MATE211 BİYOİSTATİSTİK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MATE211 BİYOİSTATİSTİK"

Transkript

1 MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: Bu örneklem için aşağıda istenilenleri yapınız. 1) Sınıflandırma yapmadan; a) Aritmetik ortalama, b) Standart sapma, Değerlerini hesaplayınız. Hesaplamaları nasıl yaptığınızı gösteriniz. Aritmetik Ortalama, verinin toplamı Standart Sapma, ) Sınıflandırma yaparak (sınıf aralığını 10 alınız ve 11 sınıf oluşturunuz); Dağılımın en büyük dğeri: 256 Dağılımın en küçük değeri: 153 Dağılım Aralığı: En geniş sınıf aralığı: En dar sınıf aralığı: olur.

2 Soruda sınıf aralıklarının 10, sınıf sayısının 11 olması isteniyor. Buna göre sınıflar şöyle oluşur: a) Aritmetik ortalama hesaplanması, SINIFLAR FREKANS TOPLAM 136 sütunu, frekansı en yüksek sınıfa sıfır değeri verilmek üzere, üste doğru negatif olarak, aşağıya doğru pozitif olarak birer artırılarak oluşturulur. sütunu ile sütunlarındaki değerleri çarpmak suretiyle oluşturulur ve bu sütunun toplamı bulunur Sınıf Değeri (SD) sütunu sınıfın alt ve üst sınırlarının ortalaması bulunarak oluşturulur., sınıf aralığıdır, ve ardışık iki sınıfın alt sınırları arasındaki fark olarak hesaplanır. Burada dur., frekansı en yüksek olan ve 0 seçilen sınıfın SD değeridir. SINIFLAR FREKANS SD TOPLAM Σ Formüldeki değerleri yerine koyarak, aritmetik ortalama hesaplanır

3 b) Standart sapma hesaplanması, 1 sütunu ve sütunu oluşturulur. SINIFLAR FREKANS SD TOPLAM Σ Formüldeki değerleri yerine koyarak, standart sapma hesaplanır c) Varyasyon katsayısı hesaplanması % d) Standart hata hesaplanması, e) %95 doğruluk düzeyinde, evren ortalaması güven sınırlarının hesaplanması Evren ortalaması güven sınırları olarak bulunur ve çift yönlü testtir.

4 Yanılma düzeyi %5 olduğundan, 0.05 Serbestlik derecesi: tablosundan 1.98 olarak elde edilir. Değerleri formülde yerine koyarak; bulunur elde edilir. Böylece %95 olasılıkla evren ortalamasının ile değerleri arasında olacağını söyleyebiliriz. f) %1 yanılma düzeyinde, evren ortalaması güven sınırlarının hesaplanması Yanılma düzeyi %1 olduğundan, 0.01 Serbestlik derecesi: tablosundan 2.62 olarak elde edilir. Değerleri formülde yerine koyarak; bulunur elde edilir. Böylece %99 olasılıkla evren ortalamasının ile değerleri arasında olacağını söyleyebiliriz. g) Ortanca ve tepe değerlerinin hesaplanması Tepe Değeri, frekansı en çok olan sınıfının SD değeri olan olur. SINIFLAR FREKANS SD TOPLAM Σ 136

5 Ortanca nın hesaplanması: Ortanca 2 Formülü ile hesaplanır. ortancanın içinde bulunduğu sınıfın Sınıf Ara Değeri(SAD) dir. sınıf aralığı, ortancanın içinde bulunduğu sınıfın frekansı, veri sayısı, ise ortancanın bulunduğu sınıfın bir üstündeki sınıfın yığılımlı frekansı olarak tanımlanmıştır. Buna göre, ortanca değer inci veri olur. Bu ise sınıfının içinde bulunur. Buradan, SINIFLAR FREKANS SAD Yf i Ortanca nın bulunduğu sınıf TOPLAM Σ , 10, 62, ve 26 olur. Ortanca h) %25, %50, %75, %40 ve %90 değerlerinin hesaplanması Yüzdelikler için kullanılan formül X X XX SAD X X X SAD X SAD : soruda verilen yüzdelik değer : SAD den Az sütununda in bulunduğu sınıfın üzerinde ki sınıfın SAD den az yüzdelik değeri : SAD den Az sütununda in bulunduğu sınıfın SAD den az yüzdelik değeri : hesaplanacak değer : SAD değeri SINIFLAR FREKANS SAD SAD den Az sayı % TOPLAM Σ 136 : SAD değeri

6 %25 DEĞERİ 25, 16.18, 28.68, 182.5, ve %50 DEĞERİ 50, 45.59, 64.71, 202.5, ve %75 DEĞERİ 75, 64.71, 80.15, 212.5, ve %40 DEĞERİ 40, 28.68, 45.59, 192.5, ve %90 DEĞERİ 90, 88.97, 95.59, 232.5, ve ) Yalnızca ilk satırdaki değerleri kullanarak sınıflandırma yapmadan, birinci satır için ortancayı hesaplayınız bu satırda 10 tane veri var. Bunların küçükten büyüğe doğru sıralanması gerekir Veri sayısı çift olduğundan 2 nci veri ile 2 2 nci veri değeerlerinin ortalaması ortanca olur. Böylece, 10 olduğundan; 5 inci veri ile 6 ncı veriler kullanılarak ortanca değeri olarak bulunur.

7 BİNOMYAL DAĞILIM İLE İLGİLİ PROBLEMLER 4) Bir bölgede doğum kontrol yöntemlerini kullanma oranı %70 olsun. Bu bölgeden rastgele seçilen 8 kadından; a) dördünün b) en az ikisinin doğum kontrol yöntemi kullanma olasılığı nedir? Binomyal dağılımda olasılık hesaplamak için aşağıdaki formül kullanılır:!!! 8, tekrarlanan olay sayısını gösterir. Her olayda istenen: kontrol yöntemi kullanılması, bunun olasılığı 0.7, istenmeyen: kontrol yöntemi kullanılmaması. Bunun olasılığı (a) bölümünde: Toplam 8 kadından, 4 kadının doğum kontrol yöntemi kullanması olasılığı soruluyor. 4 84! 4! ! 4! %13.61 (b) bölümünde: Toplam 8 kadından, 2 kadının doğum kontrol yöntemi kullanması olasılığı soruluyor şeklinde yukarıdaki formülü 7 kez kullanarak istenen olasılık hesaplanabilir. VEYA formülü ile de hesaplanabilir. 0 80! 0! ! % ! 1! ! 1! %0.12 Böylece, en az iki kadının doğum kontrol yöntemi kullanma olasılığı %99.87 Olarak elde edilir. 5) Bir bölgedeki çocukların %45 oranında DBT aşısıyla bağışıklandığı bilinmektedir. Bu bölgeden rastgele seçilen 8 çocuktan; a) Üçünün b) Tümünün c) Hiçbirinin aşılı olma olasılığı nedir? Bu soruda; 8, 0.45, 0.55 olur. (a) için 3 hesaplanır. 3 (b) için 8 hesaplanır. 8 83! 3! ! 3! % ! %0.17

8 (c) için 0 hesaplanır. 0 80! 0! ! %0.84 6) Bir hastalıktan sağ kurtulma olasılığı %75 olsun. Bu hastalığa yakalanan 6 kişiden a) Hiçbirinin b) Tümünün c) Dördünün d) En çok dördünün kurtulma olasılığı nedir? Bu soruda; 6, 0.75 ve 0.25 olur. (a) için 0 hesaplanır. 0 (b) için 6 hesaplanır. 6 (c) için 4 hesaplanır. 4 (d) için 4 hesaplanır. 6! 60! 0! ! 6! 0! % ! 66! 6! ! 0! 6! % ! 64! 4! ! 2! 4! % VEYA hesaplanır %17.79 (b) şıkkında hesaplanmıştı. 5 6! 65! 5! ! 1! 5! % % ) Bir hastanede sezaryenle doğum yapma oranı %20 olsun. Bu hastanede doğum yapan 10 kadından; a) Tümünün b) Yarısından çoğunun c) İkisinin sezaryenle doğum yapmış olma olasılığı nedir? Bu soruda; 10, 0.2, ve 0.8 olur.

9 (a) için 10 hesaplanır. 10 (b) için 5 hesaplanır. 10! 10 10! 10! ! 0! 10! % hesaplanarak cevap bulunur. (c) için 2 hesaplanır. 2 10! 10 2! 2! ! 2! %30.19 POISSON DAĞILIMI İLE İLGİLİ PROBLEMLER 8) Sağlık ocaklarından günlük olarak hastaneye sevk edilen hasta sayısı bir yıl boyunca kaydedilmiş ve bu sayının Poisson dağılımına uyduğu ve günlük olarak hastaneye sevk edilen ortalama hasta sayısının 6 olduğu görülmüştür. Herhangi bir gün hastaneye; a) Hiç hasta gönderilmeme b) 1 hasta gönderilme c) 2 hasta gönderilme d) 7 hasta gönderilme e) 3 ten az hasta gönderilme olasılığı nedir? Poisson dağılımı ile olasılık hesapları aşağıdaki formüle göre yapılır.! 6 olduğuna dikkat ediniz. (a) için 0 hesaplanır ! %0.25 (b) için 1 hesaplanır ! %1.49 (c) için 2 hesaplanır ! %4.46 (d) için 7 hesaplanır ! %13.77

10 (e) için hesaplanır %6.2 9) Bir işyerinde, günlük iş kazası sayısının Poisson dağılımına uyduğu ve günde ortalama iş kazası sayısının 1.5 olduğu bulunmuştur. Bu işyerinde, herhangi bir gün; a) Hiç kaza olmama b) 1 kaza olma c) 4 ten az kaza olma olasılığı nedir? 1.5 olduğuna dikkat ediniz. (a) için 0 hesaplanır % ! (b) için 1 hesaplanır % ! (c) için hesaplanır % ! % ! % ) Lefkoşa ilçesinde bir günde oluşan kaza sayısı, beş yıl süre ile gözlenmiş ve bu sayının ortalama olarak 5 olduğu ve Poisson dağılımına uydugü belirlenmiştir. Bu ilçemizde günde; a) 4 ten az kaza olma b) 2 kaza olma c) Hiç kaza olmama olasılığı nedir? 5 olduğuna dikkat ediniz. (a) için hesaplanır %0.67 0! bu aynı zamanda (c) nin cevabıdır

11 %3.37 1! %8.42 bu aynı zamanda bnin cevabıdır 2! % ! %26.50 NORMAL DAĞILIM İLE İLGİLİ PROBLEMLER (Bu konu dönem içi sınava dahil değildir. Çözümler daha sonra verilecektir.) 11) Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği ve ortalamasının 12.5 gr/dl, standart sapmasının ise 1.0 gr/dl olduğu gözlenmiştir. Buna göre, hamile kadınların; a) Hemoglobin değerlerinin gr/dl arasında bulunma olasılığı yüzde kaçtır? b) %80 inin hemoglobin değerleri, ortalamaya göre hangi simetrik sınırlar arasındadır? c) üstten %30 unun hemoglobin değerleri kaçtan fazladır? d) Alttan %22 sinin hemoglobin değerleri kaçtan daha azdır? e) yüzde kaçının hemoglobin değeri 12.2 gr/dl den azdır?

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

1. TANIMLAYICI İSTATİSTİK

1. TANIMLAYICI İSTATİSTİK BİYOİSTATİSTİK Status: Devlet,durum İstatistik: Herhangi bir konuyu incelemek için gerekli verilerin toplanmasını, toplanan verilerin değerlendirilmesini ve değerlendirme sonucu karara varılmasını sağlayan

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ

İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TESTİ. Biyoistatistik (Ders 5: Bağımlı Gruplarda İki Örneklem Testleri) İKİ ÖRNEKLEM TESTLERİ İKİ ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA İKİ ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı uerkorkmaz@sakarya.edu.tr İKİ ÖRNEKLEM TESTLERİ

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu

Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu Bağıl Değerlendirme Sistemi ile ilgili Bilgi Notu 2013-2014 Eğitim Öğretim yılından itibaren Fakültemizin kayıtlı tüm öğrencilerinin (hem eski hem de yeni müfredata tabi olan öğrencilerin) başarı notları

Detaylı

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi

istatistik 4. Bir frekans dağılımına ilişkin birikimli seriler 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi 2010 S 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek t ablolar ve f ormüller bu kitapçığın sonunda verilmiştir. 1. Birimlerle ilgili aşağıdaki ifadelerden hangisi yanlıstır? ) Maddesel

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

ACİL SAĞLIK HİZMETLERİ

ACİL SAĞLIK HİZMETLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI ACİL SAĞLIK HİZMETLERİ İSTATİSTİKSEL İŞLEMLER II 462I00008 Ankara, 2011 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Student t Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Student t Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek örnek t testi SPSS de tek örnek t testi uygulaması Bağımsız iki örnek

Detaylı

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz

ÖRNEKLEME HATALARI EK C. A. Sinan Türkyılmaz ÖNEKLEME HATALAI EK C A. Sinan Türkyılmaz Örneklem araştırmalarından elde edilen kestirimler (estimates) iki tip dan etkilenirler: (1) örneklem dışı lar ve (2) örneklem ları. Örneklem dışı lar, veri toplama

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata Hata Hesabı Hata Nedir? Herhangi bir fiziksel büyüklüğün ölçülen değeri ile gerçek değeri arasındaki farka hata denir. Ölçülen bir fiziksel büyüklüğün sayısal değeri, yapılan deneysel hatalardan dolayı

Detaylı

SPSS de Tanımlayıcı İstatistikler

SPSS de Tanımlayıcı İstatistikler SPSS de Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı SPSS programında belirtici istatistikler 4 farklı menüden yararlanılarak

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Veritabanı. SQL (Structured Query Language)

Veritabanı. SQL (Structured Query Language) Veritabanı SQL (Structured Query Language) SQL (Structured Query Language) SQL, ilişkisel veritabanlarındaki bilgileri sorgulamak için kullanılan dildir. SQL, bütün kullanıcıların ve uygulamaların veritabanına

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Merkezi Eğilim Ölçüleri

Merkezi Eğilim Ölçüleri Merkezi Eğilim Ölçüleri 1) Parametrik merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenen merkezi eğilim ölçüleridir. 1) Aritmetik ortalama 2) Geometrik ortalama (G) 3) Harmonik ortalama (H)

Detaylı

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY GÜVEN ARALIKLARI ALISTIRMA SORULARI 2012 Aras.Gör. Efe SARIBAY 1) Bir bankada bir gün içerisinde açılan vadeli TL. hesaplarının ortalamasını incelemek amacıyla yapılan bir araştırmada 12 günlük yapılan

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Yatırım Kumar Adil Oyun

Yatırım Kumar Adil Oyun Portföy Yönetimi Yatırım Kumar Adil Oyun 1 2 Getiri Kavramı Risk ve Getiri Kavramı Genel Kural: Getiriyi Sev, Riskten Kaç Faydayı Maksimize Et! Hisse Senedinde getiri iki kaynaktan oluşur. : Sermaye Kazancı

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

Risk ve Getiri. Dr. Veli Akel 1-1

Risk ve Getiri. Dr. Veli Akel 1-1 Bölüm m 1 Risk ve Getiri Dr. Veli Akel 1-1 Risk ve Getiri urisk ve Getirinin Tanımı uriski Ölçmek Đçin Olasılık Dağılımlarını Kullanmak uportföyün Riski ve Getirisi uçeşitlendirme ufinansal Varlıkları

Detaylı

BÖLÜM12. 2- FORMÜLLER ve OTOMATİK TOPLAM. 2.1. Formüller

BÖLÜM12. 2- FORMÜLLER ve OTOMATİK TOPLAM. 2.1. Formüller BÖLÜM12 2- FORMÜLLER ve OTOMATİK TOPLAM 2.1. Formüller Formül, bir sayfadaki verilerin aritmetiksel, mantıksal, istatistiksel vb. işlemleri yapması için kullanılan denklemlerdir ve bize sonuç bildirirler.

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları

İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları İ.Ü. Cerrahpaşa Tıp Fakültesi, Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme Esasları 1. TANIM ve AMAÇ 1.1. Çok Disiplinli Ders Kurulları, Sınav Uygulama, Ölçme ve Değerlendirme

Detaylı

KONTROL TESTİ - 4. 1. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır.

KONTROL TESTİ - 4. 1. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır. KONTROL TESTİ - 4. Birinci galeride A markasından 4, B markasından 6 araç; ikinci geleride ise A markasından 8, B markasından 4 araç vardır. Bu galerilerden rastgele alınan bir aracın A markasından olduğu

Detaylı

DBYYHY 2007 ve DEPREME KARŞI DAYANIKLI YAPI TASARIMI. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

DBYYHY 2007 ve DEPREME KARŞI DAYANIKLI YAPI TASARIMI. Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli DBYYHY 2007 ve DEPREME KARŞI DAYANIKLI YAPI TASARIMI Onur ONAT Tunceli Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Genel İlkeler Nedir? Yapısal hasarın kabul edilebilir sınırı

Detaylı

BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı

BÖLÜM 11 Z DAĞILIMI. Şekil 1. Z Dağılımı 1 BÖLÜM 11 Z DAĞILIMI Z dağılımı; ortalaması µ=0 ve standart sapması σ=1 olan Z puanlarının evren dağılımı olarak tanımlanabilmektedir. Z dağılımı olasılıklı bir normal dağılımdır. Yani Z dağılımının genel

Detaylı

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME

EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME EĞĠTĠMDE ÖLÇME ve DEĞERLENDĠRME Öğrenci başarısının veya başarısızlığının kaynağında; öğrenci, öğretmen, çevre ve program vardır. Eğitimde değerlendirme yapılırken bu kaynaklar dikkate alınmaz. Eğitimciler,

Detaylı

Özel Hastanelerin Puanlandırılması ve İlave Ücret Alınması Hakkında Yönerge

Özel Hastanelerin Puanlandırılması ve İlave Ücret Alınması Hakkında Yönerge Özel Hastanelerin Puanlandırılması ve İlave Ücret Alınması Hakkında Yönerge Amaç Madde 1- (1) Bu Yönergenin amacı 31/5/2006 tarihli ve 5510 sayılı Sosyal Sigortalar ve Genel Sağlık Sigortası Kanununun

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

RİSK ANALİZİ VE. İşletme Doktorası

RİSK ANALİZİ VE. İşletme Doktorası RİSK ANALİZİ VE MODELLEME İşletme Doktorası Programı Bölüm - 1 Portföy Teorisi Bağlamında Risk Yönetimi ile İlgili Temel Kavramlar 1 F23 F1 Risk Kavramı ve Riskin Ölçülmesi Risk istenmeyen bir olayın olma

Detaylı

Hız, Seyir Süresi ve Gecikmeler. Prof.Dr.Mustafa KARAŞAHİN

Hız, Seyir Süresi ve Gecikmeler. Prof.Dr.Mustafa KARAŞAHİN Hız, Seyir Süresi ve Gecikmeler Prof.Dr.Mustafa KARAŞAHİN Hız, Seyir Süresi ve Gecikme Karayolu altyapısı ve trafik işletme modelinin performansının göstergesidir. Genellikle, sürücüler veya yolcular A

Detaylı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

Varyans Analizi (ANOVA) Kruskal-Wallis H Testi. Doç. Dr. Ertuğrul ÇOLAK. Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Varyans Analizi (ANOVA) Kruskal-Wallis H Testi Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Tek Yönlü Varyans Analizi SPSS de Tek

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

DERS ve ÖĞRENCİ BAŞARI DEĞERLENDİRME PROGRAM KILAVUZU

DERS ve ÖĞRENCİ BAŞARI DEĞERLENDİRME PROGRAM KILAVUZU YILDIZ TEKNİK ÜNİVERSİTESİ İNŞAAT FAKÜLTESİ DERS ve ÖĞRENCİ BAŞARI DEĞERLENDİRME PROGRAM KILAVUZU Kâmil B. VARINCA İSTANBUL - 2010 İÇİNDEKİLER ÖNSÖZ... 3 1 İLGİLİ YÖNETMELİK HÜKÜMLERİ... 4 2 BAĞIL DEĞERLENDİRME

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR

BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR BÜLENT ECEVİT ÜNİVERSİTESİ BAĞIL DEĞERLENDİRME SİSTEMİNE İLİŞKİN ESASLAR Amaç * MADDE 1. Bu esasların amacı, Bülent Ecevit Üniversitesi Tıp ve Diş Hekimliği Fakülteleri ve Devlet Konservatuvarı dışındaki

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Özel Hastaneler İle Vakıf Üniversite Hastanelerinin Puanlandırılması Ve İlave Ücret Alınması Hakkında Yönerge

Özel Hastaneler İle Vakıf Üniversite Hastanelerinin Puanlandırılması Ve İlave Ücret Alınması Hakkında Yönerge Özel Hastaneler İle Vakıf Üniversite Hastanelerinin Puanlandırılması Ve İlave Ücret Alınması Hakkında Yönerge Amaç Madde 1- (1) Bu Yönergenin amacı 31/5/2006 tarihli ve 5510 sayılı Sosyal Sigortalar ve

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Mann-Whitney U ve Wilcoxon T Testleri

Mann-Whitney U ve Wilcoxon T Testleri Mann-Whitney U ve Wilcoxon T Testleri Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Konu Başlıkları Parametrik olmayan yöntem Mann-Whitney U testinin

Detaylı

Grup 2 12091601 Selin Bozkurtlar Ödev 5 02.04.2014 BİLİŞİM TEKNOLOJİLERİ EĞİTİM PLANI

Grup 2 12091601 Selin Bozkurtlar Ödev 5 02.04.2014 BİLİŞİM TEKNOLOJİLERİ EĞİTİM PLANI Grup 2 12091601 Selin Bozkurtlar Ödev 5 02.04.2014 PROJE TABANLI ÖĞRENME A. Biçimsel Bölüm Dersin Adı Sınıf Konunun Adı Süre Öğrenme-Öğretme Strateji ve Yöntemi Kaynak Araç Gereçler Kazanım B. Giriş Bölümü

Detaylı

ING Bank A.Ş. KORUMA AMAÇLI ŞEMSİYE FONU NA BAĞLI B TİPİ %100 ANAPARA KORUMA AMAÇLI DOKUZUNCU ALT FONU ( Birinci İhraç )

ING Bank A.Ş. KORUMA AMAÇLI ŞEMSİYE FONU NA BAĞLI B TİPİ %100 ANAPARA KORUMA AMAÇLI DOKUZUNCU ALT FONU ( Birinci İhraç ) ING Bank A.Ş. KORUMA AMAÇLI ŞEMSİYE FONU NA BAĞLI B TİPİ %100 ANAPARA KORUMA AMAÇLI DOKUZUNCU ALT FONU ( Birinci İhraç ) Talep Toplama Dönemi : Başlangıç : 04.06.2012 Bitiş : 07.06.2012 Fon Yatırım Dönemi

Detaylı

KURAKLIK İZLEME SİSTEMİ (KİS)

KURAKLIK İZLEME SİSTEMİ (KİS) KURAKLIK İZLEME SİSTEMİ (KİS) Bu program, Meteorolojik kuraklığın uzun dönemde ve farklı periyotlarda izlenebilmesi amacıyla hazırlanmıştır. Meteoroloji Genel Müdürlüğü nün en az 30 yıllık kesintisiz yağış

Detaylı

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011

SPPS. Verileri Düzenleme ve Değiştirme 3 - Data Menüsü. Y. Doç. Dr. İbrahim Turan Nisan 2011 SPPS Verileri Düzenleme ve Değiştirme 3 - Data Menüsü Y. Doç. Dr. İbrahim Turan Nisan 2011 Data Menüsü 1- Define Variable 1- Properties (Değişken Özelliklerini Tanımlama) Değişken özelliklerini tanımlamak

Detaylı

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi

Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi. Parametrik Olmayan Testler. Ki-kare (Chi-Square) Testi Parametrik Olmayan Testler Ki-kare (Chi-Square) Testi Ki-kare (Chi-Square) Testi En iyi Uygunluk (Goodness of Fit) Ki-kare Dağılımı Bir çok önemli istatistik testi ki kare diye bilinen ihtimal dağılımı

Detaylı

Deneysel Verilerin Değerlendirilmesi

Deneysel Verilerin Değerlendirilmesi Deneysel Verilerin Değerlendirilmesi Ölçme-Birimler-Anlamlı Rakamlar Ölçme: Bir nesnenin bazı özelliklerini (kütle, uzunluk vs..) standart olarak belirlenmiş birimlere göre belirlenmesi işlemidir (ölçüm,

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması

Poisson Dağılımı Özellikleri ve Olasılıkların Hesaplanması Özellikleri ve Olasılıkların Hesaplanması Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Poisson dağılımı kesikli dağılımlar içinde Binom dağılımından

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

DERSLER çalışma sayfası içerisinde yer alan başlık satırının tamamının biçimlerini METİN olarak değiştirilmesi,

DERSLER çalışma sayfası içerisinde yer alan başlık satırının tamamının biçimlerini METİN olarak değiştirilmesi, Bu bölümde TBTK dersi Hesap tablosu 2. hafta içeriğinde yer alan Hesap tablosu Modül 5 ve Modül 6 ya ait ana uygulama adımları ve ek uygulamalar sunulacaktır. Ana Uygulama 8 Metin ve Sayı Biçimleri Kullanımı

Detaylı

Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar

Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar Karadeniz Teknik Üniversitesi Ön Lisans ve Lisans Programlarında Başarı Notunun Değerlendirilmesine Dair Senato Tarafından Belirlenen Usul ve Esaslar Karadeniz Teknik Üniversitesi (KTÜ) Ön Lisans ve Lisans

Detaylı

ĠKĠ ÖRNEKLEM TESTLERĠ

ĠKĠ ÖRNEKLEM TESTLERĠ ĠKĠ ÖRNEKLEM TESTLERĠ BAĞIMSIZ GRUPLARDA İKİ ÖRNEKLEM TESTLERİ 1. ĠKĠ ORTALAMA ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ. MANN-WHITNEY U TESTĠ 3. ĠKĠ YÜZDE ARASINDAKĠ FARKIN ÖNEMLĠLĠK TESTĠ 4. x KĠ-KARE TESTLERĠ

Detaylı

Temel Esaslar Madde 5-

Temel Esaslar Madde 5- TÜRKİYE KAMU HASTANELERİ KURUMUNA BAĞLI İKİNCİ BASAMAK SAĞLIK TESİSLERİNDE GÖREV YAPAN PERSONELE BİRİM PERFORMANS KATSAYISININ UYGULANMASINA DAİR YÖNERGE Amaç Madde 1- (1) Bu Yönergenin amacı, sağlık hizmetlerinin

Detaylı

BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ

BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ BĠTLĠS EREN ÜNĠVERSĠTESĠ BAĞIL DEĞERLENDĠRME SĠSTEMĠ UYGULAMA YÖNERGESĠ Amaç Madde 1- (1) Yönergenin amacı, ders başarı notunun saptanmasında bağıl değerlendirme sisteminin uygulanması ile ilgili esasları

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI)

BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) 1 BÖLÜM 14 BİLGİSAYAR UYGULAMALARI - 3 (ORTALAMALARIN KARŞILAŞTIRILMASI) Hipotez testi konusunda görüldüğü üzere temel betimleme, sayma ve sınıflama işlemlerine dayalı yöntemlerin ötesinde normal dağılım

Detaylı

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A

18. ULUSAL ANTALYA MATEMATİK SORULARI A A A A A A A KDENİZ ÜNİVERSİTESİ 18. ULUSL NTLY MTEMTİK OLİMPİYTLRI BİRİNCİ ŞM SORULRI SINV TRİHİ VESTİ:30 MRT 2013 - Cumartesi 10.00-12.30 Bu sınav 25 sorudan oluşmaktadır vesınav süresi 150 dakikadır. SINVL İLGİLİ

Detaylı

AMAÇ: Araştırma planlamasında kullanılan basamakları öğrencilerin tanımlayabilmesini sağlamaktır.

AMAÇ: Araştırma planlamasında kullanılan basamakları öğrencilerin tanımlayabilmesini sağlamaktır. Örnek Hacmi ve Örnekleme Yöntemleri 7.01.014 P.Tesi İstatistik Dergisi; n den N ye Gezinti Yıl:, Sayı:8 Eylül-Ekim 01 deki bir yazıda: Depresyon, dünya çapında milyonlarca insanı etkileyen son derece yaygın

Detaylı

ÖZEL HASTANELER İLE VAKIF ÜNİVERSİTE HASTANELERİNİN PUANLANDIRILMASI HAKKINDA YÖNERGE

ÖZEL HASTANELER İLE VAKIF ÜNİVERSİTE HASTANELERİNİN PUANLANDIRILMASI HAKKINDA YÖNERGE ÖZEL HASTANELER İLE VAKIF ÜNİVERSİTE HASTANELERİNİN PUANLANDIRILMASI HAKKINDA YÖNERGE Amaç Madde 1- (1) Bu Yönergenin amacı 31/5/2006 tarihli ve 5510 sayılı Sosyal Sigortalar ve Genel Sağlık Sigortası

Detaylı

Biyoistatistik. Uygulama 1

Biyoistatistik. Uygulama 1 Biyoistatistik Uygulama 1 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi,Tıp Fakültesi,Biyoistatistik ve Tıbbi Bilişim A.D. Web: www.biyoistatistik.med.ege.edu.tr 1 DİŞ MACUNU-TEMDİŞ TEMPA Temizlik

Detaylı

7) 30 kişilik bir sınıfta her öğrenciye ait 5 ödev verilmiştir. Ödevlerden 3 tanesini doğru yapan

7) 30 kişilik bir sınıfta her öğrenciye ait 5 ödev verilmiştir. Ödevlerden 3 tanesini doğru yapan 1) Bir laboratuarda belirsiz sayıda deney yapılıyor. Okutulan deney no ve sonuç verilerine göre (3 çeşit deney var.) a) Her bir deneyden kaç tane yapılmıştır. b) Yapılan toplam deney sayısı ne kadardır.

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir.

Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Bağımlı Örneklerde Ki-Kare testi -- Mc Nemar Testi Çoğu araştırmada seçilen örnekler araştırmanın yapısı gereği birbirinden bağımsız olmayabilir. Örnek: Sigara içmeyle ilgili bir çalışmada, kişilere sigarayı

Detaylı

MİCROSOFT EXCEL PROGRAMI DERS NOTLARI

MİCROSOFT EXCEL PROGRAMI DERS NOTLARI MİCROSOFT EXCEL PROGRAMI DERS NOTLARI ( 6. sınıflar için hazırlanmıştır. ) Fevzi Başal Bilişim Teknolojileri Öğretmeni İçindekiler 1. KAVRAMLAR... 1 2. DOSYA İŞLEMLERİ... 2 3. EXCEL DE KULLANILAN FARE

Detaylı

3. BÖLÜM: EN KÜÇÜK KARELER

3. BÖLÜM: EN KÜÇÜK KARELER 3. BÖLÜM: EN KÜÇÜK KARELER Bu bölümde; Kilo/Boy Örneği için Basit bir Regresyon EViews Denklem Penceresinin İçeriği Biftek Talebi Örneği için Çalışma Dosyası Oluşturma Beef 2.xls İsimli Çalışma Sayfasından

Detaylı

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama

FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama FABRİKA ORGANİZASYONU Üretim Planlama ve Yönetimi 2. Uygulama: Sipariş ve Parti Büyüklüğü Hesaplama Uygulamalar 1. İhtiyaç Hesaplama 2. Sipariş ve Parti Büyüklüğü Hesaplama 3. Dolaşım Akış Çizelgeleme/Terminleme

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları

T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları T.C. İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Türkçe ve İngilizce Tıp Programları Tıp Bilimlerine Giriş Ders Kurulu (1.1) Sınav Analizi 2008-2015 Sınav Analizi 2008-2015; Güncellenme tarihi: 16.02.2015;

Detaylı