HATA VE HATA KAYNAKLARI...

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HATA VE HATA KAYNAKLARI..."

Transkript

1 İÇİNDEKİLER 1. GİRİŞ Giriş Sayısal Analizin İlgi Alanı Mühendislik Problemlerinin Çözümü ve Sayısal Analiz Sayısal Analizde Bilgisayarın Önemi Sayısal Çözümün Önemi ve Analitik Çözümle Mukayesesi HATA VE HATA KAYNAKLARI Giriş Hata Kaynakları Yuvarlatma hatası Kesme hatası Giriş verisindeki hata İnsan hatası Bilgisayarda Sayıların Gösterimi Kayar nokta aritmetiği Aritmetik işlemlerde hataların etkisi Kesme Hatası Analizi Toplam Hata Fonksiyon Hatası Kararlılık ve Büyültme Çarpanı Hata Analizi Sorular Mühendislik Problemleri LİNEER DENKLEM SİSTEMLERİNİN ÇÖZÜMÜ Lineer Denklem Sistemleri Analitik Yöntemler Cramer yöntemi Matris tersi yöntemi Gauss eliminasyonu Gauss-Jordan yöntemi LU Ayırma yöntemi Özel matrisler ve direkt çözümler Çözümün iyileştirilmesi vii

2 3.3 İteratif Yöntemler Jacobi yöntemi Gauss-Seidel yöntemi Rölaksasyon yöntemi Denklem Sistemlerinin Çözülebilirliği Çözümün varlığı ve tekliği Homojen denklem sistemleri Kötü şartlanmış denklem sistemleri...70 Sorular Mühendislik Problemleri Örnek Programlar LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Giriş Tek Değişkenli Denklemlerin Çözümü Yarıya bölme yöntemi Lineer interpolasyon yöntemi Basit iterasyon Newton-Raphson yöntemi Sekant yöntemi Polinom köklerinin bulunması Lineer Olmayan Denklem Sistemlerinin Çözümü Basit iterasyon yönteminin kullanımı Genelleştirilmiş Newton-Raphson yöntemi Dik iniş yöntemi Sorular Mühendislik Problemleri Örnek Programlar SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ İnterpolasyon İleri sonlu farklar Geriye sonlu farklar Merkezi sonlu farklar İnterpolasyon polinomları Lineer interpolasyon İkinci dereceden interpolasyon Newton-Gregory ilerleme polinomu Newton-Gregory gerileme polinomu viii

3 5.2.5 Merkezi fark interpolasyon polinomları Lagrange interpolasyon polinomu Ters interpolasyon Ekstrapolasyon Hermite interpolasyonu Çok değişkenli interpolasyon Parça parça interpolasyon Bézier Eğrileri Sorular Mühendislik Problemleri Örnek Programlar İSTATİSTİK VE REGRESYON ANALİZİ Giriş Temel İstatistik Frekans dağılımları ve data grupları İstatistiki ölçümlerin dağılımı Regresyon Analizi Lineer regresyon analizi Non-lineer regresyon analizi ve lineerleştirme Polinomial regresyon analizi Çok değişkenli regresyon analizi Genel non-lineer regresyon analizi Trigonometrik Yaklaşım ve Fourier Dönüşümleri Fourier serileri Fourier integralleri ve Fourier dönüşümleri Ayrık Fourier dönüşümleri Hızlı Fourier dönüşümleri Sorular Mühendislik Problemleri Örnek Programlar SAYISAL TÜREV Giriş Taylor Serisi İnterpolasyon Polinomlarının Türevleri Lineer interpolasyonun kullanılması İkinci dereceden interpolasyonun kullanılması Çok nokta kullanan türev formülleri ix

4 7.4 Richardson Ekstrapolasyonu Özel Durumlar Sorular Mühendislik Problemleri SAYISAL İNTEGRASYON Giriş Yamuk Kuralı Simpson 1/3 Kuralı Simpson 3/8 Kuralı Üniform Olmayan Noktalar ve Açık İntegrasyon Çok Katlı İntegraller Romberg İntegrasyonu İmproper İntegraller Gaussian Quadrature Sorular Mühendislik Problemleri Örnek Programlar DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ Giriş Başlangıç ve sınır değerleri Başlangıç değer problemi Sınır değer problemi Birinci Mertebeden Adi Diferansiyel Denklemler Tek adımlı yöntemler Adımın yarılanması Çok adımlı yöntemler Yüksek Mertebeden Adi Diferansiyel Denklemler Birinci mertebeden adi diferansiyel denklem sistemleri Yüksek mertebeden adi diferansiyel denklemler Stif Diferansiyel Denklemler Sınır Değer Problemleri Atış yöntemi Sonlu farklar yöntemi Sorular Mühendislik Problemleri Örnek Programlar x

5 10. KISMİ DİFERANSİYEL DENKLEMLER Giriş Matematiksel sınıflandırma Parabolik diferansiyel denklemler Hiperbolik diferansiyel denklemler Eliptik diferansiyel denklemler Kısmi diferansiyel denklemlerin çözümü Sonlu Farklar Yöntemi Taylor serisi açılımı ile sonlu fark formülleri Diferansiyel Denklemlerin Sonlu Fark Denklemlerine Dönüştürülmesi Parabolik Diferansiyel Denklemlerin Sonlu Farklarla Çözümü Açık çözüm yöntemleri Kapalı çözüm yöntemleri İki boyutlu parabolik denklemler Lineer olmayan parabolik denklemler Hiperbolik Diferansiyel Denklemlerin Sonlu Farklarla Çözümü Açık çözüm yöntemleri İki adımlı çözüm yöntemleri Kapalı çözüm yöntemleri İkinci dereceden dalga denkleminin çözümü Eliptik Diferansiyel Denklemlerin Sonlu Farklarla Çözümü nokta formülü nokta formülü Sınır şartları Denklem sistemlerinin çözümü Diferansiyel Denklem Sistemlerinin Sayısal Çözümü Diferansiyel Quadrature Yöntemi Genelleştirilmiş Diferansiyel Quadrature Yöntemi İki boyutlu GDQ Yöntemi Sorular Mühendislik Problemleri KAYNAKLAR EK 1: Matrisler ve Determinantlar Seçilmiş Soruların Cevapları DİZİN xi

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI ZORUNLU DERSLER Matematiğin Temelleri (3-0) 3: Sembolik Mantık; Kümeler Kuramı; Kartezyen Çarpım; Bağıntılar; Fonksiyonlar; Birebir ve Örten Fonksiyonlar;

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Numerik Analiz BIL222 4 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

İçindekiler 1 GENEL KAVRAM ve TANIMLAR 2 TEMEL YASALAR ve KORUNUM DENKLEMLERİ vii

İçindekiler 1 GENEL KAVRAM ve TANIMLAR 2 TEMEL YASALAR ve KORUNUM DENKLEMLERİ vii 1 GENEL KAVRAM ve TANIMLAR 1 1.1 Giriş... 1 1.2 Sürekli Ortam Yaklaşımı..... 2 1.2.1 Bir Maddenin Moleküler ve Atomik Seviyeleri... 3 1.2.2 Sürekli Ortam İçin Sınırlamalar... 4 1.3 Laminar ve Türbülanslı

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri)

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) Bölümü Dersin Kodu ve Adı K MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1- Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2- Fonksiyonlar,

Detaylı

CEV1132 / MTM2112 SAYISAL ANALİZ 2013-2014 BAHAR YARIYILI DERS PLANI

CEV1132 / MTM2112 SAYISAL ANALİZ 2013-2014 BAHAR YARIYILI DERS PLANI KOORDİNATÖR : Doç. Dr. Gürdal KANAT DERSİN YERİ VE ZAMANI : CEV1132 GR.1 Çarşamba FZ-082 11:00 12:50 CEV1132 GR.2 Çarşamba FZ-083 11:00 12:50 CEV1132 GR.3 Çarşamba FZ-082 15:00 16:50 CEV1132 GR.4 Çarşamba

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ 1. YARIYIL DERSLERİ MAT101 Analiz I Kredi(Teorik-Pratik-Lab.): 5 (4-0-2) AKTS: 6 Matematik Analizin temel kavramları,

Detaylı

Regresyon ve İnterpolasyon. Rıdvan YAKUT

Regresyon ve İnterpolasyon. Rıdvan YAKUT Regresyon ve İnterpolasyon Rıdvan YAKUT Eğri Uydurma Yöntemleri Regresyon En Küçük Kareler Yöntemi Doğru Uydurma Polinom Uydurma Üstel Fonksiyonlara Eğri Uydurma İnterpolasyon Lagrange İnterpolasyonu (Polinomal

Detaylı

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6 KIRGIZİSTAN TÜRKİYE MANAS ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ UYGULAMALI MATEMATİK VE ENFORMATİK LİSANS PROGRAMI DERSLERİN YARIYILLARA GÖRE DAĞILIMI BİRİNCİ YIL 1. YARIYIL TAR - 153 Ata Meken Tarihi

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü ÇNDEKLER I. CLT KONULAR 1. Lineer Cebire Giri... 1 Lineer Modeller... 3 Lineer Olmayan Modeller... 3 Dorunun Analitik Analizi.. 5 Uzayda Geometrik Büyüklükler. 7 Lineer Cebir ve Lineerite 10 Lineer Denklem

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

MB5002 NÜMERİK ANALİZ

MB5002 NÜMERİK ANALİZ MB500 NÜMERİK ANALİZ Ders Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü c 01, Emel Yavuz Duman Tüm hakkı saklıdır. Bu notlar Örgün Öğretimde Uzaktan Öğretim

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Kompleks Matematik EEE203 3 3+0 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Kompleks Matematik EEE203 3 3+0 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Kompleks Matematik EEE203 3 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

Dersin Kodu ve Adı. EEM601 Wigner-Ville ve Zaman-Frekans İşaret Analizi (3-0) 3

Dersin Kodu ve Adı. EEM601 Wigner-Ville ve Zaman-Frekans İşaret Analizi (3-0) 3 EEM601 Wigner-Ville ve Zaman-Frekans İşaret Analizi (3-0) 3 Analog sistemlerde güç ve enerji. Doğrusal olmayan ve zamanla değişen sistemler. Durağan olmayan çok bileşenli işaretlerin yapıları ve model

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Lineer Cebir ve Vektörler EEE118 2 3+0 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Lineer Cebir ve Vektörler EEE118 2 3+0 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Lineer Cebir ve Vektörler EEE118 2 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze

Detaylı

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL ( Güz) II.YARIYIL (Bahar) DERSİN DERSİN ADI T P K AKTS DERSİN DERSİN ADI T P K AKTS MAT101 ANALİZ I 4 2 5 7 MAT102

Detaylı

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ 1. SINIF GÜZ DÖNEMİ Dersin Kodu ve Adı: 00101 Fizik I Vektörler, tek boyutta hareket, iki boyutta hareket, hareket kanunları, dairesel hareket ve Newton kanunlarının uygulamaları,

Detaylı

Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK. İstanbul, 2009

Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK. İstanbul, 2009 i Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK Yrd.Doç.Dr. Kamil TEMİZYÜREK Beykent Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Nurdan ÇOLAKOĞLU Beykent Üniversitesi Öğretim Üyesi İstanbul, 2009 ii Yay

Detaylı

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3)

SHA 606 Kimyasal Reaksiyon Akışları-II (3 0 3) Doktora Programı Ders İçerikleri: SHA 600 Seminer (0 2 0) Öğrencilerin ders aşamasında; tez danışmanı ve seminer dersi sorumlusu öğretim elemanının ortak görüşü ile tespit edilen bir konuyu hazırlayarak

Detaylı

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu,

8.04 Kuantum Fiziği Ders IV. Kırınım olayı olarak Heisenberg belirsizlik ilkesi. ise, parçacığın dalga fonksiyonu, Geçen Derste Kırınım olayı olarak Heisenberg belirsizlik ilkesi ΔxΔp x 2 Fourier ayrışımı Bugün φ(k) yı nasıl hesaplarız ψ(x) ve φ(k) ın yorumu: olasılık genliği ve olasılık yoğunluğu ölçüm φ ( k)veyahut

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

SAYFA:1/8 I. YARIYIL DERSLERİ

SAYFA:1/8 I. YARIYIL DERSLERİ SAYFA:1/8 I. YARIYIL DERSLERİ MAT1001 ANALİZ I (4 2 5) AKTS:7 Reel sayılar, Eşitsizlikler, Dizi kavramı, Dizilerde yakınsaklık ve sınırlılık, Fonksiyon kavramı, Bazı özel fonksiyonlar, Fonksiyonların limiti,

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI. 2013-14 Güz Yarıyılı. 1 yıl 1. yarıyıl Lisans Zorunlu

T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI. 2013-14 Güz Yarıyılı. 1 yıl 1. yarıyıl Lisans Zorunlu AKTS Kredisi 5 T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI Dersin adı: 2013-14 Güz Yarıyılı Genel Matematik I Dersin Kodu emat 151 1 yıl 1. yarıyıl Lisans Zorunlu 3 s/hafta

Detaylı

Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS. Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS

Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS. Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS Analiz I MT101 1. Sınıf 1. Dönem 4 Teo.+2 Uyg. 5 7 Reel sayılar, Eşitsizlikler, Dizi kavramı, Dizilerde yakınsaklık ve sınırlılık, Fonksiyon kavramı, Bazı özel fonksiyonlar, Fonksiyonların limiti, Limit

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 22.06.2015 15:00-16:30 C 012, C 013 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 23.06.2015 15:00-16:30 C 012, C 013 Bilgisayar (A Grubu) Mat.

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI FİNAL PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI FİNAL PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 01.06.2015 08:30-10:00 C 012, C 013, C 118, C 119 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 10.06.2015 15:00-16:30 C 117, C 118, C 119, C 013

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ (2013-2014) Bu bilgilere (güncel olarak) http://eobs.cu.edu.tr/progamac.aspx?progid=13 den erişilebilir. NOT: Bir seçmeli dersin

Detaylı

Anlatım-sunum-laboratuar

Anlatım-sunum-laboratuar MM 301 ÜRETİM YÖNTEMLERİ - I 2+1/2,5 AKTS Kredisi:3 -laboratuar 1 saat laboratuar Talaşlı imalat ve takım tezgahları. Modeller, maçalar, kalıp tasarımı, döküm yöntemleri, ergitme ve döküm, döküm malzemeleri.

Detaylı

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git)

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) Facebook Fun Sayfamız Twitter Sayfamız Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) (adsbygoogle = window.adsbygoogle []).push({}); Çıkmış Soru Çözümlerİ Çözümleri Matematik

Detaylı

Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL

Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL Cumhuriyet Üniversitesi Eğitim Fakültesi Ortaöğretim Fen ve Matematik Alanları Eğitimi Bölümü Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL OMÖ1001 Analiz-I 4 2 5 10 OMÖ1003

Detaylı

BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI

BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI BĐRĐNCĐ YIL KODU DERSĐN ADI T U K A KODU DERSĐN ADI T U K A MAT101 ANALĐZ I 4 1 5 7 MAT102 ANALĐZ II 4 1 5 7 MAT103

Detaylı

ýçindekiler Ön Söz xiii Antenler 1.1 1.2 1.3 1.4 1.5 1.6 Temel Anten Parametreleri 27 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.

ýçindekiler Ön Söz xiii Antenler 1.1 1.2 1.3 1.4 1.5 1.6 Temel Anten Parametreleri 27 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2. çindekiler Ön Söz xiii 1 Antenler 1 1.1 Giri 1 1.2 Anten Tipleri 4 1.3 I ma Mekanizmas 7 1.4 nce Tel Antende Ak m Da l m 17 1.5 Tarihsel Geli meler 20 1.6 Multimedya 24 Kaynakça 24 2 Temel Anten Parametreleri

Detaylı

TC OKAN ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ GENETİK VE BİYOMÜHENDİSLİK BÖLÜMÜ PROGRAMI DERS İÇERİKLERİ. 1. Yarıyıl 3. 2.

TC OKAN ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ GENETİK VE BİYOMÜHENDİSLİK BÖLÜMÜ PROGRAMI DERS İÇERİKLERİ. 1. Yarıyıl 3. 2. TC OKAN ÜNİVERSİTESİ MÜHENDİSLİK - MİMARLIK FAKÜLTESİ GENETİK VE BİYOMÜHENDİSLİK BÖLÜMÜ PROGRAMI DERS İÇERİKLERİ 1. Yarıyıl 3 MAT113 Matematik I (3-2)4 FIZ113 Fizik I (2-2)3 ATA101 Atatürk İlkeleri ve

Detaylı

MATRİSLER. Şekil 1 =A6:B7+D6:E7

MATRİSLER. Şekil 1 =A6:B7+D6:E7 MATRİSLER Bir A matrisi mxn adet gerçel veya sanal elemanların sıralı koleksiyonudur. Bu koleksiyon m satır ve n sütun ile düzenlenir. A(mxn) notasyonu matrisin m satırlı n sütunlu olduğunu gösterir ve

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI 1 Bölüm Hakkında: Dört yıllık programın ilk iki yılında teorik geniş bir çerçevede matematiğin temelleri

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ (2014-2015) Bu bilgilere (güncel olarak) http://eobs.cu.edu.tr/progdersplan_tr.aspx?progid=13 den erişilebilir. NOT: Bir seçmeli

Detaylı

İçindekiler Jeofizikte Modellemenin Amaç ve Kapsamı Geneleştirilmiş Ters Kuram ve Jeofizikte Ters Problem Çözümleri

İçindekiler Jeofizikte Modellemenin Amaç ve Kapsamı Geneleştirilmiş Ters Kuram ve Jeofizikte Ters Problem Çözümleri İçindekiler Jeofizikte Modellemenin Amaç ve Kapsamı 1 Giriş 1 Tanımsal ve Stokastik Taklaşımlarla Problem Çözümlerinin Temel İlkeleri 2 Tanımsal Yaklaşımda Düz Problem Çözümlerinde Modelleme ilkeleri 4

Detaylı

OMÖ1003 SOYUT MATEMATĐK-I

OMÖ1003 SOYUT MATEMATĐK-I Cumhuriyet Üniversitesi Eğitim Fakültesi Ortaöğretim Fen ve Matematik Alanları Eğitimi Bölümü Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL OMÖ1001 Analiz-I 4 2 5 10 OMÖ1003

Detaylı

İlköğretim Matematik Öğretmenliği Lisans Programı Ders İçerikleri

İlköğretim Matematik Öğretmenliği Lisans Programı Ders İçerikleri İlköğretim Matematik Öğretmenliği Lisans Programı Ders İçerikleri I.YARIYIL Genel Matematik (4-2-5) Doğal sayılar kümesi, tamsayılar kümesi, rasyonel sayılar kümesi, gerçel sayılar kümesi ve özellikleri.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

OTOMATİK KONTROL DERS NOTLARI. DERLEYEN: Doç. Dr. Hüseyin BULGURCU. Kasım 2014. BAU MMF Makine Müh. Bölümü

OTOMATİK KONTROL DERS NOTLARI. DERLEYEN: Doç. Dr. Hüseyin BULGURCU. Kasım 2014. BAU MMF Makine Müh. Bölümü 1 OTOMATİK KONTROL DERS NOTLARI DERLEYEN: Doç. Dr. Hüseyin BULGURCU BAU MMF Makine Müh. Bölümü Kasım 2014 2 BÖLÜM-1 OTOMATİK KONTROLE GİRİŞ Kontrol Mühendisliği Kontrol Mühendisliği hedef odaklı sistemlerin

Detaylı

T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ

T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ 1. SINIF, 1. YARI YIL(GÜZ DÖNEMİ) UNV13101 TÜRK DİLİ I 2 0 2 2 2 ZORUNLU Türkçenin yapı ve anlam bakımından

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 22.06.2015 17:00-18:30 C 012, C 013 Scientific English II Mat. 1. Grup Yrd.Doç.Dr.N.BAŞ 23.06.2015 17:00-18:30 C 012, C 013 Analytic Geometry

Detaylı

Elektronik Tablolar ile Kısmi Diferansiyel Denklemlerin Çözümü 1

Elektronik Tablolar ile Kısmi Diferansiyel Denklemlerin Çözümü 1 İMO Teknik Dergi, 2004 3235-3248, Yazı 217 Elektronik Tablolar ile Kısmi Diferansiyel Denklemlerin Çözümü 1 Günay ÖZMEN * ÖZ Bilimsel ve teknik problemlerin pek çoğunda karşılaşılan "Kısmi Diferansiyel

Detaylı

I. YARIYIL II. YARIYIL DERS N ADI T U K DERS N ADI T U K

I. YARIYIL II. YARIYIL DERS N ADI T U K DERS N ADI T U K I. YARIYIL II. YARIYIL DERS N ADI T U K DERS N ADI T U K A Genel Matematik 4 2 5 A Soyut Matematik 3 0 3 GK Türkçe I: Yazl Anlatm 2 0 2 A Geometri 3 0 3 GK Atatürk lkeleri ve nklap Tarihi I 2 0 2 GK Türkçe

Detaylı

T.C. BİLECİK ŞEYH EDEBALI ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ LİSANSÜSTÜ DERSLERİ

T.C. BİLECİK ŞEYH EDEBALI ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ LİSANSÜSTÜ DERSLERİ T.C. BİLECİK ŞEYH EDEBALI ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BİLGİSAYAR MÜHENDİSLİĞİ LİSANSÜSTÜ DERSLERİ BİLGİSAYAR MÜHENDİSLİĞİ LİSANSÜSTÜ DERSLERİ KODU DERS ADI T U K AKTS S/Z BM501 Algoritmaların

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ LİSANS PROGRAMI

İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ LİSANS PROGRAMI I. YARIYIL II. YARIYIL DERSİN ADI T U K DERSİN ADI T U K A Genel Matematik 4 2 5 A Soyut Matematik 3 0 3 GK Türkçe I: Yazılı Anlatım 2 0 2 A Geometri 3 0 3 GK Atatürk İlkeleri ve İnkılap Tarihi I 2 0 2

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 06.04.2015 17:00-18:30 A 003, A 009, A 004 Scientific English II Mat. 1. Grup Yrd.Doç.Dr.N.BAŞ 10.04.2015 20:10-21:40 C 013, C 015, C 012 Analytic

Detaylı

T. C. SİİRT ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS DERSLERİ VE İÇERİKLERİ 1. SINIF 2. SINIF 3. SINIF 4. SINIF

T. C. SİİRT ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS DERSLERİ VE İÇERİKLERİ 1. SINIF 2. SINIF 3. SINIF 4. SINIF GÜZ YARIYILI (I. DÖNEM) T. C. SİİRT ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS DERSLERİ VE İÇERİKLERİ 1. SINIF BAHAR YARIYILI (II. DÖNEM) ADI ADI MAT 101 Analiz I (Y) 4 2 5 7 MAT 102 Analiz

Detaylı

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI MATLAB Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI İçerik Matlab Nedir? Matlab ın Kullanım Alanları Matlab Açılış Ekranı Matlab Programı İle Temel İşlemlerin Gerçekleştirilmesi Vektör İşlemleri

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER

LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER ÖABT 2015 Soruları yakalayan komisyon tarafından hazırlanmıştır. ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ÖABT LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Konu Anlatımı Özgün Sorular Ayrıntılı Çözümler Test Stratejileri

Detaylı

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ 0 KAMU PERSONEL SEÇME SINAI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI E ÇÖZÜMLERİ Temmuz, 0 MATEMATİK (İLKÖĞRETİM) ÖĞRETMENLİĞİ Analizden soru sorulmuştur. İlk 8 soru

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI PROGRAMIN GENEL TANIMI MATEMATİK TEMEL ALANI MATEMATİK ALANI GENEL TANIMI MİSYON VE VİZYON Matematik, bireyin

Detaylı

Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU :

Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU : Prof. Dr. Abdullah YILDIZ KİŞİSEL BİLGİLER: Adı Soyadı : Abdullah Yıldız Doğum Yeri : Kayseri/Yahyalı Doğum Tarihi:8.1.1951 ÖĞRENİM DURUMU : 1972 Lisans, Ankara Üniversitesi Fen Fakültesi 1982 Yüksek Lisans,

Detaylı

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL: IST101 BİLGİSAYAR PROGRAMLAMA I (223) Bilgisayar Donanımı, İşletim Sistemleri, Windows Kullanımı, Microsoft Word,

Detaylı

MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI I. YARIYIL

MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI I. YARIYIL I. YARIYIL MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI Analiz I (3-2-4) Doğal Sayılar / Rasyonel Sayılar / İrrasyonel Sayılar / Reel Sayı Cümleleri / Lineer Nokta Cümlelerinin

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

Teori (saat/hafta) BES117 1.Güz 3 0 0 3

Teori (saat/hafta) BES117 1.Güz 3 0 0 3 TEMEL MATEMATİK Dersin Adı Kodu Yarıyıl TEMEL MATEMATİK Önkoşullar Dersin dili Dersin Türü Teori Laboratuar BES117 1.Güz 3 0 0 3 Yok Türkçe Zorunlu Dersin öğrenme ve Anlatım, Soru-Yanıt, Gösterme öğretme

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

MALZEME BİLİMİ VE MÜHENDİSLİĞİ BÖLÜMÜ

MALZEME BİLİMİ VE MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MALZEME BİLİMİ VE MÜHENDİSLİĞİ BÖLÜMÜ I. GENEL BİLGİLER Ders Adı MBM 101 Genel Matematik-I Zorunlu DERS SAATİ: 3 Dönemi Bölümü Ders Sorumlusu Güz Malzeme Bilimi

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

LİSANS EĞİTİMİ DERS İÇERİKLERİ

LİSANS EĞİTİMİ DERS İÇERİKLERİ LİSANS EĞİTİMİ DERS İÇERİKLERİ ATA121 - Atatürk İlkeleri ve İnkılap Tarihi I (2+0; ECTS: 2) Ders İçeriği: Batı kültürleri ile Türk kültürünün karşılaşması sonucu ortaya çıkan siyasî, ekonomik, kültürel

Detaylı

TC DUMLUPINAR ÜNİVERSİTESİ İKTSADİ VE İDARİ BİLİMLER FAKÜLTESİ EKONOMETRİ BÖLÜMÜ DERS İÇERİKLERİ

TC DUMLUPINAR ÜNİVERSİTESİ İKTSADİ VE İDARİ BİLİMLER FAKÜLTESİ EKONOMETRİ BÖLÜMÜ DERS İÇERİKLERİ TC DUMLUPINAR ÜNİVERSİTESİ İKTSADİ VE İDARİ BİLİMLER FAKÜLTESİ BİRİNCİ SINIF BİRİNCİ YARIYIL TÜRKÇE I EKONOMETRİ BÖLÜMÜ DERS İÇERİKLERİ Bu dersin amacı; öğrencilere, anlama ve ifade etmeyle ilgili temel

Detaylı

İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ LİSANS PROGRAMI

İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ LİSANS PROGRAMI İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ LİSANS PROGRAMI I.YARIYIL II.YARIYIL D. KODU DERSİN ADI T U K ECTS D. KODU DERSİN ADI T U K ECTS AİTB 101 Atatürk İlkeleri ve İnkılâp Tarihi I 2 0 2 2 AİTB 102 Atatürk

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

Şekil 6.2 Çizgisel interpolasyon

Şekil 6.2 Çizgisel interpolasyon 45 Yukarıdaki şekil düzensiz bir X,Y ilişkisini göstermektedir. bu fonksiyon eğri üzerindeki bir dizi noktayı birleştiren bir seri düzgün çizgi halindeki bölümlerle açıklanabilir. Noktaların sayısı ne

Detaylı

MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ YÜKSEK LİSANS DERS İÇERİKLERİ

MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ YÜKSEK LİSANS DERS İÇERİKLERİ MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ YÜKSEK LİSANS DERS İÇERİKLERİ MLM7003 Uygulamalı Matematik Modelleme ve Sayısal Analiz Matematik modelleme; verilen fiziksel veya

Detaylı

elektromagnetik uzunluk ölçerlerin Iaboratu ar koşullarında kaiibrasyonu

elektromagnetik uzunluk ölçerlerin Iaboratu ar koşullarında kaiibrasyonu elektromagnetik uzunluk ölçerlerin Iaboratu ar koşullarında kaiibrasyonu ÖZET Yük. Müh. Uğur DOĞAN -Yük. Müh Özgür GÖR Müh. Aysel ÖZÇEKER Bu çalışmada Yıldız Teknik Üniversitesi İnşaat Fakültesi Jeodezi

Detaylı

BİRİNCİ BÖLÜM SAYILAR

BİRİNCİ BÖLÜM SAYILAR İÇİNDEKİLER BİRİNCİ BÖLÜM SAYILAR 1.1 Tamsayılarda İşlemler... 2 1.1.1 Tek, Çift ve Ardışık Tamsayılar... 5 1.2 Rasyonel Sayılar... 6 1.2.1 Kesirlerin Birbirine Çevrilmesi... 7 1.2.2 Kesirlerin Genişletilmesi

Detaylı

Toplam: 14+10 19 30 Toplam: 14+10 19 30 YIL: III; DÖNEM: 1

Toplam: 14+10 19 30 Toplam: 14+10 19 30 YIL: III; DÖNEM: 1 MATEMATİK BÖLÜMÜ LİSANS PROGRAMI T: Teorik (saat/hafta) U: Uygulama (saat/hafta) AKTS: Avrupa Kredi Transfer Sistemi YIL: I; DÖNEM: 1 YIL: I; DÖNEM: DERSLER T+U K AKTS DERSLER T+U K AKTS Analiz-I + 5 7

Detaylı

MATEMATİK BÖLÜMÜ LİSANS ÖĞRETİM DERS İÇERİKLERİ ( ) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl)

MATEMATİK BÖLÜMÜ LİSANS ÖĞRETİM DERS İÇERİKLERİ ( ) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) MATEMATİK BÖLÜMÜ LİSANS ÖĞRETİM DERS İÇERİKLERİ (2012-2013) BİRİNCİ YIL Güz Dönemi (1. Yarıyıl) MATH 111 Analiz I (3, 2, 4) (6 AKTS) Tek Değişkenli Fonksiyonlar, Limit ve Süreklilik, Türev ve Türevlenebilirlik,

Detaylı

Diferansiyel Denklemler (MATH 276) Ders Detayları

Diferansiyel Denklemler (MATH 276) Ders Detayları Diferansiyel Denklemler (MATH 276) Ders Detayları Ders Adı Diferansiyel Denklemler Ders Kodu MATH 276 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 4 0 0 4 6 Ön Koşul Ders(ler)i Math

Detaylı

8.04 Kuantum Fiziği Ders XII

8.04 Kuantum Fiziği Ders XII Enerji ölçümünden sonra Sonucu E i olan enerji ölçümünden sonra parçacık enerji özdurumu u i de olacak ve daha sonraki ardışık tüm enerji ölçümleri E i enerjisini verecektir. Ölçüm yapılmadan önce enerji

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Bir H Hilbert uzay üzerinde herhangi bir kompakt simetrik T operatörü için,

Bir H Hilbert uzay üzerinde herhangi bir kompakt simetrik T operatörü için, Ritz Yöntemi Kullan larak Integral Operatörlerin Özde¼gerlerinin Yaklaş k Hesab Yüksel SOYKAN, Erkan TAŞDEM IR, Melih GÖCEN Zonguldak Karaelmas Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, 6700

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ

DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ I. YARIYIL EGİ 1023 EĞİTİM BİLİMİNE GİRİŞ (3-0-3) Eğitimin temel kavramları, eğitimin diğer bilimlerle

Detaylı

Yüksek Lisans Cebir (in Turkish) Başlık: Grup Teorisi I Seviye: - İçerik: Gruplar, bölüm grupları, temel izomorfizma teoremleri, alterne, simetrik ve dihedral gruplar, direkt çarpımlar, otomorfizma grupları

Detaylı