= t. v ort. x = dx dt

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "= t. v ort. x = dx dt"

Transkript

1 BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir. Hareke ile cisimlerin üzerine eki eden kuvveler veya cisimlerin çeşili özellikleri arasındaki ilişki ise dinamik adı alında incelenir. Bu bölümde bazı kinemaik büyüklükler anımlanacak ve ek boyu a hareke incelenecekir. 4. Hareke Bir cisim, örneğin dünya çevresinde dönen bir uydu, ilerlerken aynı anda dönme harekei de yapıyor olabilir. Bir başka cisim, örneğin bir yağmur damlası, hareke ederken aynı anda şeklini de değişiriyor olabilir. Harekein kendine özgü bu karmaşıklığı kolaylaşırmak için, parçacık adı verdiğimiz bir cismin harekeini göz önüne alacağız. Parçacık, noka gibi boyuları olmayan bir sisemdir, yani eni boyu ve derinliği yokur.bu yüzden parçacık harekei düşünüldüğünde dönme veya şekil değişirme gibi durumlar söz konusu olmaz. Doğada parçacık diye bir şey gerçeke olmayabilir, ancak yinede bu kavram yararlıdır; çünkü boyuları olan bir cisim bile bazı durumlarda bir parçacık gibi davranabilir. Örneğin dünya ile güneş arasındaki uzaklık göz önüne alınırsa, bu uzaklığa göre güneş ve dünya birer parçacıkmış gibi kabul edilebilir. Sonuç olarak parçacık kavramı birçok problemi son derece basileşirir. Hareke, cismin konumunun değişmesi olarak anımlanır. Harekelerde, bir cismin değişik nokaları farklı yörüngelerde bulunur. Harekein ümü, cismin içindeki her nokanın harekeinin bilinmesi ile olur. Bu sebeple sadece harekeli bir noka veya parikül denilen çok küçük bir madde parçacığını göz önüne alacağız. 4.3 Oralama Hız Bu bölümde bir boyulu hareke üzerinde durulacakır. Şekil. 4. (a) da görüldüğü gibi x ekseni boyunca hareke eden bir parçacık göz önüne alalım. Şekil.4. (b) deki eğri, x koordinaının zamanına göre değişimini göseren grafikir. Şekil. 4. (a) da parçacık 73

2 anında koordinaı x olan P nokasında anında da koordinaı x olan Q nokasında bulunmakadır. Bunlara karşılık olan nokalar şeklin (b) kısmında p ve q ile göserilmişir. Parçacığın bir nokadan diğerine gimesiyle meydana geirdiği yer değişirme ilk nokayı son nokaya bağlayan x vekörü ile göserilir. x - x = x olan PQ vekörü yer değişirmeyi verir. Bu yer değişirmenin - = denir. Oralama hız v or göserilir. v or vekörün bir skalere bölümü gene bir vekördür. v or x = x zaman aralığı oranına parçacığın oralama hızı x = dir. Oralama hız bir vekördür, çünkü bir x = yazılır. Şekil.4. (b) de oralama hız pq kirişinin eğimidir. Yani x in ye oranı dır. Yukarıdaki denklemi aşağıdaki gibi yazabiliriz. x - x = v or ( - ) = = x = x x = x = v or. yazılır. 4.4 Ani Hız Parçacığın herhangi bir an veya yörünge üzerinde herhangi bir nokadaki hızına ani hız denir. Parçacığın Şekil.4. deki P nokasındaki ani hızının isenildiğini düşünelim.p ile Q arasındaki oralama hız yer değişirme ve zaman aralığına bağlıdır. P nokasına giikçe yaklaşan ikinci bir Q nokası düşünelim ve giikçe kısalan yer değişirme ve bu yer değişirme için gerekli zaman aralığı için oralama hızı bulalım.ilk nokadaki ani hız bu ikinci nokanın oralama hızının limi değeri olacakır. Maemaik göserişe göre sıfıra doğru yaklaşırken x / nin limi değeri dx / d şeklinde yazılır. Bu orana x in ye göre ürevi denir. Ani hızı v ile göserecek olursak; x dx v = lim = şeklinde yazılır. d Ani hız da bir vekördür.ve doğrulusu x yer değişirmesinin limi doğrulusudur. poziif bir büyüklük olduğundan v, x in işarei olacakır. 74

3 Şekil.4. (a) da Q nokası P ye yaklaşırsa, Şekil.4. (b) de q nokası da p ye yaklaşacakır.limi halde pq kirişinin eğimi eğrinin p nokasındaki eyim ine eşi olur. Buna göre koordina-zaman grafiğinde herhangi bir nokadaki ani hız ; o nokadaki eğein eğimine eşiir.teğe sağa yukarı eğikse eyim poziif dolaysıyla hız poziif ve hareke sağa doğrudur.teğe aşağı eğikse, hız negaif olur. Teğein yaay olduğu nokalarda eyim sıfır olacağından hızda sıfırdır. 4.5 Oralama ve Ani İvme Bazı özel haller dışında bir cismin hareke sürecince hızı değişir. Bu halde cismin ivmeli bir hareke yapığı veya bir ivmeye sahip olduğu söylenir.şekil.4.(a), x ekseni boyunca hareke eden bir cismi göseriyor. v, P nokasındaki,v de Q nokasındaki ani hızları gösermekedir. Şekil.4. (b) de v ani hızının zamana bağlı değişimini veren eğriyi gösermekedir. p ve q (a) daki P ve Q ya karşılıkır. P den Q ya doğru hareke eden parçacığın oralama ivmesi, hızdaki değişimin, bu değişimin meydana geldiği süreye oranı ; v a= v v = olarak anımlanır. Bu bağınılardan ve, v ile v hızlarına karşılık olan anları gösermekedir. Şekil.4. (b) de oralama ivmenin şiddei pq kirişinin eğimi olarak alınmışır. Bir cismin ani ivmesi yani, herhangi bir an veya yörünge üzerinde herhangi bir konumdaki ivmesi ani hızdaki gibi arif edilir. Şekil.4. (a) deki Q nokası, ilk P nokasına giikçe yaklaşıralım ve kısa zaman aralıklar için oralama ivmeyi hesaplayalım.ilk nokadaki ani ivme, ikinci nokanın birinciye giikçe yaklaşmasının limi hali olarak anımlanır. v a = lim = dv d Ani ivmenin doğrulusu hız değişimini göseren v vekörünün limi haldeki doğrulusudur. 75

4 Ani ivme mekanik anımlarda önemli bir yer uar. Oralama ivme pek az kullanılır. İvme eriminin geçiği her yerde bundan sonra ani ivme anlaşılacakır. Şekil.4. (a) da Q nokası P ye yaklaşırken, Şekil.4. (b) de q nokası da p ye yaklaşır ve pq kirişinin eğimi hız-zaman diyagramında p nokasındaki eğein eğimine yaklaşır. Buna göre grafiğin her hangi bir nokasındaki ani ivme bu nokadaki eğein eğimine eşi olur. a = dv /d bağınısı ile verilen ivme değişik bir şekilde ifade edilebilinir. dv dv dx dv a = =. = v. d dx d dx Bu bağını ivmenin yer değişirmeye bağlı olarak bir ifadesidir. 4.6 Sabi İvmeli Doğrusal Hareke En basi ivmeli hareke, ivmesi sabi olan doğrusal harekeir. Bu harekee hız, düzgün bir değişme göserir. Böyle bir harekein hız-zaman diyagramı Şekil.4.3. de görülen bir doğru çizgidir. Hız eşi zaman aralarında eşi mikarda arma göserir. Doğrunun iki nokası arasındaki kirişin eğimi, büün nokalardaki eğimlerde olduğu gibi eşiir ve oralama ivme ile ani ivmenin değerleri aynıdır. v a= v = ve yi herhangi bir an olarak alalım. v, = anındaki hız ve v, anındaki hız olsun. Buna göre yukarıdaki bağını, veya v v a = v = v + a şekline girer. Buda sabi ivmeli harekeeki hız ifadesidir. Burada a ivmesi, hızın birim zamandaki değişimi dir ve sabiir. a erimi, hızın birim zamandaki değişimi ile hareke süresinin çarpımıdır. ve hızdaki oplam değişimi verir. 76

5 Sabi ivme ile hareke eden bir parçacığın yer değişirme mikarını bulmak için Şekil.4.3 de görüldüğü gibi hız-zaman diyagramı bir doğru olduğuna göre herhangi bir zaman aralığı için oralama hızın, ilk ve son hızlarının oralamasının alınması yolu ile bulunabileceği haırlanmalıdır. Buna göre ve anları arasındaki oralama hız, v + v v or = olacakır. İvme sabi olmadığı ve hız-zaman diyagramının eğri olması halinde bu işlem doğru olmaz. = anında orijinde bulunan bir parçacığın herhangi bir anındaki x koordinaının, x = v. or olduğunu göserdik. Yukarda gördüğümüz iki bağını göz önüne alınırsa, bulunur. v + v x =. v v = v + a ile v + x =. denklemlerini kullanarak aralarında önce v sonrada yi yok ederek çok kullanışlı iki bağını kurabiliriz. v + v x =. denkleminde yerine yazarsak, v = v + a v nin bu değerini v + v+ a x =. veya x = v + a v vo sonucuna varırız. v = v + a bu denklemden = çekerek a v + v vo + v v v x =. denkleminde yerine yazarsak ; x=. elde edilir. a v = v + ax olur. Bu denklemi sabi ivmeli harekein zamansız hız formülü diye ifade edilir. 77

6 4.7 İnegrasyonla Hız ve Koordinaın Bulunması x ekseni üzerinde hareke eden bir parçacığın x koordinaı, zamanın fonksiyonu olarak verilirse hız, v = dx / d diferansiyel almak sureiyle bulunabilir.aynı şekilde ikinci bir ürev a = dv/ d verir. Şimdi bir ers işlem yaparak ivme verildiğinde hız ve koordinaın nasıl bulunduğunu göreceğiz. Bu işlemler için inegral almak gerekli olacakır. İlk önce belirsiz, sonrada belirli inegral alacağız..belirsiz inegral.ivmenin a() şeklinde zamanın fonksiyonu olarak verildiğini kabul edelim. Buna göre, dv = a() dolaysıyla dv = a( ) d d = dv = a( ) d, v a( ) d+ C Bu bağınıda C bir inegrasyon sabiidir ve bilinen bir andaki v değeri ile hesaplanabilir. C in, = anındaki v o değerine dayanarak bulunması en çok kullanılan yoldur. Yukarıdaki inegral hesaplanınca, v() hızını, nin fonksiyonu olarak ifade emiş oluruz. Bundan sonra dx = v() dx = v( ). d d dx = v( ). d x = v( ). d+ C bulunur. Bu bağınıdaki C sabii de belli bir anda, bilinen x koordinaı yardımıyla hesaplanabilinen bir inegrasyon sabiidir. C de genellikle = anındaki x o koordinaından faydalanarak bulunur. dv İvme, x in fonksiyonu olarak verilirse a = kullanarak, dx dv v = a(x), dx v. dv= a( x). dx v a( x). dx+ C = 3 yazabiliriz. 78

7 a ) Şimdi belirsiz inegral kullanarak sabi ivmeli hareke denklemlerini çıkarabiliriz. a sabi olduğuna göre v = a( ) d+ C denkleminden v = a + C yazabiliriz. Faka = anında v = v o olduğundan v o = + C olur. Dolaysıyla ; v = v + a bulunur. a sabise x = v( ). d+ C dan x = ( v + a). d = v+ a + C bulunur. = anında x = sa C = olacağından ; x + a = v olur. v a sabi olduğundan, a( x). dx+ C = 3 v göre = ax+ C3 bulunur. x = iken v= v olduğu bilindiğinden C 3 = v / sonucuna varılır. Buradan v = v + ax bulunur. b) Şimdi belirli inegral kullanarak hız ve koordinaları bulacağız. Şekil.4.5 deki hızzaman diyagramında ve düşey çizgileri genişliğinde ince şerilere ayrılmış olsun. Grafik üzerinde herhangi bir anına karşılık olan ordina, o andaki hızı verir. ve + anları arasındaki x yer değişirmesi v. olur. Bu çarpım genişliği ve yüksekliği v olan aranmış şeridin alanıdır. ve anları arasındaki dik dörgen şeklindeki şerilerin alanlarının oplamı, yaklaşık bu zaman aralığındaki x - x yer değişirmesini verir. x x v. Herhangi bir zaman aralığındaki yer değişirme veya gidilen yol, hız-zaman eğrisi ile zamanlar ekseni ve harekein başlangıcı ile son anlarından geçen düşey çizgiler arasındaki alana eşiir. Benzer şekilde, ivme zaman diyagramındaki alan a yüksekliğinde genişliğinde şerilere bölünebilir. İvme sabi kalıyorsa, v nin süreci içindeki değişimi düşey dik dörgenin a. alanına eşi olur. ve anları arasında hızın v - v değişimi, yaklaşıkla Toplam alanına eşi olur. v v Σa. 79

8 4.8 Serbes Düşen Cisimler Sabi ivmeli doğrusal harekein örneklerinden biri dünyanın yüzeyine doğru düşmeke olan bir cismin harekeidir. Hava sürünmesi olmadığı durumlarda, ağırlıkları, yapıları ve şekilleri ne olursa olsun her cisim dünya yüzeyine doğru aynı ivme ile düşüğü bilinmekedir. Hareke esnasında ivme değişmez. Bu harekee serbes düşme denir ve buna düşme kadar yükselme harekei de dâhildir. Serbes düşen cismin ivmesine yerçekimi ivmesi denir ve g harfi ile göserilir.dünya yüzeyi üzerinde yer çekiminin değeri 9,8 m / sn ( mks), 98 cm / sn (cgs), 3 f / sn alınır. Serbes düşme sabi ivmeli bir hareke olduğunda sabi ivmeli doğrusal hareke formüllerini kullanacağız. v = v + a, x = v o + (/ ) a., v = v + ax burada a = -g x = h alınırsa bu denklemler, v = v g, h = v o - (/ ) g., v = v g h olur. 8

9 ÇÖZÜMLÜ PROBLEMLER 4.. x ekseni üzerinde hareke eden bir cismin koordinaı x =. denklemi ile verildiğini kabul ediniz. = 3 sn de cismin ani hızını bulunuz. ( yi önce, sn, daha sonra, sn) Çözüm: 3? x, x kadar arığında de kadar arar ,.3,. 6,.3,. 6,,.3,. 6, O halde küçüldükçe gerçek değere yaklaşmakadır. 4.. Bir oomobilin hız gösergesi km/h yerine m/sn ayarlanmışır. Oomobilin harekee başlamasından sonra hız için aşağıdaki okumalar yapılmışır. Zaman (sn),, 4, 6, 8,,, 4, 6 Hız (m/sn),,, 5,, 5,,, a) sn ara ile oalama ivmeleri bulunuz. ivme sabi midir? bir zaman aralığında sabi kalıyor mu? b) Yukardaki verileri kullanarak bir hız zaman diyagramı çiziniz. Bunun için yaay eksende sn = cm ve düşey eksende 5 m/sn = cm alınız. Elde edilen nokalardan geçen düzgün bir eğri çiziniz. cm lik alan ne kadar yolu göserir? İlk 8 sn de gidilen yol ne kadardır. = 8, 3,5 sn deki ivme ne olur. 8

10 Çözüm: a)? sabi değildir. Yalnız 6- sn arasında sabi olup 5 =,5 m/sn dir. b) V

11 V 4.3. Şekilde görüldüğü gibi bir cismin hızzaman diyagramın da; a) = 3 sn de ani ivme nedir? b) = 7 sn de ani ivme nedir? c) = sn de ani ivme nedir? d) ilk 5 sn içinde cisim ne kadar yol alır? e) ilk 9 sn içinde cisim ne kadar yol alır? f ) ilk 3 sn içinde cisim ne kadar yol alır? Çözüm: a) 3 b) ,5 c) 45 4,5 d) 5? e) 9? f) 3? Oomobil şoförlerinin oralama reaksiyon süreleri,7 sn kadardır. Bir oomobil 6 m/ sn ivme ile yavaşlayabildiğine göre işarei gördüken duruncaya kadar ( ilk hızı 3 km / h dir.) gidilen yolu bulunuz. 83

12 Çözüm:,7 6 3? reaksiyon süresinde aldığı yol. 5 3.,7 5,83 sonra yavaşlama ivmesi ile aldığı yol , ,5 6.,5 7, Bir op, bir binanın epesinden düşey olarak 3 m / sn lik ilk hızla aşağı doğru aılıyor. a) saniye düşünce opun hızı ne olur. b) saniye içinde ne kadar yol alır. c) 3 m düşüğü zaman hızı ne olur. d) Fırlaılırken op elde 3 m yol aldığına göre opun bu harekei esnasında ivmesi ne olur. e) Top yerden m yukarıda elden çıkığına göre ne kadar zaman sonra yere çarpar. f) Yere çarpığı andaki hızı ne olur. Çözüm: a) 3? 3 9,8. 49,6 b) 3. 9, ,6 79,6 c) 3? 9.9, ,57 d) e)? 3. 9,8 3. 4,9,75 f) 3 9,8.,75 56,95 84

13 4.6. Derin bir uçurumun ucundan bir aş serbes bırakılıyor. sn sonra 6 m / sn lik bir ilk hızla ikinci bir aş düşey olarak aşağı doğru aılıyor. Uçurumun epesinden ne kadar aşağıda ikinci aş birinciye yeişir? Çözüm: 6.. 9,8,9 4,9,8 5,8 9,8 6,9 9, Bir op, bir binanın balkonundan serbes bırakılıyor.bu opun 9 m yükseklike bir pencerenin önünden geçiş süresi,5 sn olduğuna göre pencerenin epesinin balkondan olan uzaklığını bulunuz. Çözüm: A V o = h,5 9? 9.. B C h V B 9.,5 9,8.,5.,5,3 34,8 34,8.9,8 9,6 6, Bir hokkabaz, avanı elinden iibaren 3 m yükseke bulunan bir salonda bulunuyor. elindeki opu am avana ulaşacak şekilde düşey olarak yukarı doğru aıyor. a) Top hangi ilk hızla aılmışır. b) Topun avana varması için geçen süre nedir. Hokkabaz birinci opun avan vardığı anda aynı şekilde ikinci bir opu aıyor. c) İkinci opun aılmasından ne kadar zaman sonra oplar karşılaşırlar. d) Toplar karşılaşıkları anda hokkabazların elinden ne kadar yükseke bulunurlar. 85

14 Çözüm: 3 m V= V o a).9, ,8 7,66 b),,78, c) 7, ,39, d). 7,67.,39 9,8,39,5 4.9 Bir öğrenci yer çekimini bizza incelemek için 3 m yüksekliğinde bir gökdelene çıkarak yürüyor ve elinde bir kronomere ile kendini serbes düşmeye bırakıyor.(ilk hızı sıfır) 5 sn sonra fevkalbeşer bir insan aynı yere gelerek öğrenciyi kurarmak için aşağıya pike yapıyor. a ) İnsanüsü varlığın öğrenciyi yere am çarpacağı zaman kurarabilmesi için ilk hızı ne olmalıdır. b) Binanın yüksekliği ne olmalıdır ki, insanüsü varlık çocuğu yere çarpmakan kuraramasın? Çözüm: h=3 m ,8. 6 9,8 7,8 7,8 5,8.. 9,8.,8 3.,8. 9,8.,8 9,56 b)? Ç ğ ığı İüü ığı ,8. 5 7,8 7,8. 9,8. 7,8 98,9 Bina bu yüksekliken küçük ise çocuğu kuraramayız. 86

15 4.. Sabi ivmeli hareke eden bir oomobil aralarındaki uzaklık 6 m olan iki noka arasındaki yolu 6 sn de alıyor. İkinci nokadan geçerken hızı 5 m/sn olduğuna göre a) Birinci nokadaki hızını b) Oomobil in birinci nokanın ne kadar gerisinden harekee başladığını bulunuz. V x V x = 6 m = 6 sn V V = 5 m/sn V o = Çözüm: a = sabi V = 5 m/sn V = V x V x = 6 m V = 6 sn 6 = V. 6 + ( V V ). 5 V 6 = 6. V + ( ) V V 5 5 m b) a = = =,67 6 sn V V 5 x = = = 7,49mere a.,67 x = V. + V = 5 m/sn a = V V = ax. a. V = V + V V a. 4.. Bir aş kuyunun başında yukarı doğru 5 m/sn lik bir hızla aılıyor ve aş kuyuya düşüyor. Taş aıldıkan sonra ses işiiliyor. Kuyunun derinliğini bulunuz. V s = 34 m/sn g = m/sn V s sesin havadaki yayılma hızı h V 87

16 Çözüm: V = 5 m/sn V s = 34 m/sn g = m/sn = 5 sn cisim aılıyor ; V = V g. V 5 ç = = =,5sn g aş 3 sn sonra başlangıç nokasına gelir. Bu nokada V = g. =.,5 V = 5 m/sn = 5 3 = sn V = 5 m/sn olur. Taş kuyunun başından bırakılıyor. h = V. +. g. + = ses geliyor. h V h = V s. iniş süresi çıkış süresi = V. +. g. = Vs ( ), b± = b 4. ac.. a 7± 7 4.( 36) = 34( ), = 7± ± = , = = 7± 74,73 3, =, = = = =,865 =,865 h= V s. = 34.,35 = 45,9 m =,35 sn Bir su birikinisinden 5 m yüksekliğindeki bir yerden m/sn hızla bir aş aılıyor. sn sonra ikinci bir aş aılıyor ve bir çarpma sesi işiiliyor. a) Birinci aşın suya düşme süresini b) ikinci aşın ilk hızını c) aşların suya düşme hızlarını bulunuz. g = m/sn 88

17 Çözüm: h = 5 m V = m/sn =? aş düşüyor. y = V. +. g. b) = =,97 =,97 sn 5 = y = V. +. g = 5 = V., (,97) +,4. = 5 = V., ,88 b± b 4ac,4±,6+ 4 = = a 5 = V.,97 + 9,4,4± 6,34 = =,97sn 3,59 m V = = 5,5,97 sn aşın düşme süresi h = 5 m V = V + g. = +.,97 = 3,7 m/sn V = V + g. = 5,5 +.,97 = 35, m/sn 4.3. A ve B oomobilleri komşu iki şerien aynı yönde giderken bir rafik ışığında duruyorlar. Yeşil ışık yanınca A oomobili m / sn lik sabi ivme hızlanıyor. İki sn sonra B oomobili hareke edip,3 m / sn lik ivme ile hızlanıyor. a) B nin A ya ne zaman ve nerede yeişeceğini b) Bu anda oomobillerin hızlarını bulunuz. Çözüm: A a =..... B,3. a =,3.,3. olduğu zaman B A ya yeişir..., ,3 7,3 6,3.. 6,3 3,8 b) 6,3. 6,3,3 6,3 8,6 89

18 4.4. a ) Bir ren gecikmesiz olarak yol almakadır. İlk bir saae v hızıyla, bir sonraki yarım saae 3v hızına sahipir. Bundan sonra v / hızı ile 9 dakika yol alır ve son saa v /3 hızıyla gider. Bu seyaha için v- grafiğini çiziniz. b) Bu seyahae ne kadar yol alır. c) Büün seyaha boyunca renin oralama hızını bulunuz. Çözüm: 3V V saa V hızı / saa 3V hızı,5 saa V/ hızı saa V/3 hızı V V V/ V/3 / 3 (saa) 4 5 b) ,9 c),, Bir yer alı reni A isasyonundan ayrılıyor. İlk 6 sn de m / sn lik ivme ile hızlanıyor ve sonra m / sn lik hıza erişinceye kadar,5 m / sn ile hızlanmaya devam ediyor. B isasyonuna yaklaşıncaya kadar aynı hızı koruyor. Sonra fren yapıyor ve sabi bir ivme ile yavaşlayıp 6 sn sonra duruyor. A dan B ye kadar oplam gidiş süresi 4 sn dir. a-,v- ve s- eğrilerini çiziniz ve AB uzaklığını hesaplayınız. 9

19 Çözüm: İvme Zaman eğrisi: İvme ya sabi veya sıfır olduğuna göre a- eğrisi yaay doğru parçalarından ibareir. a ,5 6,5 6,5 9, ı. ı V S

20 4.6. Bir maddesel noka şekilde görüldüğü a gibi bir doğru üzerinde hareke ediyor. < < için v ve s eğrilerini çiziniz. V = sn m S = a m Çözüm: V = S = sn a eğrisinin alındaki alan V deki değişimi verir. < < V V = V = sn m < < 4 V 4 V = - V 4 = 4 < < 6 V 6 V 4 = m V 6 = sn 6 < < 8 V 8 V 6 = -3 V 8 = - sn m < < V V 8 = V = - v S v eğrisinin alındaki alan S deki değişimi verir. < < S S = S = m < < 4 S 4 S =. S 4 = 3 m - 4 < < 6 S 6 S 4 =. S 6 = 5 m V 8 V = -5 ( 8 ) -- =

21 S 63, = = 7,33 6 < < 7,33 S 7,33 S 6 =,33. S 7,33 = 3,3 + 5 S 7,33 = 63,3 7,33 < < 8 S 8 S 7,33 =,67.( ) S 8 = 59,95 8 < < S S 8 = -. = - S = ,95 = 39, , Bir maddesel noka şekilde görüldüğü gibi bir doğru üzerinde hareke ediyor. = da S = -4 m olduğuna göre sn için a- ve s- eğrilerini çiziniz. v a Çözüm: v- grafiğinde eğrilerin eğimi ivmeyi verir. 6 < < 5 m a = = 4 5 sn 5 < < a = < < a 3 = m = sn < < 5 a 4 = 3 m = 3 sn

22 5 < < 3 m a 5 = = 6 5 sn v- eğrisinin alındaki alan s deki değişmeyi verir. S = -4 m < < 5 S 5 S = 5. S 5 = 5 + S S 5 = m 5 < < S S 5 = S = + S 5 S = m < < S S =. S = + S S = 3 m < < 5 S 5 S = 3.( 3) S 5 = S S 5 = 85 m 5 < < S - S 5 =.5.( 3) S = S 5 S = m 3 s Bir maddesel noka şekilde görüldüğü gibi bir doğrulu üzerinde hareke ediyor. = S = -6 cm olduğuna göre < < sn için a ve s eğrilerini bulunuz. v

23 v Çözüm : = S = -6 cm < < a ve s v eğrisinde doğruların eğiminden ivmeler bulunur. 4 4 < < 4 a = ( / 4 ) = 5 m / sn - 4 < < a = < < a 3 = ( - / ) = - m / sn < < 4 5 a 4 = ( - / ) = - m / sn a 4 < < a 5 = 4 4 v- eğrisinin alındaki alan s deki değişmeyi verir. - < < 4 S 4 S =.4.= 4 S 4 = 4 6 S 4 = - m 4 < < S S 4 = 6. = S = S = m < < S S =.= S = S = m < < 4 S 4 S =.( ) = S 4 = S 4 = m 4 < < S S 4 = -.6 = - S = - + S = - m 95

24 Cisim iki defa s = durumunda olur. Bunlar ve anları olsun. S - S 4 = ( 4 ) S - S 4 = - ( 4 ) buradan = 5 sn = 9 sn bulunur. s a 4.9. Bir maddesel noka şekilde göserilen ivme ile bir doğru üzerinde hareke ediyor. m Maddesel noka V = -4 hızla hareke sn eiğine göre < < sn için v- ve s- eğrilerini çiziniz Çözüm: a v = -4 sn m < < v ve s

25 a eğrisinin alındaki alan v nin değişimini verir. < < 6 V 6 V = 48 V 6 = 48-4 V 6 = 4 m / sn 6 < < V -V 6 = 6 V = 4 +6 V = 4 m / sn < < 4 V 4 - V = V 4 = - + 4,V 4 = m / sn 4 < < V V 4 = -5 ( 4 ) = 8 sn 8 < < V V 8 = -5. V = - m / sn < < V V = = 8. = 3 sn S nin değişimi = v eğrisinin alındaki alan, S = < < 3 S 3 S = 3.( 4) = 36 S 3 = -36 m 3 < < 6 S 6 S 3 = 3.4= 36 S 6 = m 6 < < S S 6 = S = 8 m < < 4 S 4 S = S 4 = 48 4 < <8 S 8 S 4 =..4= 4 S 8 = 88 8 < < S S 8 = ( ).= S = 78 S

26 4.. Bir maddesel noka şekilde görüldüğü gibi bir doğru üzerinde hareke ediyor. < < için v ve s eğrilerini çiziniz. V = m/sn S = a Çözüm : < < V = m/sn S = < < V V = V = < < 4 V 4 V = -5. V 4 =- + V V 4 = 4 < < 6 V 6 V 4 =. V 6 = + V 4 V 6 = 6 < < 8 V 8 V 6 = -5. V 8 = -3 + V 8 = - 8 < < V V 8 = V = - a -5-5 V v eğrisinin alındaki alan yer değişirme verir. < < S S =. S = m < < 4 S 4 S =.. S 4 = 3 m 4 < < 6 S 6 S 4 =.. S 6 = 5 m V 8 V = -5 (8 ) - = = 7,

27 6 < < 7,33 S 7,33 S 6 =.,33. S 7,33 = 3,3 + 5 = 63,3 7,33 < < 8 S 8 S 7,33 =.,67( ) = 3,35 S 8 =59,95 m s 63, < < S S 8 = -. S = ,95 = 39,95 m 4 6 7, Şekildeki K düzeyinden serbes bırakılan bir cisim h yüksekliğini saniyede h yüksekliğini saniyede alıyor. / = olduğuna göre h /h oranını bulunuz. h K h Çözüm: h h = h =. g. =. h h =? h h = V = g. h = V. +. g. h = g g. =. g. h =. g. 4 = = olur g. h h K 99

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 5. Konu ATIŞ HAREKETLERİ ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 5. Konu ATIŞ HAREKETLERİ ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF KONU ANLATIMLI. ÜNİTE: KUVVET VE HAREKET 5. Konu ATIŞ HAREKETLERİ ETKİNLİK VE TEST ÇÖZÜMLERİ 5 Aış Harekeleri. Ünie 5. Konu (Aış Harekeleri) A nın Çözümleri. a. K cismi bulunduğu konumdan serbes

Detaylı

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t

13 Hareket. Test 1 in Çözümleri. 4. Konum-zaman grafiklerinde eğim hızı verir. v1 t 3 Hareke Tes in Çözümleri X Y. cisminin siseme er- diği döndürme ekisi 3mgr olup yönü saa ibresinin ersinedir. cisminin siseme erdiği döndürme ekisi mgr olup yönü saa ibresi yönündedir. 3mgr daha büyük

Detaylı

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 4. Konu SABİT İVMELİ HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 1. ÜNİTE: KUVVET VE HAREKET 4. Konu SABİT İVMELİ HAREKET ETKİNLİK VE TEST ÇÖZÜMLERİ . SINIF ONU ANLATIMLI. ÜNİTE: UVVET VE HAREET. onu SABİT İVMELİ HAREET ETİNLİ VE TEST ÇÖZÜMLERİ Sabi İmeli Hareke. Ünie. onu (Sabi İmeli Hareke). (m/s) A nın Çözümleri. İme- grafiklerinde doğru ile ekseni

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ . BÖÜM HAREET.. 3. MODE SORU - DEİ SORUARIN ÇÖZÜMERİ 3 Araç, (-) aralığında + yönünde hızlanmaka, (-) aralığında + yönünde yavaşlamaka, (-3) aralığında ise - yönünde hızlanmakadır. Aracın hız- grafiği

Detaylı

Yeryüzünde Hareket. Test 1 in Çözümleri. 3. I. yol. K noktasından 30 m/s. hızla düşen cismin L 50 noktasındaki hızı m/s, M noktasındaki 30

Yeryüzünde Hareket. Test 1 in Çözümleri. 3. I. yol. K noktasından 30 m/s. hızla düşen cismin L 50 noktasındaki hızı m/s, M noktasındaki 30 4 eryüzünde Hareke es in Çözümleri. nokasından serbes bırakılan cisim, 4 lik yolu e 3 olmak üzere iki eşi zamanda alır. Cismin 4 yolu sonundaki ızının büyüklüğü ise yolu sonundaki ızının büyüklüğü olur..

Detaylı

HAREKET (Grafikler) Konum-zaman grafiğinde doğrunun eğimi hızı verir. 20 = 10 m/s. (0-2) s aralığında: V 1 = 2 = 0. (2-4) s aralığında: V 2

HAREKET (Grafikler) Konum-zaman grafiğinde doğrunun eğimi hızı verir. 20 = 10 m/s. (0-2) s aralığında: V 1 = 2 = 0. (2-4) s aralığında: V 2 AIŞTIRMAAR - 4. BÖÜM HAREET ÇÖZÜMER HAREET (Grafikler).. a) a) 4 6 onum-zaman grafiğinde doğrunun eğimi hızı verir. (-) s aralığında: m/s (-4) s aralığında: 6 4 (4-6) s aralığında: 3 m/s 6 4 Cismin hız-zaman

Detaylı

Ünite. Kuvvet ve Hareket. 1. Bir Boyutta Hareket 2. Kuvvet ve Newton Hareket Yasaları 3. İş, Enerji ve Güç 4. Basit Makineler 5.

Ünite. Kuvvet ve Hareket. 1. Bir Boyutta Hareket 2. Kuvvet ve Newton Hareket Yasaları 3. İş, Enerji ve Güç 4. Basit Makineler 5. 2 Ünie ue e Hareke 1. Bir Boyua Hareke 2. ue e Newon Hareke Yasaları 3. İş, Enerji e Güç 4. Basi Makineler. Dünya e Uzay 1 Bir Boyua Hareke Tes Çözümleri 3 Tes 1'in Çözümleri 3. 1. Süra skaler, hız ekörel

Detaylı

DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi

DAİRESEL HAREKET Katı Cisimlerin Dairesel Hareketi BÖLÜM 1 DAİRESEL HAREKET 1. DAİRESEL HAREKET 1.1. Kaı Cisimlerin Dairesel Harekei Açısal Yer Değişim: Bir eksen erafında dönmeke olan bir cismin (eker ezgah mili, volan vb.) dönme ekisi ile bir iş yapılır.

Detaylı

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT:

V = g. t Y = ½ gt 2 V = 2gh. Serbest Düşme NOT: Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir. Daha önceki

Detaylı

v.t dir. x =t olup 2x =2t dir.

v.t dir. x =t olup 2x =2t dir. ) m/s hızla düşe olarak ükselen balondan, balona göre m/s hızla aa aılan cisim aıldığı nokanın düşeinden 5 m uzaka ere çarpıor. Buna göre cisim ere çarpığı anda balon erden kaç m üksekedir? A)5 B)5 C)6

Detaylı

Öğr. Gör. Serkan AKSU

Öğr. Gör. Serkan AKSU Öğr. Gör. Serkan AKSU www.serkanaksu.net İki nokta arasındaki yerdeğiştirme, bir noktadan diğerine yönelen bir vektördür, ve bu vektörün büyüklüğü, bu iki nokta arasındaki doğrusal uzaklık olarak alınır.

Detaylı

2 TEK BOYUTTA HAREKET

2 TEK BOYUTTA HAREKET 2 TEK BOYUTTA HAREKET 2.1 Konum, hız ve sürat 2.2 Anlık hız ve sürat 2.3 İvme 2.4 Hareket diyagramları 2.5 Tek boyutta sabit ivmeli hareket 2.6 Serbest düşen cisimler 2.7 Kinematik denklemlerin türetilmesi

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 5. BÖÜ AIŞAR DE SRU - DEİ SRUARIN ÇÖZÜERİ. I. yl: Cisim sn iki saniyede 8 m yl aldığına öre, plam aldığı yl,. saniyede. saniyede. saniyede 4. saniyede + 5. saniyede plam yl : 5 m 5 m 5 m 5 m 45 m 8 m 5

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

BAĞIL HAREKET BÖLÜM 6

BAĞIL HAREKET BÖLÜM 6 ĞI HREET ÖÜ 6 1 ODE SORU 1 DE SORURI ÇÖZÜER ( ) (+) 4 ve araçlarının birbi- rine göre hızları en küçük olur P 2 yaay yol CEP 3 2 5 olur aracındaki gözlemciye göre aracının hızı; 5 6 olur 2 Şekildeki konum-

Detaylı

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006-2007 EĞİTİM ve ÖĞRETİM YILI FİZİK DERSİ YILLIK ÖDEVİ Öğrencinin ; Adı : Özgür Soyadı : ATİK Numarası : 387 Sınıfı : 10F/J Ders Öğretmeninin ; Adı : Fahrettin Soyadı : KALE Ödevin

Detaylı

Bölüm 2: Bir Boyutta Hareket

Bölüm 2: Bir Boyutta Hareket Bölüm : Bir Boyua Hareke Kavrama Soruları 1- Harekeli bir cimin yer değişirmei ile aldığı yol aynımıdır? - Hız ile üra araındaki fark nedir? 3- Oralama ve ani hız araındaki fark nedir? 4- Ne zaman oralama

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Bir boyutta sabit ivmeli hareket..

Bir boyutta sabit ivmeli hareket.. Bir boyutta sabit ivmeli hareket.. İvme sabit olduğunda, ortalama ivme ani ivmeye eşit olur. Hız hareketin başından sonuna kadar aynı oranda artar veya azalır. a x = v xf v xi t ; t i = 0 ve t f = t alınmıştır

Detaylı

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir?

1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? 1)Aşağıdaki konum-zaman grafiğine göre bu hareketlinin 0-30 saniyeleri arasındaki ortalama hızı nedir? A) -1/6 B) 1 C) 1/2 D) 1/5 E) 3 2) Durgun halden harekete geçen bir cismin konum-zaman grafiği şekildeki

Detaylı

SORULAR 1. Serbest düşmeye bırakılan bir cisim son iki saniyede 80 m yol almıştır.buna göre,cismin yere çarpma hızı nedir? a) 40 b) 50 c) 60 d) 70

SORULAR 1. Serbest düşmeye bırakılan bir cisim son iki saniyede 80 m yol almıştır.buna göre,cismin yere çarpma hızı nedir? a) 40 b) 50 c) 60 d) 70 SORUAR 1. Serbest düşmeye bırakılan bir cisim son iki saniyede 80 m yol almıştır.buna göre,cismin yere çarpma ızı nedir? a) 40 b) 50 c) 60 d) 70 2. cismi v ızı ile ukarı atılıp, ise serbets bırakılıyor.

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-10 DAİRESEL HAREKETTE HIZ, İVME VE AÇISAL YOL

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-10 DAİRESEL HAREKETTE HIZ, İVME VE AÇISAL YOL Bölüm-10 DAİRESEL HAREKETTE HIZ, İVME VE AÇISAL YOL 10.1. Düzgün Dairesel Hareke Bir eksen erafında harekeli bir nokanın düzenli olarak dönmesi düzgün dairesel hareke olarak anımlanır. Mesela bir ornanın

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLER

TRANSİSTÖRLÜ YÜKSELTEÇLER Karadeniz Teknik Üniversiesi Mühendislik Fakülesi * Elekrik-Elekronik Mühendisliği Bölümü Elekronik Anabilim Dalı * Elekronik Laborauarı I 1. Deneyin Amacı TRANSİSTÖRLÜ YÜKSELTEÇLER Transisörlerin yükseleç

Detaylı

FİZİK II LABORATUVARI DENEY FÖYÜ

FİZİK II LABORATUVARI DENEY FÖYÜ ELAL BAYA ÜNİESİTESİ / FEN-EDEBİYAT FAKÜLTESİ / FİZİK BÖLÜMÜ FİZİK LOATUA DENEY FÖYÜ. DİENÇ E ELEKTOMOTO KUETİNİN ÖLÇÜLMESİ. OHM YASAS. KHHOFF YASALA 4. ELEKTİK YÜKLEİNİN DEPOLANŞ E AKŞ AD SOYAD: NUMAA:

Detaylı

( ) ( ) m = DERS 10. Türevin Uygulamaları: Kapalı Türev, Değişim Oranları Kapalı Türev(İmplicit Differentiation).

( ) ( ) m = DERS 10. Türevin Uygulamaları: Kapalı Türev, Değişim Oranları Kapalı Türev(İmplicit Differentiation). DERS Türevin Ugulamaları: Kapalı Türev, Değişim Oranları.. Kapalı Türev(İmplici Differeniaion). Eğer f (), denkleminde olduğu gibi kapalı(implici olarak verilmişse, ü bulmak için zincir kuralı kullanılabilir:

Detaylı

Ters Perspektif Dönüşüm ile Doku Kaplama

Ters Perspektif Dönüşüm ile Doku Kaplama KRDENİZ EKNİK ÜNİERSİESİ BİLGİSR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSR GRFİKLERİ LBORURI ers Perspekif Dönüşüm ile Doku Kaplama 1. Giriş Bu deneyde, genel haları ile paralel ve perspekif izdüşüm eknikleri, ers perspekif

Detaylı

Hidrograf Analizi. Hiyetograf. Havza Çıkışı. Havza. Debi (m³/s) Hidrograf. Zaman (saat)

Hidrograf Analizi. Hiyetograf. Havza Çıkışı. Havza. Debi (m³/s) Hidrograf. Zaman (saat) Hidrograf Analizi Hiyeograf Havza Debi (m³/s) Havza Çıkışı Hidrograf Zaman (saa) 1 Hidrograf Q Hiyeograf Hidrograf Hidrograf Q Gecikme zamanı Pik Debi B Alçalma Eğrisi (Çekilme Yükselme Eğrisi (kabarma)

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Bağıl hız ve bağıl ivme..

Bağıl hız ve bağıl ivme.. Bağıl hız ve bağıl ivme.. Bağıl hareket, farklı referans sistemlerindeki farklı gözlemciler tarafından hareketlerin nasıl gözlemlendiğini ifade eder. Aynı hızla giden iki otomobilden birisinde bulunan

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder.

DİNAMİK (2.hafta) Yatay Hareket Formülleri: a x =0 olduğundan ilk hız ile yatay bileşende hareketine devam eder. EĞİK ATIŞ Bir merminin serbest uçuş hareketi iki dik bileşen şeklinde, yatay ve dikey hareket olarak incelenir. Bu harekette hava direnci ihmal edilerek çözüm yapılır. Hava direnci ihmal edilince yatay

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI TERS PERSPEKTİF DÖNÜŞÜM İLE YÜZEY DOKUSU ÜRETİMİ İANBUL İCARE ÜNİERİEİ BİLGİAAR MÜHENDİLİĞİ BÖLÜMÜ BİLGİAAR İEMLERİ LABORAUARI ER PERPEKİF DÖNÜŞÜM İLE ÜZE DOKUU ÜREİMİ Bu deneyde, genel haları ile herhangi bir yüzeye bir dokunun kopyalanması üzerinde

Detaylı

KİNEMATİK TEKNOLOJİNİN BİLİMSEL İLKELERİ

KİNEMATİK TEKNOLOJİNİN BİLİMSEL İLKELERİ 6 KİNEMATİK TEKNOLOJİNİN BİLİMSEL İLKELERİ Adem ÇALIŞKAN ( HAREKET BİLGİSİ ) Mekaniğin hareketi açıklayan koluna KĠNEMATĠK denir. Hareket, konumun sürekli değiģimidir. Hareket eden cismi, Ģekil değiģikliği

Detaylı

Bir cismin iki konumu arasındaki vektörel uzaklıktır. Başka bir ifadeyle son konum (x 2 ) ile ilk konum

Bir cismin iki konumu arasındaki vektörel uzaklıktır. Başka bir ifadeyle son konum (x 2 ) ile ilk konum DOĞRUSAL ve BAĞIL HAREKET Hareket Maddelerin zamanla yer değiştirmesine hareket denir. Fakat cisimlerin nereye göre yer değiştirdiği ve nereye göre hareket ettiği belirtilmelidir. Örneğin at üstünde giden

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) KURAM: Kondansaörün Dolma ve Boşalması Klasik olarak bildiğiniz gibi, iki ileken paralel plaka arasına dielekrik (yalıkan) bir madde konulursa kondansaör oluşur.

Detaylı

( x) KİRİŞLERDE ÇÖKME EI PL. Px EI. dy dx. Elastik eğrinin diferansiyel denklemi. Küçük çökmeler için; Serbest uçta(a),

( x) KİRİŞLERDE ÇÖKME EI PL. Px EI. dy dx. Elastik eğrinin diferansiyel denklemi. Küçük çökmeler için; Serbest uçta(a), ifhehnis OF TERILS KİRİŞLERE ÇÖKE Beer Johnson ewolf azurek Elasik eğrinin diferansiyel denklemi ρ ( ) P Küçük çökmeler için; ρ + d d y dy d 3 d d y Serbes uça(), ρ ρ B 0, ρ 0, ρ B nkasre uça (B), PL ρ

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017

KOÜ. Mühendislik Fakültesi Makine Mühendisliği ( 1. ve 2. Öğretim ) Bölümü Dinamik Dersi (Türkçe Dilinde) 1. Çalişma Soruları / 24 Eylül 2017 SORU-1) Dirençli bir ortamda doğrusal hareket yapan bir parçacığın ivmesi a=k V 3 olarak tanımlanmıştır. Burada k bir sabiti, V hızı, x konumu ve t zamanı sembolize etmektedir. Başlangıç koşulları x o

Detaylı

Doğrusal Momentum ve Çarpışmalar

Doğrusal Momentum ve Çarpışmalar Doğrusal Momentum ve Çarpışmalar 1. Kütlesi m 1 = 0.5 kg olan bir blok Şekil 1 de görüldüğü gibi, eğri yüzeyli m 2 = 3 kg kütleli bir cismin tepesinden sürtünmesiz olarak kayıyor ve sürtünmesiz yatay zemine

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

Fizik 101: Ders 9 Ajanda

Fizik 101: Ders 9 Ajanda Fizik 101: Ders 9 Ajanda İş & Enerji Müzakere Tanımlar Sabit bir kuvvetin yaptığı iş İş/kinetik enerji theoremi Çoklu sabit kuvvetin yaptığı iş Yorum İş & Enerji Fiziğin en önemli kavramlarından biri Mekaniğe

Detaylı

Hız. t 1 2t 1 3t 1 4t 1. Zaman 1-4- P. Suya göre hızları şekildeki gibi olan K ve L motorlarında, K motoru X noktasında karşı kıyıya çıkmıştır.

Hız. t 1 2t 1 3t 1 4t 1. Zaman 1-4- P. Suya göre hızları şekildeki gibi olan K ve L motorlarında, K motoru X noktasında karşı kıyıya çıkmıştır. 1-4- P A M Suya göre hızları şekildeki gibi olan ve motorlarında, motoru X noktasında karşı kıyıya çıkmıştır. Akıntı hızı sabit, bölmeler eşit aralıklı olduğuna göre motoru hangi noktada karşı kıyıya çıkar?

Detaylı

GÜZ YARIYILI FİZİK 1 DERSİ

GÜZ YARIYILI FİZİK 1 DERSİ 2015-2016 GÜZ YARIYILI FİZİK 1 DERSİ Yrd. Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 812 nolu oda Tel.: +90 264 295 (6092) Bölüm 2 DOĞRUSAL BĠR YOL BOYUNCA HAREKET (Bir

Detaylı

Bölüm 4. İki boyutta hareket

Bölüm 4. İki boyutta hareket Bölüm 4 İki boyutta hareket İki boyutta Hareket Burada konum, hız ve ivmenin vektör karakteri daha öne çıkacaktır. İlk olarak sabit ivmeli hareketler göz önünde bulundurulacak. Düzgün dairesel hareket

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN 3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Gr. M. ERYÜREK Arş. Gr. H. TAŞKIN AMAÇ Eğik düzlemdeki imeli hareketi gözlemek e bu hareket için yol-zaman, hız-zaman ilişkilerini incelemek, yerçekimi imesini

Detaylı

İÇİNDEKİLER

İÇİNDEKİLER İÇİNDEKİLER 27.10.2016 DİNAMİK 01 Giriş ve Temel Prensipler Dinamiğin Prensipleri (Newton Kanunları) 1) Eylemsizlik Prensibi (Dengelenmiş Kuvvetler) 2) Temel Prensip (Dengelenmemiş Kuvvetler) 3) Etki-Tepki

Detaylı

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ

DİNAMİK MEKANİK. Şekil Değiştiren Cisimler Mekaniği. Mukavemet Elastisite Teorisi Sonlu Elemanlar Analizi PARÇACIĞIN KİNEMATİĞİ DİNAMİK Dinamik mühendislik mekaniği alanının bir alt grubudur: Mekanik: Cisimlerin dış yükler altındaki davranışını inceleyen mühendislik alanıdır. Aşağıdaki alt gruplara ayrılır: MEKANİK Rijit-Cisim

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 16 Rijit Cismin Düzlemsel Kinematiği Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 16 Rijit

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Şekil 8.1: Cismin yatay ve dikey ivmesi

Şekil 8.1: Cismin yatay ve dikey ivmesi Deney No : M7 Deneyin Adı : EĞİK ATIŞ Deneyin Amacı : 1. Topun ilk hızını belirlemek 2. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışta açıyla menzil ve

Detaylı

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4 İÇİNDEKİLER 1. DÖNEL YÜZEYLER... 1 1.a Üreeç Eğrisi Paramerik Değilse... 1 1.b Üreeç Eğrisi Paramerik Olarak Verilmişse.... DÖNEL YÜZEYLERLE İLGİLİ ÖRNEKLER... 5.a α f,,0 Eğrisinin Dönel Yüzeyleri... 5.b

Detaylı

Kuvvet ve Hareket 96

Kuvvet ve Hareket 96 96 uvve ve Hareke uvve ve Hareke MODE SORU DE SORUARIN ÇÖZÜMER MODE SORU DE SORUARIN ÇÖZÜMER. a) b) Oobüü s n sü rai 9 km/ h Oobüsün 8 km/h. oflucu O dan P ye s de geliyor. OP m/ s oflucu P den R ye s

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s Bölüm 4: İki-Boyutta Hareket(Özet) Bir-boyutta harekeçin geliştirilen tüm kavramlar iki-boyutta harekeçin genelleştirilebilir. Bunun için hareketli cismin(parçacığın) yer değiştirme vektörü xy-düzleminde

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 3.1. Basınç Bir akışkan tarafından birim alana uygulanan normal kuvvete basınç denir Basınç birimi N/m 2 olup buna pascal (Pa) denir. 1

Detaylı

elde ederiz

elde ederiz Deney No : M1 Deney Adı : NEWTON YASASI Deneyin Amacı : Sabit kuvvet altında hareketin incelenmesi, konum-zaman, hız-zaman grafiklerinin çizilmesi. Newton un ikinci hareket kanununun gözlemlenmesi, kuvvet-ivme

Detaylı

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği . Ders Sisem-Model-Simülasyon Güvenilirlik Analizi ve Sisem Güvenilirliği Sisem-Model-Simülasyon Kaynak:F.Özürk ve L. Özbek,, Maemaiksel Modelleme ve Simülasyon, sayfa -9. Aklımız ile gerçek dünyadaki

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 5 Ağırlık merkezi STATİK Bir cisim moleküllerden meydana gelir. Bu moleküllerin her birine yer çekimi kuvveti etki eder. Bu yer çekimi kuvvetlerinin cismi meydana getiren

Detaylı

Bölüm 4: İki Boyutta Hareket

Bölüm 4: İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Kavrama Soruları 1- Yerden h yüksekliğinde, yere paralel tutulan bir silah ateşleniyor ve aynı anda silahın yanında başka bir kurşun aynı h yüksekliğinden serbest düşmeye bırakılıyor.

Detaylı

Dinamik. Fatih ALİBEYOĞLU -8-

Dinamik. Fatih ALİBEYOĞLU -8- 1 Dinamik Fatih ALİBEYOĞLU -8- Giriş 2 Önceki bölümlerde F=m.a nın maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini kullandık. Hız değişimlerinin yapılan

Detaylı

Q4.1. Motor. Kablo. Asansör

Q4.1. Motor. Kablo. Asansör Q4.1 Şekilde çelik bir kablo ile yukarı doğru sabi hızla çekilen asansör görülmekedir. Büün sürünmeleri ihmal eiğimizde; Çelik kablonun asansöre uyguladığı kuvve için ne söylenebilir? Kablo Moor v Asansör

Detaylı

1. Saf X maddesinin öz kütlesi, saf Y maddesinin öz kütlesinden büyüktür.

1. Saf X maddesinin öz kütlesi, saf Y maddesinin öz kütlesinden büyüktür. 1. af maddesinin öz külesi, saf maddesinin öz külesinden büyükür. Buna göre; ve maddelerinin aynı koşullardaki küle - hacim grafiği aşağıdakilerden hangisi olabilir? A) üle B) C) D) üle Hacim üle üle Hacim

Detaylı

FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741

FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 FİZİK PROJE ÖDEVİ İŞ GÜÇ ENERJİ NUR PINAR ŞAHİN 11 C 741 İŞ İş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir. Yola paralel bir F kuvveti

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

DİNAMİK 01 Giriş ve Temel Prensipler

DİNAMİK 01 Giriş ve Temel Prensipler DİNAMİK 01 Giriş ve Temel Prensipler Dinamik, kuvvet ile hareket arasındaki ilişkiyi inceler. Kuvvet Hareketsiz bir cismi harekete ettiren ve ya hareketini değiştiren etkiye kuvvet denir. Dinamiğin, Newton

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ 1.1. FİZİKTE ÖLÇME VE BİRİMLERİN ÖNEMİ... 2 1.2. BİRİMLER VE BİRİM SİSTEMLERİ... 2 1.3. TEMEL BİRİMLERİN TANIMLARI... 3 1.3.1. Uzunluğun

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

BÖLÜM-8 HİDROGRAF ANALİZİ 8.1 GİRİŞ 8.2 HİDROGRAFIN ELEMANLARI

BÖLÜM-8 HİDROGRAF ANALİZİ 8.1 GİRİŞ 8.2 HİDROGRAFIN ELEMANLARI BÖLÜM-8 HİDROGRAF ANALİZİ 8.1 GİRİŞ Taşkınların ve kurak devrelerin incelenmesinde akımın zaman içinde değişimini göseren hidrografı bilmek gerekir. Bu bölümde oplam akış hacminin akarsuyun bir kesiinde

Detaylı

2. Her bir bölme uzunlu u d olsun. t 1 TEST - 1 DO RUSAL HAREKET. Atletler 1. kez O noktas nda, 2. kez K noktas nda yan yana gelirler.

2. Her bir bölme uzunlu u d olsun. t 1 TEST - 1 DO RUSAL HAREKET. Atletler 1. kez O noktas nda, 2. kez K noktas nda yan yana gelirler. DO RUSA HAREET TEST - 1 1 X 3 N O P R X Y Y Y X N I II Aeer 1 kez O nokas na, kez nokas na yan yana geirer CEAP A Z Z Araçar n boyar efi ou una göre, X Z > Y Z X X Y Y Z Z ou una göre, X Z > Y CEAP C ESEN

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Fizik 101-Fizik I 2013-2014. Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332. İçerik

Fizik 101-Fizik I 2013-2014. Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332. İçerik Fizik 101-Fizik I 2013-2014 İki Boyutta Hareket Nurdan Demirci Sankır Enerji Araştırmaları Laboratuarı- YDB Bodrum Kat Ofis: 325, Tel:4332 İçerik Yerdeğiştirme, hız ve ivme vektörleri Sabit ivmeli iki-boyutlu

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir.

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir. HAREKET Bir cismin zamanla çevresindeki diğer cisimlere göre yer değiştirmesine hareket denir. Hareket konumuzu daha iyi anlamamız için öğrenmemiz gereken diğer kavramlar: 1. Yörünge 2. Konum 3. Yer değiştirme

Detaylı

Düşen Elmanın Fiziği

Düşen Elmanın Fiziği Düşen Elmanın Fiziği Elma neden yere düşer? Kütle: Eylemsizliği ölçmek için kullanılan bir terimdir ve SI (Uluslararası Birim Sistemi) birim sisteminde birimi kilogramdır. Kütle eşit kollu terazi ile ölçülür.

Detaylı

Su Yapıları II Aktif Hacim

Su Yapıları II Aktif Hacim 215-216 Bahar Su Yapıları II Akif Hacim Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversiesi Mühendislik Mimarlık Fakülesi İnşaa Mühendisliği Bölümü Yozga Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversiesi n aa Mühendisli

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy FİZ101 FİZİK-I Ankara Üniersitesi Fen Fakültesi Kimya Bölümü A Grubu 3. Bölüm (Doğrusal Hareket) Özet Aysuhan Ozansoy Bir şeyi basitçe açıklayamıyorsan onu tam olarak anlamamışsın demektir. Albert Einstein

Detaylı

: Bazı Uzunluk Ölçme Araçlarını Tanımlamak ve

: Bazı Uzunluk Ölçme Araçlarını Tanımlamak ve Deney Kodu : M-1 Deney Adı Deney Amacı : Uzunluk Ölçü Aleti : Bazı Uzunluk Ölçme Araçlarını Tanımlamak ve Ölçme Hataları Hakkında Önbilgiler Elde Etmektir. Kuramsal Ön Bilgi: Verniyeli kumpas, uzunluğu

Detaylı

BÖLÜM-7 YÜZEYSEL AKIŞ (SURFACE RUNOFF)

BÖLÜM-7 YÜZEYSEL AKIŞ (SURFACE RUNOFF) BÖÜM-7 YÜZEYSE KIŞ (SURFCE RUNOFF) 7.1 GİRİŞ Yağışan (kar, yağmur) sızma, yüzeysel birikirme ve yüzeyalı akışı çıkıkan sonra ara kalan kısma yüzeysel akış denir. Kısaca yüzeysel akışa yağış fazlası denilebilir.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

BASİT HARMONİK HAREKET

BASİT HARMONİK HAREKET BASİT HARMONİK HAREKET Bir doğru üzerinde bulunan iki nokta arasında periyodik olarak yer değiştirme ve ivmesi değişen hareketlere basit harmonik hareket denir. Sarmal yayın ucuna bağlanmış bir cismin

Detaylı

BOBĐNLER. Bobinler. Sayfa 1 / 18 MANYETĐK ALANIN TEMEL POSTULATLARI. Birim yüke elektrik alan içerisinde uygulanan kuvveti daha önce;

BOBĐNLER. Bobinler. Sayfa 1 / 18 MANYETĐK ALANIN TEMEL POSTULATLARI. Birim yüke elektrik alan içerisinde uygulanan kuvveti daha önce; BOBĐER MAYETĐK AAI TEME POSTUATARI Birim yüke elekrik alan içerisinde uygulanan kuvvei daha önce; F e = qe formülüyle vermişik. Manyeik alan içerisinde ise bununla bağlanılı olarak hareke halindeki bir

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

DENEY 5 RL ve RC Devreleri

DENEY 5 RL ve RC Devreleri UUDAĞ ÜNİVESİTESİ MÜHENDİSİK FAKÜTESİ EEKTİK-EEKTONİK MÜHENDİSİĞİ BÖÜMÜ EEM2103 Elekrik Devreleri aborauarı 2014-2015 DENEY 5 ve Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı : Deney Sonuçları (40/100)

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

Kinematik. Bir Boyutlu Hareket. İki ve Üç Boyutta Hareket. Fiz 1011 Ders 3. Yerdeğiştirme, Hız ve Sürat Serbest Düşen Cisimler

Kinematik. Bir Boyutlu Hareket. İki ve Üç Boyutta Hareket. Fiz 1011 Ders 3. Yerdeğiştirme, Hız ve Sürat Serbest Düşen Cisimler Fiz 1011 Ders 3 Kinematik Bir Boyutlu Hareket Yerdeğiştirme, Hız e Sürat Serbest Düşen Cisimler İki e Üç Boyutta Hareket Yerdeğiştirme, Hız e İme Vektörleri Teğetsel e Radyal İme Eğik Atış Hareketi Düzgün

Detaylı