X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının"

Transkript

1 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell yılı aşkın süredr kullanılmaktadır, ancak değşkenlğn azaltılmasına yönelk çalışmalar, süreç yleştrmeler pek çok yen kalte kontrol teknğn gelştrlmesne yol açmıştır. Bu hafta bu teknklerden USUM, EWMA ve hareketl ortalama teknkler anlatılarak gerekl dyagramların nasıl oluşturulacağı zah edlecektr. Bu teknkler çok da yen olmamakla beraber, ler sevyede teknkler olarak kabul edlmektedr. İlerde zah edleceğ üzere, USUM ve EWMA önce anlatılan teknklere göre bazı durumlarda daha y performans göstermektedrler, Regresyon teknğ se verler arası otokorelasyon olan süreçlern kalte kontrolünde etkn br yöntemdr. Geçmş derslerde anlatılan kalte kontrol dyagramları Shewart kontrol dyagramları olarak da adlandırılmaktadırlar. Bu tür dyagramların en büyük dezavantajı verlere at değerlern tümünü kullanmak yerne yalnızca alt örnek gruplarına at tek br noktanın kullanmasıdır. Bu nedenle Shewart dyagramları süreçtek küçük kaymalara karşı duyarsızdır. Shewart dyagramlarına alternatf k yöntem olan USUM ve EWMA süreçte küçük kaymalar olduğunda, örneğn kaymaların 1,5 σ dan küçük olduğu durumlarda, kullanılablecek oldukça yararlı kalte kontrol teknklerdr USUM Dyagramı Aşağıda USUM kontrol dyagramının hazırlanmasında kullanılan öneml kurallardan bahsedlmştr. Örneğ ele alacak olursak;

2 2 Yukarıdak tabloda üst bölümdek 2 gözlem değer ortalaması 1 ve standart sapması 1 olan normal dağılan br süreçten rasgele elde edlmştr. Bu verlere dayanarak X dyagramı çn ÜKS, AKS ve MÇ değerler ÜKS=13, MÇ=1, AKS=7 olarak elde edlr. Buna göre kontrol dyagramı şöyle çzlr.

3 3 X= Tabloda yer alan son 1 gözlem se ortalaması 11, standart sapması 1 olan normal dağılımdan alınmıştır. Kontrol dyagramında şaretlenen bu noktalardan hçbr AKS, UKS dışında değldr. Bu durum Shewart dyagramlarının süreçtek küçük kaymalara karşı duyarsız olduğunun br göstergesdr Tek Taraflı (Algortmk) USUM dyagramı:

4 4 Algortmk USUM da kontrol dyagramı hem tekl gözlemler hem de alt grupların ortalamaları göz önüne alınarak oluşturulur. Sürecn. gözlem değer X olup bu değerler μ ortalama ve σ standart sapmalı normal dağılıma sahpse süreç kontrol altında olacaktır. Burada σ örnekten elde edlen tahmn değer ya da sürecn parametres olablr. μ değer kalte karakterstğnn hedef değer olarak düşünüleblr. Bu kabul genel olarak kmyasal üretm yapan fabrkalarda sürecn br hedefe göre kontrolü amaçlandığında yapılmaktadır. Eğer bu süreç hedef değerden saparsa, USUM dyagramı uyarı verecektr ve hedeften uzaklaşılmaması çn tedbrler alınablecektr. Algortmk USUM da, μ dan türeyen hedefn üzerndek değerler toplamı altında, μ dan türeyen hedefn altındak değerler - toplamı altında toplanır. tek taraflı üst, - tek taraflı alt USUM olarak adlandırılır. ve - değerler aşağıdak gb hesaplanır: = max[, x ( µ K ) ] 1 = max[, ( µ K ) x ] 1 ve = olmak üzere K değer referans değerdr ve genel olarak μ (hedef değer) le μ 1 (kontrol dışı değer) arası farkın mutlak değer olarak seçlr. Eğer kayma standart sapma cnsnden δ = µ µ / σ olarak tanımlıysa, K değer 1 δ K = σ = 2 µ 1 µ 2

5 5 ve - değerler μ dan farklıdır ve K değernden büyüktür. Eğer ya da - den herhang br karar aralığı H değern geçerse sürecn kontrol dışı olduğu sonucuna varılır. K değernn nasıl bulunduğuna dar blg yukarıda verlmştr. H ve K değer USUM performansını etkleyen öneml parametrelerdr. H değern standart sapmanın 5 katı olarak kabul etmek uygun olmaktadır: H = 5σ Örnek: Yukarıda verlen tabloda μ =1, alt grup sayısı 1, süreç standart sapması σ = 1 dr. Eğer değerlendrlmek stenen kayma 1σ se USUM dyagramını oluşturalım. Çözüm: σ = 1 ve değerlendrlmek stenen kayma 1σ se kayma 1σ = 1 dr. μ =1 se μ 1 =1 1 = 11 olur. K= μ 1 - μ / 2 =.5 dr. H = 5σ kabul edldğnden H = 5 olursa, ve - değerler hesaplanablr: İ=1 çn ( x 1 =9.45 ve - = = dır) 1 = max [, x ] - 1 = max [, 9.5 x 1 ] = max [, ] = max [, ] 1 = - =.5 İ=2 çn (x 2 =7.99) 2 = max [, x ] - 2 = max [, 9.5 x 2 1 ] = max [, ] = max [, ] 2 = - 2 =1.56 Kontrol sınırları şöyle bulunur: ÜKS = h σ 1 = 5 = 5 m 1 AKS = h σ 1 = 5 = 5 m 1 olur.

6 6 Burada h: karar aralığı, σ: Sürecn standart sapması, m: alt grup sayısı Dğer şlemler de yapıldığında aşağıdak tablo elde edlmektedr: Dkkat edleceğ gb, N ve N - değerler brbrn takp eden değerler ve brbrn - takp eden değerlernn sayısına eşttr. Br başka deyşle arka arkaya hesaplanan

7 7 dan farklı bulunur. değerlernn sayısı ve arka arkaya dan farklı - değerlernn sayısı USUM hesaplamalarına bakıldığında 29 = 5.28 olduğu görülür. veya - > H = 5 olduğundan sürecn kontrol dışı olduğu sonucuna varılır. USUM ayrıca hang gözlemde sürecn saptığını da tespt eder. N peş peşe gelen değerlern gösterdğnden ve N = 7 olduğundan sürecn en son 29 7 =22. gözlemde kontrol altında olduğu anlaşılır. USUM dyagramları ve - değerlernn örnek numarasına göre dyagram üzernde şaretlenp çzlmes le oluşturulur. Aşağıda bu verlere at USUM dyagramı oluşturulmuştur. USUM kontrol Dyagram 5 Üst USUM ÜKS=5 Kümülatf toplam MÇ= -5 Alt USUM Örnek no AKS=-5 Yukarıdak dyagramda 22. örnekten sonra süreçte sürekl br artış görülmektedr. Bu durum sürecn kontrol dışı olduğunun br göstergesdr. Bunun yanı sıra 29 ve 3, örneklerde USUM değerler üst kontrol lmtnn de ötesne taşarak sürecn kontrol dışı olduğuna şaret etmektedr. Halbuk X dyagramına bakıldığında sürecn kontrol altında olduğu görülmüştür. Bu USUM un süreçtek küçük kaymalara karşı daha hassas olmasından, süreç performansını daha y göstermesnden kaynaklanmaktadır.

8 8 Bazı durumlarda süreçte kayma olduğunda sürecn yen ortalaması tahmn edlmek steneblr. Böyle br durumda aşağıdak formüller kullanılarak sürecn ortalaması hesaplanır: µ ˆ µ = µ K N K N eger eger > H > H Eğer örnekte 29 = 5.28 çn süreç ortalaması tahmn edlecek olursa; 5.28 ˆ 29 µ = µ K = 1.5 = olarak bulunur. N 7 Yukarıdak bölümlerde bahs geçen USUM tıpkı Shewart dyagramları gb (p dyagramında olduğu gb) standart hale getrlerek de oluşturulablmektedr. Standart USUM kullanılmak stendğnde aşağıdak yöntem le değşken standart değere dönüştürülür. y x = µ σ Bu durumda çft taraflı USUM, = max[, y k = max[, k y 1] 1 ]

9 9 USUM un standart hale getrlmesnn k faydası vardır. Brncs, USUM dak tüm değerler aynı k ve h değerlerne sahp olmaktadırlar, yan bu değşkenler σ dan bağımsızdır. İkcs se, standart USUM süreç değşkenlğn kontrolde kullanılablr USUM un Süreç Değşkenlğ çn Kullanılması Yukarıda belrtldğ üzere USUM dyagramı aynı zamanda süreç değşkenlğnn kontrolünde de kullanılablr. Daha önce tanımlanmış olan standart hale getrme şlem, yerne farklı br yöntem kullanılırsa varyans değşmne daha duyarlı br USUM elde etmş oluruz. Böylece μ yerne varyans kontrol altına alınablr. Bu değşm aşağıdak şeklde yaparız: v = y v nn dağılımı süreç kontrol altında olduğunda yaklaşık olarak normaldr ve ortalaması, varyansı 1 dr. Bu durumda ölçekl USUM şöyle oluşturulur: s s = max[, v k S = max[, k v 1] S 1 ] Benzer şeklde S değerler başlangıçta dır. Unutulmamalıdır k ölçeklendrlmş USUM prosesn kontrol dışı olduğunu gösteryorsa bu sapma varyansa at br sapmaya şaret eder, ancak eğer USUM ve ölçeklendrlmş USUM un her ks de br sapmaya şaret edyorsa bu ortalamadak br sapmayı göstermektedr. 9.2 Üstel Ağırlıklandırılmış Hareketl Ortalama (EWMA) Dyagramı USUM gb EWMA da dğer statstksel kalte kontrol teknklernden farklı olarak süreçtek küçük kaymaları tespt etmede daha başarılıdır. EWMA nın performansı, yan

10 1 küçük kaymaları çabuk algılayablmes, USUM la aynı olmakla beraber bu teknk kullanım açısından daha kolaydır. Alt grup sayısı 1 olan verler çn EWMA şöyle tanımlanır: z x z = ( 1 ) 1 Bu fadeye göre, < 1aralığında sabt br değer olup genellkle.1;,3 aralığı terch edlr. nın başlangıç değer çn z = µ eştlğ kullanılablr. EWMA dyagramı z değerlernn zamana ya da gözlemlern sırasına göre çzlmesyle elde edlr. EWMA dyagramı çn parametreler aşağıda verlmştr. UKS = µ MÇ = µ AKS = µ Lσ Lσ [1 (1 ) (2 ) [1 (1 ) (2 ) 2 2 ] ] Yukarıdak parametre formüller çersndek L değer kontrol sınırlarının genşlğdr. 2 [1 (1 ) ] değer nn değer arttıkça 1 e yaklaşır. Bu durumda sınırlar aşağıdak hale gelr. UKS = µ Lσ MÇ = µ AKS = µ Lσ (2 ) (2 ) 2 nn küçük değerler çn [1 (1 ) ] değern de hesaplayan formülü kullanmakta yarar vardır, EWMA nın performansı böylece büyük ölçüde artar.

11 11 Örnek: Verlen lk tablo çn =.1 ve L=2.7 kabul edlrse (μ =1, σ =1 d) EWMA dyagramını oluşturalım. Çözüm: Öncelkle lk gözlem değer bulunur, x 1 =9.45. EWMA nın lk değer: z = x ( 1 ) z 1 =.1(9.45).9(1) = UKS = µ Lσ (2 ) [1 (1 ) 2 ] = 1 2.7(1).1/(2.1). = 1.27 MÇ = µ = 1 AKS = µ Lσ (2 ) [1 (1 ) 2 ] = 9.73 knc peryot çn: UKS = µ MÇ = µ AKS = µ Lσ = 1 Lσ (2 ) (2 ) [1 (1 ) [1 (1 ) 2 2 ] = 1.36 ] = 9.64 Şeklnde şlemlere devam edlrse son peryot çn: UKS = µ Lσ (2 ) = 1 2.7(1).1 (2.1) = 1.62 MÇ = µ = 1 AKS = µ Lσ (2 ) = 9.38 bulunur ve EWMA dyagramı çzlr.

12 12 Süreçte kontrol edlen verlern EWMA kontrol dyagramına bakıldığında, bu süreçte herhang br sapma olmadığı sonucuna varılır. Süreçte kontrol edlen verlerden hçbr kontrol sınırları dışına çıkmamaktadır. Ancak 23. gözlemden tbaren sonuçlar sürekl ortalama üzernde çıkmış ve gderek ÜKS ye yaklaşmıştır. Bu da sürecn lerk gözlemlerde kontrol dışına çıkma htmal olduğunu göstermektedr. EWMA kontrol dyagramları süreçtek küçük sapmalar tespt etmede kullanılan etkn br yöntemdr. EWMA kontrol dyagramlarından türeyen bazı EWMA dyagramları da

13 13 kullanılmaktadır. Bunlardan bazıları, üstel ağırlıklı ortalama hataların kares yöntem, Posson dağılımı çn EWMA ve süreç sevyes çn oluşturulan EWMA dır. 9.3 Hareketl Ortalama Dyagramı Yukarıda bahsedlen EWMA dyagramı ağırlıklandırılmış statstkler kullanmaktadır. Ancak bazen ağırlıklı değşken değerlerne gerek duyulmamaktadır. Böyle durumlarda hareketl ortalama dyagramları şlevsel olmaktadır. X gözlem değerler çn (=1,2,3 ) hareketl ortalama aşağıdak gb bulunur: x x 1... xw1 M = w Yukarıdak formül le son gözleme kadar olan tüm gözlemlern hareketl ortalamasından son gözlem değer çıkarılarak yen gözlem değer gözlem değerlerne eklenr. w değer hareketl ortalama da kaç değere kadar alınacağını belrtr. Buradan M ı değernn varyansı elde edleblr. V ( M ) = 1 w 2 V ( x j= w 1 j ) = 1 w 2 j= w 1 σ 2 2 σ = w Eğer μ kontrol dyagramı hedef ortalaması se ±3σ sınırlarında AKS ve ÜKS değerler UKS = µ AKS = µ 3σ w 3σ w olur. Kontrol dyagramı oluşturulmasında yen μ her yen X gözlem yapıldığında yenlenr. Eğer μ değer kontrol sınırlarını aşarsa süreç kontrol dışıdır. Örnek: Yukarıda verlen tablo çn w=5 olursa hareketl ortalama kontrol dyagramını oluşturalım. Çözüm: Her br x x 1... xw1 M = w değer hesaplanarak aşağıdak tablo elde edlr:

14 14 gözlem M gözlem M 1 9,45 9, ,37 1,17 2 7,99 8, , ,29 8, ,31 9, ,66 9,6 19 8,52 9, ,16 1,11 2 1,84 9,93 6 1,18 1, ,9 1,24 7 8,4 1, ,33 9, ,46 1, ,29 1,38 9 9,2 1, ,5 1,97 1 1,34 9, ,6 1, ,3 9, ,8 1, ,47 1,3 27 1,38 11, ,51 1, ,62 11,4 14 9,4 1, , ,8 1,1 3 1,52 1,98 Yukarıdak verlere at hareketl ortalamalar dyagramı çn kontrol sınırları, µ =1 σ=1, w= 5 olmak üzere; Kararlı durum çn; 3 σ 3 1 ÜKS = µ = 1 w 5 MÇ =µ = 1 3 σ 3 1 AKS = µ = 1 w 5 = = Dğer yerler çn 3 σ ÜKS = µ MÇ =µ 3 σ AKS = µ dr. 11,34 8,658

15 Hareketl ortalamalar dyagramına göre de proses kontrol sınırlarının dışına çıkmamıştır. Ancak burada da öncek usum ve EWMA dyagramlarında olduğu gb 21. gözlemden sonra hareketl ortalama değerler sürekl merkez çzgnn üstünde yer almıştır. Bu durum sürecn ortalamasının kayma gösterdğnn br belrts olarak algılanablr. 15

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon 1 Korelasyon Analz İk değşken arasında lşk olup olmadığını belrlemek çn yapılan analze korelasyon analz denr. Korelasyon; doğrusal yada doğrusal olmayan dye kye ayrılır. Korelasyon

Detaylı

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda

Detaylı

PARÇALI DOĞRUSAL REGRESYON

PARÇALI DOĞRUSAL REGRESYON HAFTA 4 PARÇALI DOĞRUSAL REGRESYO Gölge değşkenn br başka kullanımını açıklamak çn varsayımsal br şrketn satış temslclerne nasıl ödeme yaptığı ele alınsın. Satış prmleryle satış hacm Arasındak varsayımsal

Detaylı

HAFTA 13. kadın profesörlerin ortalama maaşı E( Y D 1) erkek profesörlerin ortalama maaşı. Kestirim denklemi D : t :

HAFTA 13. kadın profesörlerin ortalama maaşı E( Y D 1) erkek profesörlerin ortalama maaşı. Kestirim denklemi D : t : HAFTA 13 GÖLGE EĞİŞKENLERLE REGRESYON (UMMY VARIABLES) Gölge veya kukla (dummy) değşkenler denen ntel değşkenler, cnsyet, dn, ten reng gb hemen sayısallaştırılamayan ama açıklanan değşkenn davranışını

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE TESTLERİ 1 Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı, F Dağılışı, gb br dağılışa uygun olduğu durumlarda

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

Tek Yönlü Varyans Analizi (ANOVA)

Tek Yönlü Varyans Analizi (ANOVA) VARYANS ANALİZİ İ örne ortalaması arasında farın önem ontrolü, örne büyülüğüne göre z veya testlernden bryle yapılır. Bu testlerle, den fazla örne ortalamasını brlte test etme ve aralarında farın önem

Detaylı

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri

Asimetri ve Basıklık Ölçüleri Ortalamalara dayanan (Pearson) Kartillere dayanan (Bowley) Momentlere dayanan asimetri ve basıklık ölçüleri Asmetr ve Basıklık Ölçüler Ortalamalara dayanan (Pearson) Kartllere dayanan (Bowley) omentlere dayanan asmetr ve basıklık ölçüler Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr III. Asmetr ve Basıklık

Detaylı

Doğrusal Korelasyon ve Regresyon

Doğrusal Korelasyon ve Regresyon Doğrusal Korelasyon ve Regresyon En az k değşken arasındak lşknn ncelenmesne korelasyon denr. Kşlern boyları le ağırlıkları, gelr le gder, öğrenclern çalıştıkları süre le aldıkları not, tarlaya atılan

Detaylı

Sıklık Tabloları ve Tek Değişkenli Grafikler

Sıklık Tabloları ve Tek Değişkenli Grafikler Sıklık Tabloları ve Tek Değşkenl Grafkler Sıklık Tablosu Ver dzsnde yer alan değerlern tekrarlama sayılarını çeren tabloya sıklık tablosu denr. Sıklık Tabloları tek değşken çn marjnal tablo olarak adlandırılır.

Detaylı

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır.

dir. Bir başka deyişle bir olayın olasılığı, uygun sonuçların sayısının örnek uzaydaki tüm sonuçların sayısına oranıdır. BÖLÜM 3 OLASILIK HESABI 3.. Br Olayın Olasılığı Tanım 3... Br olayın brbrnden ayrık ve ortaya çıkma şansı eşt n mümkün sonucundan m tanes br A olayına uygun se, A olayının P(A) le gösterlen olasılığı P(A)

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN 1 DAMITMA KOLONU Kmya ve buna bağlı endüstrlerde en çok kullanılan ayırma proses dstlasyondur. Uygulama alanı antk çağda yapılan alkol rektfkasyonundan

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sürekli Olasılık Dağılım (Birikimli- Kümülatif)Fonksiyonu. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sürekl Olasılık Dağılım Brkml- KümülatFonksyonu Yrd. Doç. Dr. Tjen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sürekl olasılık onksyonları X değşken - ;+ aralığında tanımlanmış br sürekl rassal değşken olsun. Aşağıdak

Detaylı

5.3. Tekne Yüzeylerinin Matematiksel Temsili

5.3. Tekne Yüzeylerinin Matematiksel Temsili 5.3. Tekne Yüzeylernn atematksel Temsl atematksel yüzey temslnde lk öneml çalışmalar Coons (53) tarafından gerçekleştrlmştr. Ferguson yüzeylernn gelştrlmş hal olan Coons yüzeylernde tüm sınır eğrler çn

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ

Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Kİ-KAR TSTLRİ A) Kİ-KAR DAĞILIMI V ÖZLLİKLRİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk gösterp

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = σ i2. Eşit Varyans. Hata. Zaman Farklı Varyans Var(u X ) = Var(u ) = E(u ) = σ Eşt Varyans Y X Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = σ Farklı Varyans Zaman Farklı Varyans le Karşılaşılan Durumlar Kest Verlernde. Kar dağıtım

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

Makine Öğrenmesi 10. hafta

Makine Öğrenmesi 10. hafta Makne Öğrenmes 0. hafta Lagrange Optmzasonu Destek Vektör Maknes (SVM) Karesel (Quadratc) Programlama Optmzason Blmsel term olarak dlmze geçmş olsa da bazen en leme termle karşılık bulur. Matematktek en

Detaylı

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ T SAKAYA ÜNİESİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ELM201 ELEKTONİK- DESİ LAOATUA FÖYÜ DENEYİ YAPTAN: DENEYİN AD: DENEY NO: DENEYİ YAPANN AD ve SOYAD: SNF: OKUL NO: DENEY GUP NO: DENEY

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür.

Kİ-KARE TESTLERİ. şeklinde karesi alındığında, Z i. değerlerinin dağılımı ki-kare dağılımına dönüşür. Kİ-KARE TESTLERİ A) Kİ-KARE DAĞILIMI VE ÖZELLİKLERİ Örnekleme yoluyla elde edlen rakamların, anakütle rakamlarına uygun olup olmadığı; br başka fadeyle gözlenen değerlern teork( beklenen) değerlere uygunluk

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır.

kadar ( i. kaynağın gölge fiyatı kadar) olmalıdır. KONU : DUAL MODELİN EKONOMİK YORUMU Br prmal-dual model lşks P : max Z cx D: mn Z bv AX b AV c X 0 V 0 bçmnde tanımlı olsun. Prmal modeln en y temel B ve buna lşkn fyat vektörü c B olsun. Z B B BB c X

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve örnek verlernden hareket le frekans dağılışlarını sayısal olarak özetleyen

Detaylı

BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER

BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER BÖLÜM 1 1.GİRİŞ: İSTATİSTİKSEL DOĞRUSAL MODELLER Blmn amaçlarından br yaşanılan doğa olaylarını tanımlamak ve olayları önceden tahmnlemektr. Bu amacı başarmanın yollarından br olaylar üzernde etkl olduğu

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

Quality Planning and Control

Quality Planning and Control Qualty Plag ad Cotrol END 3618 KALİTE PLANLAMA VE KONTROL Prof. Dr. Mehmet ÇAKMAKÇI Dokuz Eylül Üverstes Edüstr Mühedslğ Aablm Dalı 1 Qualty Maagemet İstatstksel Proses Kotrol Kotrol Kartları 2 END 3618

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ

İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESYON MODELİ İKİ DEĞİŞKENLİ BASİT DOĞRUSAL REGRESON MODELİ Regresyon le ( ler) arasındak ortalama lşknn matematk fonksyonla fadesdr. f ( ) b b Bu lşk eğrselde olablr. Ortalama lşk aşağıdak gb fade edlr: E( ) f ( )

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

Fizik 101: Ders 15 Ajanda

Fizik 101: Ders 15 Ajanda zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ Emel KOCADAYI EGE ÜNİVERSİTESİ MÜH. FAK., KİMYA MÜH. BÖLÜMÜ, 35100-BORNOVA-İZMİR ÖZET Bu projede, Afyon Alkalot Fabrkasından

Detaylı

EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM

EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM EKONOMETRİYE GİRİŞ II ÖDEV 4 ÇÖZÜM (Örgün e İknc Öğretm çn) 1. 754 hanehalkına at DOMerset sml Excel dosyasında yer alan erler kullanarak tahmnlenen DOM sonuçları: Dependent Varable: CALISANKADIN Sample:

Detaylı

KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1

KAPASİTANS VE ENDÜKTANS EBE-215, Ö.F.BAY 1 KAPASİTANS VE ENDÜKTANS EBE-5, Ö.F.BAY KAPASİTANS VE ENDÜKTANS Bu bölümde enerj depolayan pasf elemanlardan Kapasörler e Endükörler anıılmakadır ÖĞRENME HEDEFLERİ KAPASİTÖRLER Elekrk alanında enerj depolarlar

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ-KARE KARE TESTLERİ Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı, F Dağılışı, gb br dağılışa uygun olduğu durumlarda

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ 1 DENEY TASARIMI VE ANALİZİ 1.1. Varyans Analz 1.. Tek Yönlü Varyans Analz Model 1.3. İk Yönlü Varyans Analz Model Prof Dr. Leven ŞENYAY XII-1 İsask II Bundan öncek bölümlerde bell br araşırma sonucu elde

Detaylı

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I

ÖRNEK SET 5 - MBM 211 Malzeme Termodinamiği I ÖRNE SE 5 - MBM Malzeme ermdnamğ I 5 ºC de ve sabt basınç altında, metan gazının su buharı le reaksynunun standart Gbbs serbest enerjs değşmn hesaplayın. Çözüm C O( ( ( G S S S g 98 98 98 98 98 98 98 Madde

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46

2005 Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi Sayı:16, s31-46 2005 Gaz Ünverstes Endüstryel Sanatlar Eğtm Fakültes Dergs Sayı:16, s31-46 ÖZET BANKALARDA MALİ BAŞARISIZLIĞIN ÖNGÖRÜLMESİ LOJİSTİK REGRESYON VE YAPAY SİNİR AĞI KARŞILAŞTIRMASI 31 Yasemn KESKİN BENLİ 1

Detaylı

Sistemde kullanılan baralar, klasik anlamda üç ana grupta toplanabilir :

Sistemde kullanılan baralar, klasik anlamda üç ana grupta toplanabilir : 5 9. BÖLÜM YÜK AKIŞI (GÜÇ AKIŞI) 9.. Grş İletm sstemlernn analzlernde, bara sayısı arttıkça artan karmaşıklıkları yenmek çn sstemn matematksel modellenmesnde kolaylık getrc bazı yöntemler gelştrlmştr.

Detaylı

MADEN DEĞERLENDİRME. Ders Notları

MADEN DEĞERLENDİRME. Ders Notları MADEN DEĞERLENDİRME Ders Notları Doç.Dr. Kaan ERARSLAN 008 ĐÇĐNDEKĐLER. GĐRĐŞ... 3. REZERV SINIFLARI VE HESAPLAMALARI... 4. Görünür rezervler...4.. Muhtemel Rezervler...6.3 Mümkün Rezervler...7.4 Belrl

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

REGRESYONDA ETKİLİ GÖZLEMLERİ BELİRLEME YÖNTEMLERİ VE KARŞILAŞTIRMALARI. Can DARICA YÜKSEK LİSANS TEZİ İSTATİSTİK

REGRESYONDA ETKİLİ GÖZLEMLERİ BELİRLEME YÖNTEMLERİ VE KARŞILAŞTIRMALARI. Can DARICA YÜKSEK LİSANS TEZİ İSTATİSTİK REGRESYONDA ETKİLİ GÖZLEMLERİ BELİRLEME YÖNTEMLERİ VE KARŞILAŞTIRMALARI Can DARICA YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 014 ANKARA Can DARICA tarafından hazırlanan

Detaylı

GRUPLARDA VE YARIGRUPLARDA ETKİNLİK(EFFICIENCY) The Efficiency Of Groups And Semigroups *

GRUPLARDA VE YARIGRUPLARDA ETKİNLİK(EFFICIENCY) The Efficiency Of Groups And Semigroups * GRUPLARDA VE YARIGRUPLARDA ETKİNLİK(EFFICIENCY The Effcency Of Groups And Semgroups * Özer CAN Matematk Ana Blm Dalı Blal VATANSEVER Matematk Ana Blm Dalı ÖZET Bu çalışmada öncelkle gruplarda, yarıgruplarda,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

Muhasebe ve Finansman Dergisi

Muhasebe ve Finansman Dergisi Muhasebe ve Fnansman Dergs Ocak/2012 Farklı Muhasebe Düzenlemelerne Göre Hazırlanan Mal Tablolardan Elde Edlen Fnansal Oranlar İle Şrketlern Hsse Sened Getrler Ve Pyasa Değerler Arasındak İlşk Ahmet BÜYÜKŞALVARCI

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Sıfır Ağırlıklı Sayma ile Elde Edilen Veriler İçin Çok Seviyeli ZIP Regresyon * Multilevel ZIP Regression for Zero-Inflated Count Data

Sıfır Ağırlıklı Sayma ile Elde Edilen Veriler İçin Çok Seviyeli ZIP Regresyon * Multilevel ZIP Regression for Zero-Inflated Count Data Yüzüncü Yıl Ünverstes Fen Blmler Ensttüsü Dergs/ Journal of The Insttute of Natural & Appled Scences 18 (1-):01-08, 013 Araştırma Makales/Research Artcle Sıfır Ağırlıklı Sayma le Elde Edlen Verler İçn

Detaylı

BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI

BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI BİLGİSAYARLA GÖRÜ TABANLI, HAREKETLİ CİSİM YÖRÜNGESİ İZLEYEN ROBOT KOL TASARIMI Emre Kouncu İstanbul Teknk Ünverstes Elektrk Mühendslğ ekouncu@kouncurobotc.com Osman Celan İstanbul Teknk Ünverstes Elektronk

Detaylı

2.7 Bezier eğrileri, B-spline eğrileri

2.7 Bezier eğrileri, B-spline eğrileri .7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan

Detaylı

ANE - AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF

ANE - AEGON EMEKLİLİK VE HAYAT A.Ş.DENGELİ EYF AEGON EMEKLİLİK VE HAYAT A.Ş. DENGELİ EMEKLİLİK YATIRIM FONU FON KURULU ÜÇÜNCÜ 3 AYLIK FAALİYET RAPORU Bu rapor AEGON Emekllk ve Hayat A.Ş Dengel Emekllk Yatırım Fonu nun 01.07.2011 30.09.2011 dönemne

Detaylı