) E 3/ 3/ kλ kλ x kλ λ = sinθ = E = = bulunur. + + dx kλ dx λ d dx y y y y y x y y πε y + + cosθdθ (-15)

36 Örnek : Uzunluğu L olan homojen yüklü bir çubuk şekildeki gibi x-ekseni üzerinde bulunmaktadır. Çubuk λ çizgisel yük yoğunluğuna sahip ise, çubuğun orta noktasından y kadar uzaktaki bir noktada elektrik alan ifadesini bulunuz. dq λdx de = k = k r x y ( + ) + L/ + L/ E = de cosθ = kλy = / ( ) y L x + y L/ ( 1 + x / y ) tan θ = x/ y kλ ( 1+ tan θ) dθ kλ E = 3/ = ( 1+ tan θ) dθ = dx / y y ( 1+ tan θ ) y E + L/ 3/ 3/ kλ kλ x kλl = sinθ = E = y y x + y y ( L/) + y bulunur. dx kλ dx L/ cosθdθ (-16)

37 Örnek : Uzunluğu L olan homojen yüklü bir çubuk şekildeki gibi x-ekseni üzerinde bulunmaktadır. Çubuk λ çizgisel yük yoğunluğuna sahip ise, orijinden xkadar uzaktaki ( x>l) bir P noktasında elektrik alan ifadesini bulunuz. dq de = k = k λdx ' ( ') x x x L dx ' u = x x' kλ du E = de = kλ ; E k = λ du = dx ' y u ( x x' ) E = kλ = kλ k u = λ x x' x L x kλl E = xx ( L ) bulunur. L (-17)

38 Örnek : x-ekseni üzerinde bulunan, uzunluğu L olan bir çubuk λ = Ax çizgisel yük yoğunluğuna sahiptir. ( Apozitif bir sabit, x ise çubuğun ortasından olan uzaklıktır). Çubuğun ortasından y kadar uzaktaki bir noktada elektrik alan ifadesi nedir? dq λdx xdx de = k = k = ka r x y x y ( + ) ( + ) + L/ L/ xdx E = de cosθ = kay = kay ( ) ( ) L/ x + y x + y 3/ 3/ du u u = x + y du = xdx E = kay = kay 3/ ( /) xdx 1/ ( 1/) L/ 1 y E = kay = ka 1 bulunur. x + y L + y u (-18)

39 Örnek : Homojen yüklü ince bir çubuk, R yarıçaplı çemberin bir parçası olacak şekilde bükülüyor. Şekilde verildiği gibi, yayı gören açı φ' dir. Yayın çizgisel yük yoğunluğu λ ise, çemberin merkezindeki (O noktası) elektrik alan nedir? dq λdl Rdθ kλ de = k = k = kλ = dθ r R R R φ / kλ kλ E = de cosθ = cosθdθ = sinθ R R φ / [ ] φ / φ / kλ φ kλ φ E = sin E sin ˆ = i bulunur. R R kλ φ = π E = î ve φ = π E = R (-19)

40 Örnek : Yüklü ince bir çubuk bükülerek, şekildeki gibi yarıçapı R olan yarım çember haline getiriliyor. Çubuk üzerindeki bir noktadaki yük yoğunluğu, o noktanın konum vektörü ile düşey arasındaki açıya λ =Acos θ ifadesi ile bağlıdır. Yarım çemberin merkezindeki (O noktası) elektrik alan nedir? dq λdl cosθrdθ ka de = k = k = ka = cosθdθ r R R R π/ π/ ka ( ) ka 1+ cos θ E = de cosθ = cos θdθ = dθ R R E π / ka sin θ πka ˆ A = E j ˆ θ + = = j bulunur. R R 8ε R (-)

41 Örnek : Q yükü R yarıçaplı bir çember üzerine düzgün olarak dağılmıştır. Çemberin merkezinden dik olarak geçen z-ekseni üzerinde ve merkezden z kadar uzaktaki P noktasında elektrik alanı ( E) bulunuz. Hangi z değerinde elektrik alan maksimum olur? dq dq de = k = k ; de sin ve cos yatay = de θ = dez = de θ r z R ( + ) zdq z zq de = k E = de = k dq = k ( z + R ) ( z + R ) ( z + R ) z 3/ z z 3/ 3/ zq ˆ Q E = k k ; z = E = ve z R E = k kˆ 3/ ( z R ) z + ( + ) ( + ) de z R 3z = kq R = z = E = dz z R 5/ max 6πε 3R Q Q (-1)

42 Örnek : Yarıçapı R olan ince bir disk düzgün σ yüzey yük yoğunluğuna sahiptir. Diskin merkezinden dik olarak geçen eksen üzerinde ve merkezden z kadar uzaktaki bir P noktasında elektrik alanı ( E) bulunuz. zq zdq zσπrdr E = k de = k = k 3/ 3/ 3/ ( ) ( ) ( z + R z + r z + r ) R u = z + r E = de = kz E = rdr z du σ π ; ( ) 4 z + r du = rdr ε 3/ 3/ R 1/ z u z z σ σ 1 σ E = = 1 kˆ E = 4 ε ( 1/ ) ε z + r ε z + R σ z R E ˆk ε σ u (-)

43 Örnek : bir kabuk, Yarıçapı R ve yüksekliği h olan ince silindirik xy-düzlemine tabanı orijinde olacak şekilde yerleştirilmiştir. Silindir düzgün σ yük yoğunluğuna sahip olduğuna göre, ekseni üzerindeki herhangi bir noktadaki ( P) elektrik alanı bulunuz. ( ) ( ) ( ( ) ) z z' + R ( ) (( ') ) ( ) ( ) ( ) σ π (( ') ) zq z z ' dq z z ' Rdz ' E = k de = k = k z + R z z + R z z + R 3/ 3/ 3/ h σ R z z ' dz ' u = z z' + R E = de = ; 3/ ε du = z z ' dz ' 1/ σr du σr u σr 1 E = E 4ε = = u 4 ε ( 1/ ) ε ( z z' ) + R E σ R = ε 3/ 1 1 h ˆk ; z= E= ( z ) h + R z + R h (-3)

44 Örnek : Yarıçapı R ve Q yükünün üzerine düzgün dağıldığı çembersel bir halkanın merkezine q yüküne sahip noktasal bir parçacık yerleştirilmiştir. q yükünü, çemberin merkezinden geçen dik eksen boyunca z R olacak şekilde çekip serbest bırakalım. q yükünün basit harmonik hareket yapacağını gösteriniz ve hareketinin periyodunu bulunuz. zq E = k F = qe F = kqq 3/ 3/ ( ) ( z + R z + R ) Basit harmonik haraket yapan bir cisim için: F = Cz olmalıdır. kqq z R F = z cisim basit harmonik haraket yapıyor. 3 R kqq π kqq mr a = z ω = = T = π 3 3 mr T mr kqq 3 z (-4)

45 Elektrik Alan Çizgileri : İlk kez 19. yy' da Michael Faraday tarafından elektrik alan vektörünü resmetmek için ortaya konmuştur. Elektrik alan çizgileri ile elektrik alan vektörü arasında şu ilişkiler vardır : 1. Herhangi bir P noktasında, elektrik alan vektörü E elektrik alan çizgisine teğettir.. Elektrik alan şiddeti, elektrik alan çizgilerinin yoğunluğu ile orantılıdır. (-5)

46 Örnek : Sonsuz geniş yüklü plakanın oluşturduğu elektrik alan çizgileri. 1. Plakanın her iki tarafında elektrik alan şiddeti sabittir.. Elektrik alan vektörü plakaya diktir. 3. Elektrik alan vektörünün yönü, plakadan dışarı doğrudur. Not : Plaka negatif yüklü olsaydı, elektrik alan vektörünün yönü plakaya doğru olurdu. (-6)

47 3. Elektrik alan çizgileri pozitif yüklerden çıkarak negatif yüklerde sonlanırlar. Örnek : q yükünün oluşturduğu elektrik alan çizgil eri : E = q k r -Elektrik alan çizgileri yüke doğrudur. -Elektrik alan çizgilerinin yönü, E' nin yönünü verir. -Birim yüzeyden geçen elektrik alan çizgilerinin sayısı, yüke yaklaştıkça artmaktadır. (-7)

48 Bir elektrik dipolünün oluşturduğu elektrik alan çizgileri : Özdeş iki pozitif yükün oluşturduğu elektrik alan çizgileri: (-8)

49 Düzgün Elektrik Alan İçinde Elektrik Dipol: Yanda x - ekseni yönünde düzgün bir elektrik alan içinde bulunan elektrik dipolünü ele alalım. Pozitif ve negatif yüklere, sırasıyla, F = qe ve F = qe kuvvetleri etkir. Dipole etkiyen net kuvvet, F net = qe qe = + olacaktır. Dipolün kütle merkezine göre F ve F kuvvetlerinin oluşturduğu net tork ise, d d τ = τ + + τ = F+ sinθ + F sinθ = qedsinθ = pesinθ olur ve τ=p Eformunda yazılabilir. Bu da, düzgün elektrik alan içindeki dipolün etrafında döneceğini gösterir. ötelenemeyeceğini ancak, kütle merkezi + (-9)

50 Düzgün Elektrik Alandaki Elektrik Dipolünün Potansiyel Enerjisi : θ U = τdθ = pe sin θ' dθ ( dθ azalma yönündedir) 9 9 θ U = pe sinθdθ = pe cosθ 9 U= p E p E θ p ile E aynı yönde ( θ = ) U pe Sistem kararlı denge durumundadır. min =. p E p ile E ters yönde ( θ = 18 ) U = + pe. max Sistem kararsız denge durumundadır. (-3)

51 Düzgün Elektrik Alan İçindeki Elektrik Dipolü Üzerinde Dış Kuvvetin Yaptığı İş : Düzgün bir E elektrik alanı içinde, alanla θi açısı yapan bir p elektrik dipolü olsun (Şekil- a). Bir dış kuvvetin yardımıyla dipolü Şekil- b' deki gibi E ile θ s açısı yapacak şekilde çevirelim. Dış kuvvetin yaptığı iş, dipolün son durumdaki potansiyel enerjisi ile ilk durumdaki potansiyel enerjisi arasındaki fark kadardır: W W = U U = pe cosθ pe ( cosθ cosθ ) ( cosθ ) s i s i = pe i s (-31)

52 Örnek : Yükleri q=. µ C ve q=. µ C, aralarındaki 1 mesafe d= 5 mm olan bir elektrik dipolü, merkezi orijinde olacak şekilde z-ekseni üzerinde konmuştur. z-eksenine dik ve dipolün merkezinden 1.5 m uzaktaki bir noktada elektrik alan nedir? q q p = ( qd ) = E = k E = k d + x d + x 8 ˆk 1 1 C m ; + ; ( /) ( /) Ex = E+ cosθ E cosθ = E = E+ + E ; Ey = E+ sinθ + E sinθ = E+ sinθ kˆ qd kˆ k E = Ey = k = p 3/ 3/ ( d /) + x ( d /) + x E = 6.7k ˆ N / m (-3)

53 Örnek : d= 19 Yükleri C ve aralarındaki mesafe q= 5.15 nm olan bir elektrik dipolü, büyüklüğü 5 1 N/C olan düzgün bir elektrik alan içine şekilde görüldüğü gibi yerleştirilmiştir. Dipol ve elektrik alan sayfa düzlemindedir. Elektrik dipol momentini, dipole etkiyen torku ve dipolün potansiyel enerjisini bulunuz. Dipol, elektrik alan tarafından kendisiyle aynı yönde oluncaya kadar döndürülür. Elektrik alanın yaptığı iş ne olur? ( ) ( ) 9 5 ( ) ( ) p = qd = =. 1 C m ( yükten + yüke doğru) τ = p E τ = pe sinθ = sin145 τ = U = p E U = pe = U N m (sayfa düzleminden dışarı doğru) 9 5 cos145 (. 1 ) ( 5 1 ) cos J J 9 5 ( ) ( ) W = U W = pe(cos145 cos ) = ( 1.8) W = = (-33)

54 BÖLÜM-3 Gauss Yasası Bu bölüm kapsamında şu konulara değinilecektir: Elektrik akısı (Φ) Simetri Gauss yasası Gauss yasasını uygulayarak; Düzgün yüklü sonsuz geniş yalıtkan plakanın, Düzgün yüklü sonsuz uzun yalıtkan çubuğun, Düzgün yüklü küresel kabuğun ve kürenin oluşturduğu elektrik alanları hesaplayacağız. Gauss yasasını kullanarak, iletkenlerin içinde ve dışındaki elektrik alanlar da hesaplanacaktır. (3-1)

55 Bir Vektörün Akısı : Hızı v olan bir hava akımı, A yüzey alanına sahip bir yüzeye doğru geliyor olsun ve hız vektörü v ile yüzeyin normali ( nˆ ) arasındaki açı da θ olsun. İlgili yüzeyden geçen akı, Φ=vAcos θ bağıntısı ile verilir ve bu örnekte "hacimsel akış hızı (debi)" anlamı taşır. Not -1 : Hava akımının hızı, geldiği yüzeyin normali ile aynı yöndeyse ( v, yüzeye dik) akı maksimumdur ( va). Hız yüzeyin normaline dik ise ( v, yüzeye paralel) akı sıfırdır. Not - : Φ= vacos θ = v A biçiminde yazılabilir. Burada A vektörü, yüzeyin normali ile aynı yönde, büyüklüğü A olan bir vektördür. İsmine " yüzey alan vektörü" diyebiliriz. (3-)

56 Elektrik Alan Akısı : Şekildeki gibi E elektrik alanı içinde kapalı bir yüzey düşünelim. Bu yüzeyden geçen Φ elektrik akısı şöyle tanımlanır: 1. Yüzeyi, A alanına sahip sonsuz küçük elemanlara ayıralım.. Her elemandan geçen akı E A= E Acos θ olacaktır. 3. Toplam akı; Φ = E A olarak bulunur. 4. A durumundaki limit, yüzeyden geçen akıya eşittir. Φ= E da (N m / C) S Not -1 : İntegral sembolü üzerindeki çember, integralin kapalı yüzey üzerinden alınacağını gösterir. Note : Elektrik akısı ( Φ), yüzeyden geçen elektrik alan çizgilerinin sayısıyla orantılıdır. (3-3)

57 Örnek : Yükü 1. µ C olan noktasal bir parçacığın, E merkezinde bulunduğu 1. m yarıçaplı küresel bir yüzeyden geçirdiği elektriksel akıyı hesaplayınız. q r da Pozitif bir q noktasal yükünün kendisinden r kadar uzakta oluşturduğu elektrik alan, kendisinden dışarı doğrudur ve büyüklüğü, q E = k r ile verilir. Bu durumda, q dφ= E da = EdAcos = k da r q q q N m Φ= k da = k 4π r = Φ= = r r ε C S bulunur. 6 (3-4)

58 Örnek : Kenar uzunluğu a olan bir küp, şekildeki gibi, pozitif x-ekseni yönünde düzgün bir E elektrik alanı içinde bulunmaktadır. Küpün yüzeylerinden geçen toplam elektrik akısı nedir? Yüzey alan vektörleri y-ekseni (3 ve 4 nolu yüzeyler) ve z-ekseni doğrultusunda olan yüzeyler (ön ve arka yüzeyler), elektrik alan vektörüne diktir. Bu yüzeyler akıya katkı getirmezler. Toplam akı, 1 ve nolu yüzeylerden katkılanır: Φ= E da + E da = Ea cos18 + Ea cos S 1 1 S ( ) 1 1 Φ= Ea + = bulunur. (3-5)

59 Örnek : Büyüklüğü 3.5 kn/c olan ve pozitif x-ekseni yönünde yönelmiş düzgün bir elektrik alan içine, uzunluğu.7 m ve genişliği.35 m olan dikdörtgen şeklinde bir plaka konuluyor. Aşağıdaki durumlar için plakadan geçen akıyı hesaplayınız. a ) plaka yz ve xy düzlemlerinde bulunuyorsa b x y o ) plaka normali -ekseni ile 4 açı yapıyor ve -ekseni plaka yüzeyinde bulunuyorsa ( ) ( ) A =.35.7 = 45 1 m ( ˆ) ( 3) ( 3) ( ˆ) ( ˆ ˆ) 3 a ) Φ = E Ai = EA = = yz Φ = E Ak = EA i k = xy b ) Φ= E Acos 4i + Asin 4k = EAcos 4 = 657 ( ˆ ˆ) N m C N m C (3-6)

60 Örnek : Kare prizma şeklindeki kapalı bir yüzey, şekildeki gibi, pozitif x-ekseni yönünde ve şiddeti (3 ) ifadesi ile değişen bir elektrik alanı E= + x içinde bulunmaktadır. a=b=.4 m ve c=.6 m olduğuna göre, kare prizmanın yüzeyinden geçen toplam elektrik akısı nedir? Yüzey alan vektörleri y-ekseni ve z-ekseni doğrultusunda olan yüzeyler (bir kenarı c olan dikdörtgensel yüzeyler) elektrik alan vektörüne diktir. Bu yüzden akıya katkı getirmezler. Toplam akı, karesel yüzeylerden katkılanır: Φ= E da + E da = E ab cos18 + E ab cos S 1 1 S ( ) ( ) Φ= ab (3 + a ) + 3+ a + c = ab a + c a =.7 bulunur. x= a x= a+ c N m C (3-7)

61 Örnek : Pozitif q yüklü bir parçacık, şekildeki gibi, R yarıçaplı bir küre kabuğunun merkezindedir. Şekilde gösterildiği gibi, yükün gördüğü θ' lık bir katı açının gördüğü yüzeyden geçen akıyı bulunuz. q θ R Küre yüzeyi üzerinde r yarıçaplı dr kalınlığında bir halkadan geçen akı, q dφ= E da = EdAcos θ' = k πrdr R q q dφ= ( Rsin θ' )( Rdθ' ) = sin θ' dθ' ε R ε θ q q θ q Φ= sin θ' dθ' = [ cos θ' ] = (1 cos θ) ε ε ε q θ = π / Φ= ; ε θ = π Φ= q ε (3-8)

62 Gauss Yasası: Gauss yasası şu şekilde formüle edilir : ( Herhangi bir yüzeyden geçen akı ) ε = ( yüzeyin içindeki net yük) Φ ε = q ε E da = q iç ˆn ˆn ˆn S iç Not -1: Gauss yasası her kapalı yüzey için geçerlidir. Not - : Kapalı yüzey içindeki net yükü belirlerken, yüklerin işaretlerini dikkate almak gerekir. Not -3: Gauss yasasını uygularken, akıya katkıları olmadığı için yüzeyin dışındaki yükler işleme katılmaz. Yandaki şekil için; S yüzeyi : ε Φ =+ q, S yüzeyi : ε Φ = q S 1 1 yüzeyi : ε Φ =, S yüzeyi : ε Φ 4 = q+ q = (3-9)

63 Gauss Yasası ve Coulomb Yasası : Gauss yasası ve Coulomb yasası, durgun elektrikte elektrik yükü ile elektrik alan arasındaki ilişkiyi farklı biçimlerde açıklayan bağıntılardır. Her ikisi de birbirinden türetilebilir. Örneğin, Coulomb yasasını Gauss yasasından türetelim: q nokta yükünden r kadar uzaktaki bir P noktasındaki elektrik alan Gauss yasasından bulunabilir. q yükünü merkez kabul eden r yarıçaplı küresel bir Gaussiyen yüzey seçelim. Gaussiyen yüzeyi, yüzey alanı da olan sonsuz küçük elemanlara bölelim. Herbir elemandan geçen akı, dφ= EdAcos = EdA bulunur. Buradan da, S S ( 4 ) ( 4π ) Φ= EdA = E da = E r q ε Φ= q = q ε E πr = q E = = k iç 4πε r r sonucuna ulaşılır. (3-1) q

64 Simetri: Bir cisme uygulanan fiziksel bir işlem (döndürme, öteleme gibi) sonucunda, cisim aynı kalıyorsa simetriktir denir. Merkezinden geçen düşey eksen etrafında serbestçe dönebilen bir küre düşünelim. Gözlemci gözlerini kapattıktan sonra küreyi ekseni etrafında çevirelim. Gözlemci gözlerini açtığında, kürenin döndürülüp döndürüldüğünü anlayabilir mi? Ekseni etrafında serbestçe dönebilen bir silindir düşünelim. Gözlemci gözlerini kapattıktan sonra silindiri ekseni etrafında çevirelim. Gözlemci gözlerini açtığında, silindirin döndürülüp döndürülmediğini anlayabilir mi? Cevap her iki örnek için de hayır olacaktır. Bu durumda, hem küre hem de silindir dönme eksenlerine göre simetriktir deriz. (3-11)

65 Ötelenme Simetrisi: Sonsuz geniş bir düzlem düşünelim. Uçan halı üzerindeki bir gözlemci bu düzlemin üzerinde sabit bir yükseklikte olsun. Gözlemci gözlerini kapattıktan sonra bir miktar ötelensin. Gözlerini açtığında, hareket edip etmediğini anlayabilir mi? Cevap hayır olacaktır. Bu durumda, düzlem ötelenme simetrisine sahiptir deriz. Gauss Yasası Uygulanırken İzlenecek Yol: Yük dağılımını geometrik olarak çiziniz. Yük dağılımının simetrisini ve elektrik alanına etkisini belirleyiniz. Gauss yasası her kapalı yüzey için geçerlidir. Φ akısının en kolay hesaplanabileceği en uygun yüzeyi belirleyiniz. Elektrik alanı hesaplamak için Gauss yasasını uygulayınız. (3-1)

66 Sonsuz Uzunlukta Düzgün Yüklü Çubuğun Oluşturduğu Elektrik Alan : Şekilde düzgün λ çizgisel yük yoğunluğuna sahip bir çubuk verilmiştir. Çubuğun simetrisi dikkate alınırsa, oluşturduğu elektrik alanın kendinden dışarı doğru ve r uzaklığındaki tüm noktalarda şiddetinin de aynı olduğu ortaya çıkar. Bu yüzden, çubuğu eksen alan r yarıçaplı, h yüksekliğinde silindirik bir yüzey Gaussiyen yüzey olarak seçilebilir. Gaussiyen yüzeyi üç farklı yüzeyin birleşimi gibi düşünebiliriz: Üst yüzey S, yanal yüzey S ve taban yüzey S. Yüzeyden geçen net akı, Φ=Φ +Φ +Φ olacaktır. S ve S yüzeylerinde, yüzey normali ile elektrik alan vektörleri birbirlerine dik olduğu için Φ ve Φ akıları sıfırdır. Bu durumda net akı, 1 3 ( π ) Φ=Φ = EdA = E rh cos = πrhe Gauss yasasından: S q λh Φ = ε ε E λ πε r iç = = = kλ r (3-13) 1

67 Örnek : Yarıçapı R ve düzgün hacimsel yük yoğunluğu ρ olan bir kürenin içinde ve dışındaki ρ r de da bölgelerde elektrik alanını bulunuz. R qiç qiç r < R E da = E dacos = ε ε S S 4 ρ4πr 3 3 ( q 4 ) iç = ρ πr E πr = E = 3 3ε 3ε qiç qiç r > R E da = E dacos = ε ε S S 4 ρ4πr ρr ρr ( q 4 ) iç = ρ πr E πr = E = 3 3ε 3εr ρr 3ε ρ r R E R de da r (3-14)

68 Örnek : Yarıçapı R ve Q yükünün yüzeyine düzgün dağıldığı ince küresel bir kabuğun içinde ve dışındaki bölgelerde elektrik alanını bulunuz. r < R E da = S q = da olduğundan E = iç qiç r > R E da = E dacos = ε S q ε iç S ( ) Q Q Q qiç = Q E 4π r = E = = k ε 4πε r r q ε iç (3-15)

69 Örnek : İç yarıçapı a, dış yarıçapı b ve düzgün hacimsel yük yoğunluğu ρ olan küresel bir kabuk için, r < a; a < r < b ve r > b bölgelerindeki elektrik alanını bulunuz. Q Q r a b r de da de da S E da = q ε iç r < a q = da olduğundan E = iç 4 ρ π 3 ρ a< r < b E( 4π r ) = E = ε 3ε r 3 3 ( r a ) 3 3 ( r a ) 4 ρ π 3 ρ r > b E( 4π r ) = E = ε 3ε r 3 3 ( b a ) 3 3 ( b a ) Q ρ(b 3 -a 3 ) 3ε r a b r a b E a b de da r (3-16)

70 Örnek : ρ = ρ r Yarıçapı R ve hacimsel yük yoğunluğu olan bir kürenin içinde ve dışındaki bölgelerde elektrik alanını bulunuz. S E da = q ε iç iç iç r r ( ) ( ) 4 ρ 4 π ' ' ρ ' 4 π ' ' πρ r < R q = r dr = r r dr = r πρ r E( 4π r ) = E = ε ( 4π ) ρ r 4ε 4 R R ( ) ( ) 4 ρ 4 π ' ' ρ ' 4 π ' ' πρ r > R q = r dr = r r dr = R πρ R E r E ρ R 4 4 = = ε 4εr ρ R 4ε ρ de da r R de ρ da r R E R r (3-17)

71 Örnek : Yarıçapı R olan sonsuz uzunluktaki bir silindirin düzgün hacimsel yük yoğunluğu ρ' dur. silindirin içinde ve dışındaki noktalarda elektrik alanını bulunuz. Yük dağılımının simetrisi nedeniyle, Gaussiyen yüzey olarak silindir seçilir. S 1 ve S 3 yüzeylerinden akıya hiçbir katkı gelmez ( da E). Bu durumda: qiç Φ= E da = ε S ( π ) ( rh) ρ π r < R E ( π rh) = E = ε r > R E rh = ρ πrh ρr ε ( ) ε E = ρr ε r (3-18)

72 ÖDEV : Yarıçapı R olan sonsuz uzunluktaki bir silindirin hacimsel yük yoğunluğu ρ = ρ r ile veriliyor. ρ bir sabit ve r ' de silindir ekseninden olan uzaklıktır. Silindirin içinde ve dışındaki bölgede elektrik alanını bulunuz ve silindir ekseninden olan uzaklığa karşı değişimini çiziniz. ÖDEV : İç yarıçapı a, dış yarıçapı b olan ρ düzgün yük yoğunluğuna sahip sonsuz uzunlukta bir silindirin ekseni üzerinde, düzgün λ çizgisel yükü yaşıyan sonsuz uzun bir çubuk yerleştirilmiştir. r < a ; a< r < b ; r>b bölgelerinde elektrik alanlarını bulunuz. (3-19)

73 Sonsuz Geniş, Yalıtkan, Yüklü Plakanın Oluşturduğu Elektrik Alan : Plakanın pozitif ve düzgün σ yüzey yük yoğunluğuna sahip olduğunu varsayalım. Simetri nedeniyle elektrik alan plakaya dik, dışarı doğru ve büyüklüğü her yerde aynıdır. Şekildeki gibi, plakanın ortadan kestiği, kesit alanı A olan silindirik bir Gaussiyen yüzey seçebiliriz. Silindiri üç farklı yüzeyden oluşmuş gibi düşünebiliriz: Sağ kesit S, yanal yüzey S ve sol kesit S. Yüzeyden 1 3 geçen net akı, Φ=Φ 1+Φ +Φ3 olacaktır. Φ =Φ = EAcos = EA ve Φ = ( θ = 9 ) 1 3 Φ= EA q σ A Φ= = ε ε iç Gauss yasasından: E. σ = ε (3-)

74 Yüzeysel yük yoğunlukları σ ve - σ olan sonsuz geniş paralel iki iletken plaka olsun. 1 1 Plakalar birbirine yaklaştırılırsa, yükler plakaların birbirine bakan yüzeylerinde toplanır. Plakalar arasındaki bölgede elektrik alanını bulmak için, kesit alanı A olan silindirik bir Gaussiyen yüzey (S) seçerek Gauss yasasını uygulayabiliriz: q iç 1 Φ= = = EA ε σ A ε E = σ 1 ε Plakaların dışındaki bölgelerdeki elektrik alanı için de, kesit alanı A' olan S' silindirik Gaussiyen yüzeyini seçer ve Gauss yasasını uygularsak: qiç σ1 σ1 Φ= EA = = = E = ε ε (3-1)

75 Örnek : Şekilde gösterildiği gibi, yarıçapı a y ve düzgün hacimsel yük yoğunluğu ρ olan bir a küreden a yarıçaplı bir bölge çıkarılmıştır. Çıkarılan kısmın tam ortasındaki elektrik alan ρ a x nedir? Verilen yük dağılımını, ρ ve ρ düzgün yük yoğunluklarına sahip a ve a yarıçaplı iki ρ a a + ρ a kürenin toplamı gibi düşünebiliriz. Dolayısı ile, ilgili noktadaki toplam elektrik alan: E ρr ρr' ρa = + = 3ε 3ε 3 ε r= a olarak bulunur. r ' = (3-)

76 Bir İletken İçindeki Elektrik Alan : Soldaki iletkeni gözönüne alalım. İletkenler, içinde serbestçe dolaşabilen çok sayıda elektron barındıran malzemeler olarak tanımlanır. İletkenin içinde E olduğunu düşünelim: Bu durumda, iletkenin içindeki elektronlar sıfırdan farklı F = ee bir kuvvetin etkisi altında kalırlar. Bu nedenle elektronlar ivmeli bir hareket yapacak ve dolayısıyla bir elektrik akımı oluşturmaları gerekecektir. Böyle olması durumunda da; (a) İletkenin ısınması gerekir. (b) İletken çevresinde bir manyetik alan oluşmalıdır. Şu ana kadar böyle etkiler hiç gözlenmemiştir. Buradan da, "Bir iletkenin içindeki durgun elektrik alan E sıfırdır." sonucunu çıkarabiliriz. (3-3)

77 İzole Edillmiş Yüklü İletken : Yanda toplam yükü q olan bir iletken verilmiştir. Yük, iletkende nasıl dağılmıştır? Bu soruyu yanıtlamak için, iletkenin hemen içinde bir Gaussiyen yüzey seçelim ve Gauss yasasını uygulayalım. İletkenin içinde E = olduğundan, iç Φ = Δ = (Eş -1) ve Gauss yasasından : Φ= (Eş - ). S E A Bu iki eşitlik birleştirilirse iletkenin içindeki yük sıfırdır ( q q ε iç = ). İletkenin sıfırdan farklı q yüküne sahip olduğunu bildiğimizden, bu yükün sadece iletkenin yüzeyinde bulunabileceği sonucuna ulaşırız. "Elektrostatik yükler, iletkenin içinde bulunamazlar. Ancak yüzeyinde bulunabilirler." (3-4)

78 İçinde Boşluk Bulunan Yalıtılmış Yüklü İletken : Yanda toplam yükü q olan bir iletken verilmiştir. Boşluğun duvarında yük bulunurmu? Bu soruyu yine, Gauss yasası yardımıyla cevaplayabiliriz. Bunun için, şekildeki gibi boşluğun hemen dışında bir Gaussiyen yüzey seçebiliriz. İletkenin içinde E = olduğundan, Φ= E A= Φ= S iç (Eş-1) ve Gauss yasasından: (Eş-). q ε Bu iki eşitlik birleştirilirse seçilen Gaussiyen yüzeyin içindeki yük sıfırdır ( q = ). Dolayısıyla, boşluk duvarında herhangi bir yuk yoktur. Özetleyecek olursak; "İletken içindeki boşluğun duvarlarında yük bulunamaz. Tüm yük iletkenin dış yüzeyinde bulunabilir". iç (3-5)

79 Yüklü İletkenin Hemen Dışındaki Elektrik Alan : Bir iletkenin içindeki elektrik alan sıfırdır. Ancak, dışındaki elektrik alan sıfır değildir. Yüzeyin her noktasında yüzeye diktir. Böyle olmasaydı, elektrik alanın yüzeye paralel bir bileşeni olurdu ve yüzeyde bulunan yüklerin ivmelenmesine sebep olurdu. Bu ise " durgun e lektrik" kabullenmemize aykırı olurdu. Gauss yasasını uygulamak için, şekideki gibi silindirik bir Gaussiyen yüzey kullanacağız. Bu silindirik yüzey S, S ve S gibi üç farklı yüzeyden oluşur. 1 3 Net akı, bu yüzeylerden geçen akıların toplamı olacaktır: Φ=Φ +Φ +Φ. EAcos Φ 1 = = qiç qiç 1 EA cos 9 EA E = ε A ε Φ 3 = σ = q iç A EA Φ = = Φ= = σ, yüzeysel yük yoğunluğu tanımından, E = bulunur. ε 1 3 (3-6)

80 Örnek : Yarıçapı a olan Q düzgün yüküne sahip bir küre, şekildeki gibi iç yarıçapı b ve dış yarıçapı c olan Q yüküne sahip iletken bir küre kabuğunun merkezinde bulunmaktadır. 1,, 3 ve 4 nolu bölgelerdeki elektrik alanını bulunuz. qiç E da = S ε 3 ( 1 nolu bölge: 4 ) Qr E π r = E = k ε a 3 3 ( ) Q Q nolu bölge: E 4π r = E = k r ε Qr a 3 nolu bölge: E = (İletkenin içinde yük bulunamaz. İletkenin iç çeperinde Q dış çeperinde Q yükü birikir.) ( ) Q Q 4 nolu bölge: E 4π r = E = k r ε (3-7)

81 BÖLÜM-4 Elektrik Potansiyel Bu bölümde, elektrik alanla ilgili elektrik potansiyel (V) kavramını öğreneceğiz. Bu bağlamda aşağıdaki konulara değineceğiz: Elektrik alandan potansiyelin bulunması. Potansiyelden elektrik alanın bulunması. Nokta yük ve yük grubunun oluşturduğu potansiyel. Sürekli yük dağılımlarının oluşturduğu potansiyel. Yük sistemlerinin potansiyel enerjisi. Eş-potansiyel yüzeyler ve elektrik alan çizgileri. İzole bir iltekenin oluşturduğu potansiyel. (4-1)

82 U x s = F( x) dx x s U = q E ds i i Elektrik Potansiyel Enerji : Korunumlu bir kuvvetin yaptığı iş, cismin potansiyel enerjisindeki değişimin negatif işaretlisidir. Korunumlu bir kuvvetin etkisiyle cisim x noktasından x noktasına hareket etmişse, U = U U = W = F( x) dx f i yazılır. q nokta yükü, bilinen bir elektrik alanı ( E) içinde, F= qeelektrik kuvvetinin etkisiyle x x f i A noktasından B noktasına gitsin. Yükün potansiyel enerjisindeki değişim, s s U = F dl = q E dl olacaktır. Bu değişim i q i i yüküne bağlıdır. s (4-)

83 Elekrik Potansiyel ( V ): A ve B noktaları arasındaki elektrik potansiyel fark ( V ), bu noktalar arasında taşınan birim yük başına potansiyel enerji değişimi olarak tarif edilir: U W V = = V = Vs Vi = q q s i E dl Noktalardan birisinin potansiyeli biliniyorsa, diğer noktanın elektrik potansiyeli bulunabilir. Genellikle, yükten çok uzaktaki bir noktanın potansiyeli sıfır alınır ( V = = ). Bu durumda, herhangi bir P noktasının potansiyeli, VP i V P = E dl ifadesiyle verilir. SI sistemindeki birimi J/C (volt)' dir. (4-3)

84 Örnek : 4 Bir proton, şekilde gösterildiği gibi büyüklüğü 8 1 V/m olan pozitif x-ekseni yönündeki düzgün bir elektrik alan içinde durgun halden serbest bırakılıyor. Proton elektrik alan yönünde.5 m gittiğinde, a ) A ve B noktaları arasındaki elektriksel potansiyel fark ne kadardır. b ) Bu iki nokta arasında, protonun potansiyel enerjisinde ne kadarlık bir değişim olmuştur? c ) Proton B noktasına ulaştığındaki hızı ne olur? B B a ) V V = E dl = Edl cos = Ed = 8 1 (.5) B A 4 VB VA 4 1 V A = ( ) ( ) ( 4 ) ) J 1 c K+ U= mv = v= A b U = q V U = = 15 6 ) p m / s (4-4)

85 Örnek : Şekildeki gibi, y yönünde büyüklüğü 35 V/m olan düzgün bir elektrik alan vardır. Koordinatı (.,.3) m olan A noktası ile koordinatı (.4,.5) m olan B noktası arasındaki potansiyel farkını bulunuz. B B V V = E dl = Edl cos(9 + θ) = E AB sin θ B A A ( ) ( ) AB = = 1 m.8 VB VA = 35( 1)(.8) = 6 V sin θ = =.8 1 C B C B V V = E dl E dl = Edl cos18 Edl cos 9 B A V V = E AC = 35(.8) = 6 V B A A A C A C (4-5)

86 Nokta Yükün Potansiyeli : Orijinde bir q nokta yükü bulunsun. Yükten R kadar uzaktaki P noktasının potansiyelini bulmak için, q test yükünü P noktasından sonsuza götürmemiz gerekir. Böylece, V V = E dl = Edr cos = Edr P P 1 4πε R R R q q dr q 1 E = V = 4πε r 4πε = r 4πε r V = P R q R bulunur. q nokta yükünün kendisinden r kadar uzakta oluşturduğu elektrik potansiyel: V 1 q = = 4πε r q k r (4-6) R

87 Nokta Yük Grubunun Oluşturduğu Potansiyel: Şekilde üç nokta yükten oluşan bir sistem verilmiştir. Bu yüklerin herhangi bir P noktasında oluşturdukları elektrik potansiyel, her birinin ilgili noktada oluşturduğu potansiyellerin toplamıdır. 1. Her bir yükün P noktasında oluşturdukları elektrik potansiyeller bulunur: V 1 q 1 q 1 = ; V = ; V = πε r1 4πε r 4πε r3. Tüm yüklerin oluşturdukları potansiyeller toplanır: V = V + V + V = q1 1 q πε r 4πε r 4πε 1 n q n tane nokta yükten oluşan bir sistem için bu ifade şöyle yazılır: V = n 1 q1 1 q 1 qn = 4πε r 4πε r 4πε r 4πε = i q r q r i i (4-7)

88 Örnek : Şekilde gösterildiği gibi, ikizkenar bir üçgenin köşelerine üç nokta yük yerleştirilmiştir. q yüklerinin bulunduğu doğrunun tam orta noktasındaki elektrik potansiyelini hesaplayınız. ( q = 7 µ C alımız). h= = cm q V = V+ q + V q+= k k h V V= q r ( 9) ( 6) 1 = q 1 = V (4-8)

89 Örnek : Şekilde gösterildiği gibi, 1 = µ C' luk yük orijinde ve q = 6 µ C' luk yük ise y = 3 m noktasında bulunmaktadır. Bu iki yükün, x= 4 m noktasında ( P) oluşturdukları toplam elektrik potansiyel ne kadardır? q 3 = 3 µ C' luk üçüncü bir yükü P noktasına getirmek için yapılması gereken işi bulunuz. q r q V = V1+ V = k + k r V 3 q r ( 9 ) = 9 1 = V 4 5 ( ) ( ) P W=q V V = = J (4-9)

90 Örnek : Şekilde gösterildiği gibi, Q, Q ve Q nokta yükleri x-ekseni üzerine aralarındaki mesafe a olacak şekilde yerleştirilmişlerdir. x> a olmak üzere, x-ekseni üzerindeki herhangi bir noktadaki elektrik potansiyelini bulunuz. x a durumundaki potansiyel ifadesini türetiniz. q q = + + = V V1 V V3 k k k r1 r r3 1 1 x kqa V = kq + = kq = + ( 1 / ) ( ) 3 x a x x a x a x x ax kqa kqa x a V = 3 3 x a x x q (4-1)

91 Elektrik Dipolünün Oluşturduğu Potansiyel: Solda bir elektrik dipolü verilmiştir. Dipolü oluşturan nokta yüklerin P noktasında oluşturdukları V potansiyelini bulalım. P noktası, dipolün merkezi olan O noktasından r kadar uzakta ve OP doğrusu dipol ekseni ile θ açısı yapsın. Bu durumda P noktasındaki potansiyel: 1 q q q r( ) r( + ) V = V( + ) + V( ) = =. 4πε r( ) r + ( ) 4πε r( ) r( + ) olur. d dipolü oluşturan yükler arasındaki mesafe olmak üzere, r d r r r ABC ( ) ( + ) yaklaşımı yapılırsa ( ) ( + ), dik üçgeninden de r r dcos θ yazılabilir. Bu durumda, V q dcosθ 1 pcosθ =, 4πε r 4πε r sonucuna ulaşılır. Burada, p = qd kısaltması yapılmıştır. (4-11)

92 Sürekli Yük Dağılımlarının Oluşturduğu Potansiyel : Şekildeki sürekli yük dağılımına sahip bir cisim verilmiştir. Yük dağılımının herhangi bir noktada oluşturduğu elektrik potansiyel V üstüste binme ilkesiyle şu şekilde bulunur: 1. Cisim, sonsuz küçük dq yüküne sahip elemanlara bölünür. çizgisel yük dağılımı dq = λd yüzeysel yük dağılımı dq = σ da hacimsel yük dağılımı dq = ρdv. dq yükünün P noktasında oluşturduğu dv potansiyeli yazılır: dv = 1 4πε 3. Tüm yüklerin katkısı, yük dağılımı üzerinden integral alınarak bulunur: V dq r 1 = 4πε dq r (4-1)

93 Örnek: Şekilde L uzunluğunda ve λ düzgün yük yoğunluğuna sahip ince bir çubuk verilmiştir. Çubuğun sol ucundan, çubuğa dik doğrultuda d kadar yukardaki bir Pnoktasındaki elektrik potansiyelini bulunuz. Çubuğun sol ucundan x kadar ötede seçilen dx elemanının yükü dq = λdx P r = d + x ve noktasına uzaklığı da olduğundan, dq yükünün P noktasında oluşturduğu elektrik potansiyeli: dq λdx dv = k = k r d + x V = kλ L bulunur. dx dx ( ) L L d L kλ ln x d x kλln + + = + + = d + x d ( x d ) x ln d + x = + + (4-13)

94 Örnek : Şekilde L uzunluğunda ve λ= α xyük yoğunluğuna sahip ince bir çubuk verilmiştir. Burada α pozitif bir sabit ve x çubuğun sol ucundan olan uzaklıktır. Çubuğun sol ucundan yatay doğrultuda d kadar uzaklıkta bir P noktasındaki elektrik potansiyeli bulunuz. Çubuğun sol ucundan x kadar ötede seçilen dx elemanının yükü dq = λdx ve P noktasına uzaklığı da r = x + d olduğundan, dq yükünün P noktasında oluşturduğu elektrik potansiyeli: dq α xdx xdx dv = k = k = kα r x+ d x+ d L xdx L L d V = kα kα x dln ( x d) kα L dln + = + = x+ d d bulunur. xdx x d x d x+ d = + ln ( ) (4-14)

95 ÖDEV : Şekilde L uzunluğunda ve λ= α xyük yoğunluğuna sahip ince bir çubuk verilmiştir. Burada α pozitif bir sabit ve x çubuğun sol ucundan olan uzaklıktır. Çubuğun ortasından dik doğrultuda b kadar uzaklıkta bir P noktasındaki elektrik potansiyeli bulunuz. (4-15)

96 Örnek : Homojen yüklü ince bir çubuk, R yarıçaplı çemberin bir parçası olacak şekilde bükülüyor. Şekilde verildiği gibi, yayı gören açı φ' dir. Yayın çizgisel yük yoğunluğu λ ise, çemberin merkezindeki (O noktası) elektrik potansiyeli nedir? Yay üzerinde seçilen dl elemanının yükü dq = λdl dir. O noktasındaki toplam elektrik potansiyeli: dq dl Rdθ dv = k = kλ = kλ = kλdθ V = kλ dθ = kλφ r R R olur. φ = π (yarım çember) V = kλπ = φ = π (tam çember) V = kλπ = λ 4ε λ ε φ (4-16)

97 Örnek : Q yükü R yarıçaplı bir çember üzerine düzgün olarak dağılmıştır. Çemberin merkezinden dik olarak geçen z-ekseni üzerinde ve merkezden z kadar uzaktaki P noktasında elektrik potansiyelini bulunuz. Çember üzerinde seçilen dl elemanının yükü dq = λdl = ( Q / πr) dl ile verilir. P noktasındaki toplam elektrik potansiyeli: dq Q dl Q 1 Q dv = k = k V = k dl = k r πr r πr r r V = k z Q + R Q z = V = k R ; Q z V = k z ; ( Q/π R) dl = π R Q λ = = = 4πε R ε ε (nokta yükün potansiyeli) (4-17)

98 Örnek : Yarıçapı R olan ince bir disk düzgün σ yüzey yük yoğunluğuna sahiptir. Diskin merkezinden dik olarak geçen eksen üzerinde ve merkezden z kadar uzaktaki bir P noktasında elektrik potansiyelini bulunuz. Toplam yükü Q olan bir çemberin potansiyeli : Seçilen çemberin toplam yükü dq, potansiyeli dv dir. dq σπrdr dv = k = k z + r z + r R R σ rdr V = dv = ε z + r R σ σ V = z + r = z + R z ε ε V = k z Q + r xdx x a x + a = + (-18)

99 Örnek : İç yarıçapı a ve dış yarıçapı b olan ince bir disk düzgün σ yüzey yük yoğunluğuna sahiptir. Diskin merkezinden dik olarak geçen eksen üzerinde ve merkezden z kadar uzaktaki bir P noktasında elektrik potansiyelini bulunuz. Toplam yükü Q olan bir çemberin potansiyeli : V = k Seçilen çemberin toplam yükü dq σπrdr dv = k = k z + r z + r b b σ rdr V = dv = ε a a z + r b σ σ V = z + r = z + b z + a ε ε a dq, potansiyeli dv dir. z Q + r xdx z x a x + a = + (4-19)

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

GENEL FİZİK II DERS NOTLARI

GENEL FİZİK II DERS NOTLARI GENEL FİZİK II DERS NOTLARI Hazırlayanlar: Prof. Dr. Mustafa POLAT Prof. Dr. Leyla TATAR YILDIRIM 1 BÖLÜM-1 Elektrik Yükü Bu bölümde, maddenin özelliklerinden birisi olan elektrik yükü ile tanışacağız.

Detaylı

GENEL FİZİK II DERS NOTLARI

GENEL FİZİK II DERS NOTLARI GENEL FİZİK II DERS NOTLARI Hazırlayanlar: Prof. Dr. Mustafa POLAT Prof. Dr. Leyla TATAR YILDIRIM 1 BÖLÜM-1 Elektrik Yükü Bu bölümde, maddenin özelliklerinden birisi olan elektrik yükü ile tanışacağız.

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur.

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. ELEKTROSTATİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında bulunan elekton ve proton

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

Elektromanyetik Alan Kaynakları (1)

Elektromanyetik Alan Kaynakları (1) (4) Elektrostatik Giriş Elektrostatik zamana bağlı olarak değişen elektrik alanlar için temel oluşturur. Pek çok elektronik cihazın çalışması elektrostatik üzerine kuruludur. Bunlara örnek olarak osiloskop,

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler

MIT 8.02, Bahar 2002 Ödev # 2 Çözümler Adam S. Bolton bolton@mit.edu MIT 8.02, Bahar 2002 Ödev # 2 Çözümler 22 Şubat 2002 Problem 2.1 İçi boş bir metalik küre içerisindeki bir noktasal yükün elektrik alanı - Gauss Yasası İş Başında Bu problemi

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Elektrik ve Manyetizma Sorularının Çözümleri

Elektrik ve Manyetizma Sorularının Çözümleri Ünite Elektrik ve Manyetizma Sorularının Çözümleri 1- Elektrostatik - Elektrik Akımı, Potansiyel Fark ve Direnç - Elektrik Enerjisi ve Elektriksel Güç 4- Manyetizma 1 Elektrostatik Testlerinin Çözümleri

Detaylı

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik

Fizik 101-Fizik I 2013-2014. Statik Denge ve Esneklik 1 -Fizik I 2013-2014 Statik Denge ve Esneklik Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 2 İçerik Denge Şartları Ağırlık Merkezi Statik Dengedeki Katı Cisimlere ler Katıların Esneklik Özellikleri 1

Detaylı

1. BÖLÜM ELEKTROSTATİK. Yazar: Dr. Tayfun Demirtürk E-posta: tdemirturk@pau.edu.tr

1. BÖLÜM ELEKTROSTATİK. Yazar: Dr. Tayfun Demirtürk E-posta: tdemirturk@pau.edu.tr 1. BÖLÜM ELEKTROSTATİK Yazar: Dr. Tayfun Demirtürk Eposta: temirturk@pau.eu.tr 1 ELEKTROSTATİK: Durgun yüklerin etkilerini ve aralarınaki etkileşmeleri inceler. Doğaa iki çeşit elektrik yükü bulunur: ()

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Dr. Cemile BARDAK Ders Gün ve Saatleri: Çarşamba (09:55-12.30) Ofis Gün ve Saatleri: Pazartesi / Çarşamba (13:00-14:00) 1 TEMEL KAVRAMLAR Bir atom, proton (+), elektron (-) ve

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

ERDEMLİ ANADOLU LİSESİ 3. MERSİN FİZİK OLİMPİYATI 30 NİSAN 2016,

ERDEMLİ ANADOLU LİSESİ 3. MERSİN FİZİK OLİMPİYATI 30 NİSAN 2016, ERDEMLİ ANADOLU LİSESİ 3. MERSİN FİZİK OLİMPİYATI 30 NİSAN 2016, 09.30-12.30 SINAVIN YAPILDIĞI İL:.... ADI: SOYADI:.... OKULU:...... HABERLEŞME ADRESİ VE TELEFONU:... İMZA... SINAVLA İLGİLİ UYARILAR: Bu

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI T.C. TÜBİTAK-BİDEB YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI İKİ ELEKTROMIKNATIS ARASINDA BULUNAN BİR DEMİR PARÇACIĞIN HAREKETİ HAZIRLAYANLAR

Detaylı

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI 10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI KONULAR HACİM VE HACİM ÖLÇÜLERİ KAVRAMI HACİM ÖLÇÜLERİ BİRİMLERİ 1. Metreküpün Katları As Katları 2. Birimlerin

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley BÖLÜM 2 Gauss s Law Hedef Öğretiler Elektrik akı nedir? Gauss Kanunu ve Elektrik Akı Farklı yük dağılımları için Elektrik Alan hesaplamaları Giriş Statik Elektrik, tabiatta birbirinden farklı veya aynı,

Detaylı

ELK464 AYDINLATMA TEKNİĞİ

ELK464 AYDINLATMA TEKNİĞİ ELK464 AYDNLATMA TEKNİĞİ Fotometrik Büyüklükler Fotometrik Yasalar (Hafta) Yrd.Doç.Dr. Zehra ÇEKMEN Fotometrik Büyüklükler şık Akısı (Ф) Birimi Lümen (lm) Bir ışık kaynağının her doğrultuda verdiği toplam

Detaylı

04 Kasım 2010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov)

04 Kasım 2010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov) 04 Kasım 010 TÜBİTAK ikince kademe seviyesinde Deneme Sınavı (Prof.Dr.Ventsislav Dimitrov) Soru 1. Şamandıra. Genç ama yetenekli fizikçi Ali bir yaz boyunca, Karabulak köyünde misafirdi. Bir gün isimi

Detaylı

BASİT HARMONİK HAREKET

BASİT HARMONİK HAREKET BASİT HARMONİK HAREKET Bir doğru üzerinde bulunan iki nokta arasında periyodik olarak yer değiştirme ve ivmesi değişen hareketlere basit harmonik hareket denir. Sarmal yayın ucuna bağlanmış bir cismin

Detaylı

ERDEMLİ ANADOLU LİSESİ 1. FİZİK OLİMPİYATI 24 MAYIS 2014,

ERDEMLİ ANADOLU LİSESİ 1. FİZİK OLİMPİYATI 24 MAYIS 2014, ERDEMLİ ANADOLU LİSESİ 1. FİZİK OLİMPİYATI 24 MAYIS 2014, 10.00-12.30 SINAVIN YAPILDIĞI İL:.... ADI: SOYADI:.... OKULU:...... HABERLEŞME ADRESİ VE TELEFONU:... İMZA... SINAVLA İLGİLİ UYARILAR: Bu sınavda

Detaylı

FIZ186 GENEL FİZİK II

FIZ186 GENEL FİZİK II FIZ186 GENEL FİZİK II Ders içeriği: 1. Elektrik Alanları (23) 2. Gauss Yasası (24) 3. Elektriksel Potansiyel (25) 4. Sığa ve Dielektrikler (26) 5. Akım ve Direnç (27) 6. Doğru Akım Devreleri (28) 7. Manyetik

Detaylı

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir.

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir. TEMEL ELEKTRONİK Elektronik: Maddelerde bulunan atomların son yörüngelerinde dolaşan eksi yüklü elektronların hareketleriyle çeşitli işlemleri yapma bilimine elektronik adı verilir. KISA ATOM BİLGİSİ Maddenin

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz.

ÇALIŞMA SORULARI. Şekilde gösterildiği gibi yüklenmiş ankastre mesnetli kirişteki mesnet tepkilerini bulunuz. ÇALIŞMA SORULARI Üniform yoğunluğa sahip plaka 270 N ağırlığındadır ve A noktasından küresel mafsal ile duvara bağlanmıştır. Ayrıca duvara C ve D noktasından bağlanmış halatlarla desteklenmektedir. Serbest

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi

MALZEME BİLGİSİ. Kristal Yapılar ve Kristal Geometrisi MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Kristal Yapılar ve Kristal Geometrisi 1 KRİSTAL YAPILAR Malzemelerin iç yapısı atomların diziliş biçimine bağlıdır. Kristal yapı Kristal yapılarda atomlar düzenli

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri)

Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri) FİZİK 102 Temel Ders Kitabı: Fen Bilimcileri ve Mühendislik için Fizik; Douglas C. Giancoli, Akademi, 2009 (Dördüncü Baskıdan Çeviri) 1. Hafta: Elektrik Alanları (Bölüm 21) Elektrik Yükü: Pozitif ve negatif

Detaylı

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI

BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI EKİM EYLÜL EYLÜL EYLÜL AY HAFTA DERS SAATİ BALIKESİR KARESİ ADNAN MENDERES ANADOLU LİSESİ 2015 2016 DERS YILI 11. SINIFLAR FİZİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE KONULAR KAZANIMLAR ÖĞRENME-ÖĞRETME

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ

6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 6.HAFTA BÖLÜM 3: ÇEKİRDEK KUVVETLERİ VE ÇEKİRDEK MODELLERİ 3.1 ÇEKİRDEK KUVVETLERİ 3.1.1. GENEL KARAKTERİSTİK Çekirdek hakkında çok fazla bir şey bilmezden önce yalnızca iki farklı etkileşim kuvveti bilinmekteydi.

Detaylı

AKIŞKANLAR MEKANİĞİ UYGULAMA SORULARI

AKIŞKANLAR MEKANİĞİ UYGULAMA SORULARI 1 AKIŞKANLAR MEKANİĞİ UYGULAMA SORULARI AKIŞKANLARIN ÖZELLİKLERİ SORU 1: Şekilde görülen dairesel kesitli düşey bir tüpte 0 C deki suyun kapiler yüksekliğinin 1 mm den az olması için gerekli olan minimum

Detaylı

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI DA DEVRE Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI BÖLÜM 1 Temel Kavramlar Temel Konular Akım, Gerilim ve Yük Direnç Ohm Yasası, Güç ve Enerji Dirençsel Devreler Devre Çözümleme ve Kuramlar

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder. EĞİK ATIŞ Bir merminin serbest uçuş hareketi iki dik bileşen şeklinde, yatay ve dikey hareket olarak incelenir. Bu harekette hava direnci ihmal edilerek çözüm yapılır. Hava direnci ihmal edilince yatay

Detaylı

X Y Z. 9 yatay. Şekil I. Şekil II. Kütlesi önemsenmeyen eşit bölmeli bir çubuk X, Y, Z cisimleriyle şekildeki gibi dengededir.

X Y Z. 9 yatay. Şekil I. Şekil II. Kütlesi önemsenmeyen eşit bölmeli bir çubuk X, Y, Z cisimleriyle şekildeki gibi dengededir. 6. 9 8. Şekil I Şekil II Z Eşit kollu bir terazinin kefelerinde Şekil I deki cisimler varken binici. bölmeye, Şekil II deki cisimler varken de 9. bölmeye getirilerek denge sağlanıyor. Binicinin bir bölme

Detaylı

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir AĞIRLIK MERKEZİ Bir cise etki eden yerçekii kuvvetine Ağırlık denir. Ağırlık vektörel bir büyüklüktür. Yere dik bir kuvvet olup uzantısı yerin erkezinden geçer. Cisin coğrafi konuuna ve yerden yüksekliğine

Detaylı

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar

5.111 Ders Özeti #12. Konular: I. Oktet kuralından sapmalar 5.111 Ders Özeti #12 Bugün için okuma: Bölüm 2.9 (3. Baskıda 2.10), Bölüm 2.10 (3. Baskıda 2.11), Bölüm 2.11 (3. Baskıda 2.12), Bölüm 2.3 (3. Baskıda 2.1), Bölüm 2.12 (3. Baskıda 2.13). Ders #13 için okuma:

Detaylı

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. 70 kg gelen bir bayanın 400 cm 2 toplam ayak tabanına sahip olduğunu göz önüne alınız. Bu bayan

Detaylı

Soru 1. Cisim dengede ise F¹ ve F² nedir? F¹ = 50.cos 53 = 30N F² = 50.sin 53 = 40N. Soru 2. P² = 8+16 = 24N P³ = 12-6 = 6N

Soru 1. Cisim dengede ise F¹ ve F² nedir? F¹ = 50.cos 53 = 30N F² = 50.sin 53 = 40N. Soru 2. P² = 8+16 = 24N P³ = 12-6 = 6N DENGE VE DENGE ŞARTLARI Bir cisim duruyorsa veya düzgün hızla bir doğru boyunca hareket ediyorsa ya da sabir hızla bir eksen etrafında dönüyorsa ``cisim dengededir`` denir. Cisim olduğu yerde duruyorsa,

Detaylı

DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ Öğrencinin: Adı Soyadı : Ekrem Selçuk OYMAK Numarası : 1215 Sınıfı : 10 Fen A Öğretmenin: Adı Soyadı : Fahrettin KALE Konu : KÜTLE

Detaylı

Massachusetts Teknoloji Enstitüsü - Fizik Bölümü

Massachusetts Teknoloji Enstitüsü - Fizik Bölümü Massachusetts Teknoloji Enstitüsü - Fizik Bölümü Fizik 8.02 Ödev # 1 6 Şubat 2002. Kendinize bir iyilik yapın ve derslere hazırlanın! Derste anlatılmadan önce, konuları okumanızı şiddetle öneririz. Derslerden

Detaylı

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ DİNAMİK Dinamik mühendislik mekaniği alanının bir alt grubudur: Mekanik: Cisimlerin dış yükler altındaki davranışını inceleyen mühendislik alanıdır. Aşağıdaki alt gruplara ayrılır: MEKANİK Rijit-Cisim

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER

İletim Hatları ve Elektromanyetik Alan. Mustafa KOMUT Gökhan GÜNER İletim Hatları ve Elektromanyetik Alan Mustafa KOMUT Gökhan GÜNER 1 Elektrik Alanı Elektrik alanı, durağan bir yüke etki eden kuvvet (itme-çekme) olarak tanımlanabilir. F parçacık tarafından hissedilen

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 8. Konu TORK VE DENGE TEST ÇÖZÜMLERİ 11. SINI SRU BANASI 1. ÜNİE: UVVE VE HAREE 8. onu R VE DENE ES ÇÖZÜMERİ 8 ork ve Denge est 1 in Çözümleri. 1 k x 1 k x 1 x 1 x 1. (+) ( ) x 1 k r k x x k x r x k k x noktasına göre tork alalım. oplam tork;

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Basıncın derinlikle değişimi Aynı derinlikteki bütün noktalar aynı basınçta y yönünde toplam kuvvet

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi 8. Sürtünme Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr

Detaylı

ÖZET. Basit Makineler. Basit Makine Çeşitleri BASİT MAKİNELER

ÖZET. Basit Makineler. Basit Makine Çeşitleri BASİT MAKİNELER Basit Makineler Basit Makine Nedir? Günlük hayatımızda yaptığımız işleri kolaylaştırmak için bir takım araçlar kullanırız. Bir kuvvetin yönünü, büyüklüğünü ya da bir kuvvetin hem büyüklüğünü hem de yönünü

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR KRİSTAL YAPILAR Mühendislik açısından önemli olan katı malzemelerin fiziksel özelikleri; katı malzemeleri meydana getiren atom, iyon veya moleküllerin dizilişine

Detaylı

ELEKTRİK VE MANYETİZMA

ELEKTRİK VE MANYETİZMA ELEKTRİK VE MANYETİZMA ELEKTROSTATİK 1)COULOM KANUNU: İki yük arasındaki itme ya da çekme kuvveti yüklerin çarpımı ile doğru yükler arasındaki uzaklığın karesi ile ters orantılıdır. q1q 1 u kanun F k şeklinde

Detaylı

CİSİMLERİN ELEKTRİKLENMESİ VE ELEKTRİKLENME ÇEŞİTLERİ

CİSİMLERİN ELEKTRİKLENMESİ VE ELEKTRİKLENME ÇEŞİTLERİ CİSİMLERİN ELEKTRİKLENMESİ VE ELEKTRİKLENME ÇEŞİTLERİ Çoğu kez yünlü kazağımızı ya da naylon iplikten yapılmış tişörtümüzü çıkartırken çıtırtılar duyarız. Eğer karanlık bir odada kazağımızı çıkartırsak,

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00

Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00 PHYWE Farklı malzemelerin dielektrik sabiti LEP 4.2.06_00 İlgili başlıklar Maxwell in eşitlikleri, elektrik sabiti, plaka kapasitörün kapasitesi, gerçek yükler, serbest yükler, dielektrik deplasmanı, dielektrik

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir.

görülmüştür. Bu sırada sabit nükleer yoğunluk (ρ) hipotezide doğrulanmış olup ραa olarak belirtilmiştir. 4.HAFTA 2.1.3. NÜKLEER STABİLİTE Bulunan yarı ampirik formülle nükleer stabilite incelenebilir. Aşağıdaki şekil bilinen satbil çekirdekler için nötron sayısı N e karşılık proton sayısı Z nin çizimini içerir.

Detaylı

10. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI

10. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI 10. SINIF FİZİ YAZ TATİİ ÖDEV İTAPÇIĞI Sevgili öğrenciler; yorucu bir çalışma döneminden sonra hepiniz tatili hak ettiniz. Fakat öğrendiklerimizi kalıcı hale getirmek için konu tekrarı yapmamız, soru çözerek

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün geçiş hızının, uygulanan voltaj V ile aşağıdaki şekilde

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA

5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA 5. ÜNİTE İZDÜŞÜMÜ VE GÖRÜNÜŞ ÇIKARMA KONULAR 1. İzdüşüm Metodları 2. Temel İzdüşüm Düzlemleri 3. Cisimlerin İzdüşümleri 4. Görünüş Çıkarma BU ÜNİTEYE NEDEN ÇALIŞMALIYIZ? İz düşümü yöntemlerini, Görünüş

Detaylı

Bölüm: Matlab e Giriş.

Bölüm: Matlab e Giriş. 1.Bölüm: Matlab e Giriş. Aşağıdaki problemleri MATLAB komut penceresinde komut yazarak çözünüz. Aşağıdaki formüllerde (.) ondalıklı sayı için, ( ) çarpma işlemi için kullanılmıştır. 1.. 8.5 3 3 1500 7

Detaylı

DÜZGÜN DAİRESEL HAREKET

DÜZGÜN DAİRESEL HAREKET FİZİK DÖNEM ÖDEVİ DÜZGÜN DAİRESEL HAREKET Adı,Soyadı: Merve ERDEM Numara: 25 Sınıf: 10FenJ Öğretmen: Fahrettin KALE Mart,2007 1 DÜZGÜN DAİRESEL HAREKET SORU 1: Bir cisim 1 m yarıçaplı dairesel yörüngede

Detaylı

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler

Burulma (Torsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS 009 he MGraw-Hill Companies, In. All rights reserved. - Burulma (orsion): Dairesel Kesitli Millerde Gerilme ve Şekil Değiştirmeler ifthmechanics OF MAERIALS ( τ ) df da Uygulanan

Detaylı

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN 3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Gr. M. ERYÜREK Arş. Gr. H. TAŞKIN AMAÇ Eğik düzlemdeki imeli hareketi gözlemek e bu hareket için yol-zaman, hız-zaman ilişkilerini incelemek, yerçekimi imesini

Detaylı

ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN

ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN 1. SORULAR Yalıtkan bir ortamda bulunan noktasal üç yükten K(+q),L(-q),M(+2q) dur. K ile L arasındaki uzaklık d, L ile M arasıdaki uzaklık 2d dir. K yükünün L yüküne

Detaylı