BİR TOPACIN DÖNME MİKTARI ÜZERİNE BİR İNCELEME. Adnan TEĞMEN

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BİR TOPACIN DÖNME MİKTARI ÜZERİNE BİR İNCELEME. Adnan TEĞMEN"

Transkript

1 BAÜ Fen Bil. Enst. Dergisi ( BİR TOPACN DÖNME MİKTAR ÜZERİNE BİR İNCEEME Adnan TEĞMEN Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü, 0600 Tandoğan-Ankara ÖZET Serbest bir katı cismin dönme hareketinde, eylemsiz bir koordinat sistemine göre sabit olan açısal momentum vektörü, cismin kütle merkezine sabitlenmiş koordinat sisteminden bakıldığında periyodik bir harekete sahiptir. Fakat açısal momentum vektörü bir periyodluk hareketini tamamladığında cisim bir bütün olarak periyodik bir hareket sergilememektedir. Robot ve uydu hareketlerinde önemli düzeltmeler gerektiren bu hareket tarzı analiz edilerek, simetrik bir topaç için cismin net dönme miktarı alternatif bir yaklaşımla türetilmiştir. Anahtar Kelimeler: Katı cisim, cisim koordinat sistemi, dinamik faz, geometrik faz. ABSTRACT n the rotational motion of a free rigid body, the angular momentum vector which is constant with respect to an inertial frame has a periodic motion when viewed from the frame fixed at the center of mass of the body. But when the angular momentum vector completes its one-period motion, the body as a whole does not exhibit a periodic motion. This kind of motion which generates important corrections in the motions of robots and satelites has been analyzed and, for a symmetrical top, the net amount of rotation of the rigid body has been derived via an alternative approach. Keywords: Rigid body, body frame, dynamical phase, geometric phase.. GİRİŞ Chasles teoremine göre katı bir cismin en genel yerdeğiştirmesi öteleme ve dönme hareketlerinden ibarettir []. Bu teoreme paralel olarak katı bir cismin hareketinin tam bir incelemesi iki koordinat sisteminin kullanılması ile mümkündür. Bunlardan birisi cismin dışında yer alan eylemsiz bir koordinat sistemi X X, diğeri ise cismin üzerine sabitlenmiş ve cisim ile birlikte hareket eden X xx koordinat sistemidir (cisim koordinatları. Diğer taraftan, eylemsiz koordinatlar ve cisim koordinatları cismin kütle merkezinde çakıştırılıp salt dönme hareketi incelendiğinde ilginç gözlemler yapılabilmektedir. Bir noktasından sabitlenmiş katı cismin en genel hareketi ise, Euler teoremine göre bir eksene göre anlık dönme hareketidir. Dolayısıyla belli bir dönme ekseni belirlenmemiş olsa bile açısal hız vektörü anlık olarak tanımlanabilir. Aşağıda dikkate x 57

2 BAÜ Fen Bil. Enst. Dergisi ( alınan bütün dönme eksenleri, ölçüm anında sonsuz küçük dönmelere karşı gelen anlık dönme eksenleridir. Cisim koordinatları, cismin asal eylemsiz dönme eksenleri ile çakıştırılıp kütle merkezine sabitlendiğinde cismin dönme kinetik enerjisi çok iyi bilinen T dön ( + +, ( bağıntısı ile verilir. Burada seçimi ile verilen nicelikler, asal eylemsizlik momentleridir ve i ( i,, cismin açısal hız vektörü nın cisim koordinat sistemindeki bileşenleridir. vektörü cisim koordinat sisteminin yerinin seçiminden bağımsızdır, yani xx x koordinat sisteminin orijini kütle merkezinde seçilmese bile değişmez kalır. Dolayısıyla, bu anlamı ile vekörü mutlak bir özelliğe sahiptir. Gözönüne alınacağı gibi, cisim serbest olduğunda sistemde herhangi bir dış kuvvet olmayacağından dolayı ( bağıntısı toplam enerjiye indirgenir ve bir hareket sabitidir: T dön E sabit. ( Sistemde doğal olarak herhangi bir dış kuvvet momenti yani tork da olmayacağından, bileşenleri i i i ( ile verilen açısal momentum vektörü, eylemsiz koordinatlara göre hem yönce hem de boyca sabit bir vektördür: + + sabit. (4 Fakat cisim koordinatlarından bakıldığında, cismin spin hareketi yapmasından dolayı, vektörü periyodik davranır. Açısal momentum vektörü bir periyodluk tam bir dönme yaptığında cismin kendisi bir bütün olarak π kadar dönmemekte, dolayısıyla asla başlangıçtaki konumuna gelememektedir. Bu tespit ilk olarak simetrik bir topaç ( için. D. andau ve E. M. ifshitz tarfından yapılmış, fakat cismin net dönme miktarının ne olduğu hesaplanmamıştır []. Bu çalışmada, bir adım daha öteye gidilerek bahsedilen çalışmada eksik olan net dönme miktarı açık bir şekilde türetilmiştir (Bkz. Denk. (8. Bulunan bu sonuç, özette de bahsedildiği gibi robot ve uydu hareketlerinde hiç hesapta olmayan sürpriz düzeltmeler gerektirdiği için günümüzde oldukça önem kazanmış ve literatürde değişik yollarla türetilmiştir. Örneğin, daha sonraları Poinsot teoremi kullanılarak ilk defa genel bir türetme yapılmıştır []. Aynı sonuç, asal lif demetlerinde paralel taşıma teorisinin kullanılmasıyla [4] ve pdq eylem-formunun, katı cismin klasik faz uzayında Stokes teoreminin kullanılarak integre edilmesiyle doğrulanmıştır [5]. Ayrıca, Poincare-Cartan eylem formunun katı cismin üç-boyutlu faz uzayında integre edilerek aynı sonucun bulunması mümkündür [6]. Bu çalışmada ise, diğerlerinden farklı olarak. D. andau ve E. M. ifshitz in çalışmalarının devamı niteliğinde, klasik bir yaklaşımla aynı sonuç doğrulanmış ve konunun daha anlaşılabilir hale getirilmesi amaçlanmıştır. 58

3 BAÜ Fen Bil. Enst. Dergisi ( YÖNTEM VE BUGUAR.. Simetrik topacın X X koordinat sisteminde incelenmesi X Küresel bir topaç için (, kütle merkezinden geçen herhangi bir dönme ekseni doğrudan asal eylemsizlik ekseni olacağından, açısal momentum ve açısal hız vektörleri paralel kalırlar ve açısal momentum olabilecek en basit halini alır:. (5 Fakat, genel bir durum olarak, anlık dönme ekseni asal eksenlerin haricinde herhangi bir eksen olduğundan artık ve vektörleri paralel kalmayacaktır (Şekil. ψ, spin X ϕ pr x x θ ϕ X ψ x X N θ Şekil. Serbest simetrik bir topacın hareketi. Hareketin rahat takip edilebilmesi için ekseni vektörü ile çakıştırılmıştır. N doğrusu, düzlemi ile X X düzleminin X x x kesişim doğrultusu boyuncadır. θ, x ile X, ϕ, X ile N ve ψ ise N ile x arasındaki açılardır. Şekildeki gibi simetrik bir topaç dikkate alındığında cismin simetrisinden dolayı asal eksenlerinin seçilmesinde bir keyfiyet vardır. Dolayısıyla x ekseni, vektörü ile ekseninin oluşturduğu düzleme dik olarak seçilebilir. (Cisim koordinat sistemi kütle x x x merkezine sabitlendiğinden ekseninin cismin simetri ekseni ile çakışacağı aşikardır. Bu seçimin sonucu olarak, 0 olur ve doğal olarak, ve x hareket süresince hep aynı düzlemde kalırlar. açısal hız vektörü Euler açılarından gelen katkıları içerdiğinden x ve θ+ ϕ + ψ (6 59

4 BAÜ Fen Bil. Enst. Dergisi ( genel biçimi ile yazılabilir. (Bu kesimdeki hesapların ayrıntıları Ek de bulunabilir. θ açısı x ekseni ile arasındaki açı olarak tanımlandığından θ vektörü x -- üçlüsünün oluşturduğu düzleme dik kalmak zorundadır. Bu ise nın θ bileşeni olmadığı anlamına gelir. Dolayısı ile cismin dönmesinde θ ile ilgili bir değişim söz konusu değildir: θ sabit. Diğer taraftan, x ve x asal eksenlerinin seçimleri keyfi olduğundan cisim harekete ψ 0 şartı ile başlatılabilir. Bu şart altında, (6 daki diğer iki bileşen ψ + ϕ cosθ ( ϕ, (7 denklemleri ile belirlenir. (7 den ϕ sabit, dolayısıyla (8 den ψ sabit sonuçları aşikardır. ψ deki değişimin sonucu olarak cisim x ekseni etrafında düzgün bir spin hareketi yaparken aynı zamanda ϕ deki değişimin sonucu olarak da bir bütün olarak etrafında konik bir presesyon hareketi yapar. Bu tespitlerin sonucunda (6 ifadesine fiziksel bir anlam kazandırılmış olur: pr + spin, (9 burada pr, cismin etrafındaki presesyon hareketine karşı gelen açısal hız, spin ise cismin x doğrultusunda kendi ekseni etrafındaki dönmesine karşı gelen açısal hızdır. nın x üzerine izdüşümü olan sin θ (0 pr ifadesinden faydalanılırsa, ( ün yardımıyla (7 ye uygun olarak pr ϕ ( sinθ ( elde edilir. Diğer taraftan, (8 e uygun olarak cosθ spin ψ + ϕ cosθ. ( olur... Simetrik topacın x x koordinat sisteminde incelenmesi x Cisim koordinat sisteminde katı cismin hareketi, (a, (b, (c (8 60

5 BAÜ Fen Bil. Enst. Dergisi ( Euler denklemleri ile verilir []. ( diferensiyel denklem takımı katı cismin üç-boyutlu faz uzayında yazılmış denklemler olarak yorumlanabilir ve çözümü elipsoidi ile E + + (4 S ( + + (5 küresinin kesişimi olan eğri olarak verilir. Bu durumda ( denklem takımı daha yalın bir biçimde ( i, E, S i (6 (,, Jakobiyeni ile yazılabilir [7]. Denklem takımı (4 ve (5 çözümlerini aynı anda sağlamak zorunda olduğundan vektörünün ucu kesişim eğrisi üzerinde gezinir. Simetrik topaç durumunda vektörün hareket tarzı açıkça belirlenebilir: (c eşitliğinden sabit olduğu hemen görülür. Bu ise vektörünün konik bir hareket yaptığı anlamına gelir ve daha önce yapılan θ sabit tespitini doğrular. Hareketi daha açık bir şekilde belirlemek için (7 tanımlaması yapılırsa,, (8a (8b denklem takımı elde edilir. Çözümler ise, sabiti, vektörünün düzlemine izdüşümü olmak üzere cost (9a sint (9b şeklindedir. Dolayısıyla bu sonuç, x x koordinat sisteminden bakıldığında vektörünün, x boyu sabit kalacak şekilde x etrafında ψ açısal hızı ile periyodik bir hareket yaptığını gösterir. ( ifadesinden dolayı vektörü de benzer bir davranış gösterir... Simetrik topacın dönme miktarı Bu kesimde, açısal momentum vektörünün bir periyodluk dönmesi sonucu, cismin ne kadar döndüğünü belirlemek için ϕ açısının değişimi incelenecektir. vektörünün periyodu (7 bağıntısından kolaylıkla T π (0 ( 6

6 BAÜ Fen Bil. Enst. Dergisi ( olarak bulunur. ϕ açısının zaman içindeki davranışı, başlangıçtaki değeri sıfır olacak şekilde alındığında, ( denkleminden ϕ ( t t ( ile belirlenir. T süre sonunda cisim tarafından taranan açı miktarı ϕ ( T π ( ise, π den daha büyük bir değere sahip olmakta ve dolayısıyla başlangıç konumunu aşmaktadır. π yi aşan kısım doğal olarak ϕ ϕ( T π ( ile verilir. ( denklemi, (4, (4 ve ( E (4 ile verilen yardımcı eşitliğin kullanılması ile ET ϕ ( T + π (5 haline gelir. (Denk. (4 ile Denk. (7 arasındaki hesapların ayrıntıları Ek de bulunabilir. Bunun sonucu olarak ET ϕ π ( cosθ (6 olarak bulunur; burada Ω π ( cosθ, (7 vektörünün kesişim eğrisi boyunca taradığı katı açıdır. Nihayetinde, cismin net dönme miktarı ET ϕ Ω (8 ile bir kez daha doğrulanmış olur.. TARTŞMA VE SONUÇ (8 eşitliği, her ne kadar simetrik bir topaç için türetilmiş ise de, cismin simetrik olması şartından bağımsız olarak, genel bir bağıntıdır. Topacın periyodikliği açısal momentum vektörü ile tanımlandığında, net bir dönme miktarının var olup olmadığı sistemin hangi koordinat sisteminde incelendiğine bağlı kalmaktadır. Diğer taraftan, değişik bir yaklaşım olarak topacın periyodiklik tanımı açısal hız vektörü ile tanımlanırsa sistemin hareketi, uzay ve cisim konilerinin birbirleri üzerinde yuvarlanma problemine indirgenir: Bilindiği gibi, XX X koordinat sisteminde vektörü etrafında ϕ hızı ile uzay konisi denilen bir koni çizer. xx x koordinat sisteminde ise x etrafında ψ hızı ile cisim konisini çizer. İki koninin değme doğrultusunda yer alan vektörü anlık dönme eksenidir ve hareket boyunca değme doğrultusundaki yerini korur. Dolayısıyla cisim konisi 6

7 BAÜ Fen Bil. Enst. Dergisi ( uzay konisi üzerinde kaymadan yuvarlanma hareketi yapar. Cisim konisi, uzay konisi üzerinde ( ve ( den T C π (9 ( ile verilen tam bir periyodluk hareketini tamamladığında, vektörü uzay konisi üzerinde ϕ( T C π ϕ( T (0 kadarlık bir açı tarar. Bu ise cismin toplam dönme miktarıdır. İşaretlerdeki zıtlık, ve vektörlerinin birbirlerine göre zıt yönlerde dönüyor olmalarından kaynaklanır. Sonuçta mutlak değerce cismin net dönme miktarı (8 ile uyum içindedir. (8 in sağ tarafındaki birinci ve ikinci terimler sırasıyla dinamik ve geometrik faz faktörü olarak adlandırılırlar ve aslında kuantum mekaniksel bir incelemeden kaynaklanmışlardır [8]. Dinamik kısım, sabit T ve değerleri için toplam enerjinin bir fonksiyonudur ve dolayısıyla cisim döndüğü sürece varolan bir niceliktir. Geometrik kısım ise sistemde etkin olan parametre ya da parametrelerin ( ki bu örnekte açısal momentumdur parametre uzayında kapalı bir yörünge oluşturduğu zaman sistemin genel yapısındaki değişime karşı gelir. Nitekim θ 0 ile verilen, açısal momentum vektörünün cisim koordinat sisteminde bile sabit kaldığı durum için, parametre uzayında kapalı bir eğrinin oluşması mümkün değildir ve geometrik kısım ortadan kalkar. Geometrik fazlar genel olarak Berry fazı olarak adlandırılırlar ve geometrik optikten nükleer magnetik rezonansa kadar pek çok alanda gözlenmiştir. Bunların en önemlilerinden bir tanesi Ahoronov-Bohm olayıdır. Bu tür fazların klasik karşılığı genel anlamı ile Hannay açısı olarak bilinir ve katı cisim fazları Hannay açısının bir uygulamasıdır [9]. KAYNAKAR [] Goldstein, H., Poole, C. and Safko, J., Classical Mechanics, Addison-Wesley, 6, (00 [] andau,. D. and ifshitz, E. M., Mechanics, Bristol, Pergamon, (960 [] evi, M., Geometric Phases in the Motion of Rigid Bodies, Arch. Rational Mech. Anal,, -9, (99, ( Önbasım olarak 990 [4] Marsden, J. E., Montgomery, R. and Ratiu, T., Reduction, Symmetry and Berry s Phase in Mechanics, Memoirs of AMS, 46, -0, (990 [5] Montgomery, R., How Much Does the Rigid Body Rotate? A Berry s Phase from the 8th Century, Am. J. Phys., 59(5, 94-98, (990 [6] Teğmen, A., Rigid Body Phase Formula in terms of Poincare-Cartan nvariant Action Form, (Basım için hazırlanmaktadır. [7] Nambu, Y., Generalized Hamiltonian Dynamics, Phys. Rev. D, 7, 405-4, (97 [8] Berry, M. V., Quantal Phase Factors Accompanying Adiabatic Changes, Proc. R. Soc. ond. A, 9, 45-57, (984 6

8 BAÜ Fen Bil. Enst. Dergisi ( [9] Hannay, J. H., Angle Variable Holonomy in Adiabatic Excursion of an ntegrable Hamiltonian, J. Phys. A, 8, -0, (985 Ek: Kesim.. için hesap ayrıntıları nın x xx cisim koordinat sistemindeki ifadesi x + x + x (Ek- ile verilirken sistemindeki eşdeğeri NX x θ+ ϕ+ ψ θ N + ϕ X + ψ x (Ek- olacaktır. nın bileşenlerinin xx x sisteminde Euler açıları cinsinden ayrışımı ise aşağıdaki gibidir. θ θ N θ x + θ x + θ x θ cosψ x θ sinψ x, (Ek-a ϕ ϕ X ϕ x + ϕ x + ϕ x ϕ sinθ cos(90 ψ x + ϕ sinθ cosψ x + ϕ cosθ x, (Ek-b ϕ x ψ x ψ, (Ek-c burada ϕ sinθ, nın x düzlemine olan izdüşümüdür. Bu durumda Denk. (Ek- ( θ cosψ + ϕ sinθ sinψ x + ( ϕ sinθ cosψ θ sinψ x + ( ψ + ϕ cosθ x (Ek-4 olurken, bu ifade ψ 0 şartı altında θ, ϕ sinθ, ψ + ϕ cosθ (Ek-5 halini alır. 0 olduğu hatırlanırsa xx x sisteminde x + x + x ile verilen açısal momentum vektörünün bileşenleri 0, (Ek-6a ( ϕ sinθ sinθ, (Ek-6b ( ψ + ϕ cosθ (Ek-6c 64

9 BAÜ Fen Bil. Enst. Dergisi ( olur. Diğer taraftan ϕ ϕ X pr ve ψ ψ x spin tanımlamaları yapılırsa (Ek- denklemi (9 denklemine dönüşür. Ek: Kesim.. için hesap ayrıntıları Denk. (4 ile verilen enerji ifadesi simetrik topaç ( için E + + (Ek- şeklinde yeniden düzenlenebilir. (4 denkleminden elde edilen önceki denklemde değerlendirilirse ( E bağıntısı elde edilir. Bu ifadenin periyod ifadesi için yeni bir eşitlik verir: + (Ek- ( E ifadesi bir şeklindeki eşdeğeri (0 deki T π. (Ek- ( E ET Son ifadenin T + π şeklindeki eşdeğeri ( ile beraber değerlendirildiğinde ET ϕ ( T T + π (Ek-4 ile verilen (5 denklemi elde edilmiş olur. Diğer taraftan katı açı tanımını, (4 ile verilen sabit yarıçaplı küreye, da sinθdθdϕ yüzey elemanı olmak üzere Ω dω da (Ek-5 şeklinde uyarlarsak sabit θ için Ω geometrik faz katkısı bulunur. θ 0 π sinθdθ dϕ π ( cosθ 0 (Ek-6 65

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ 1.1. FİZİKTE ÖLÇME VE BİRİMLERİN ÖNEMİ... 2 1.2. BİRİMLER VE BİRİM SİSTEMLERİ... 2 1.3. TEMEL BİRİMLERİN TANIMLARI... 3 1.3.1. Uzunluğun

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

Dinamik. Fatih ALİBEYOĞLU -10-

Dinamik. Fatih ALİBEYOĞLU -10- 1 Dinamik Fatih ALİBEYOĞLU -10- Giriş & Hareketler 2 Rijit cismi oluşturan çeşitli parçacıkların zaman, konum, hız ve ivmeleri arasında olan ilişkiler incelenecektir. Rijit Cisimlerin hareketleri Ötelenme(Doğrusal,

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ DİNMİK DERS NOTLRI Kaynaklar: Engineering Mechanics: Dynamics,, SI Version, 6th Edition, J. L. Meriam,, L. G. Kraige Vector Mechanics for Engineers: : Dynamics, Sith Edition, Beer and Johnston Doç.Dr.

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

elde ederiz. Bu son ifade yeniden düzenlenirse,

elde ederiz. Bu son ifade yeniden düzenlenirse, Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar Kısa İçindekiler Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: 22-34 Bölümleri kapsar Bölüm 1 Temeller 1 Bölüm 2 Bir Boyutta Hareket 28 Bölüm 3 İvme 53 Bölüm 4 Momentum 75 Bölüm 5 Enerji 101

Detaylı

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2.

LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA. (YGS ve LYS na) HAZIRLIK İÇİN. Örnek çözümlü. Deneme sınavlı GEOMETRİ-2. LİSE ÖĞRENCİLERİNE OKULLARDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS na) HAZIRLIK İÇİN Konu anlatımlı Örnek çözümlü Test çözümlü Test sorulu Deneme sınavlı GEOMETRİ-2 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

BÖLÜM 17 RİJİT ROTOR

BÖLÜM 17 RİJİT ROTOR BÖLÜM 17 RİJİT ROTOR Birbirinden R sabit mesafede bulunan iki parçacığın dönmesini düşünelim. Bu iki parçacık, bir elektron ve proton (bu durumda bir hidrojen atomunu ele alıyoruz) veya iki çekirdek (bu

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı 13 Ocak 2011 Hazırlayan: Yamaç Pehlivan Başlama saati: 13:00 Bitiş Saati: 14:20 Toplam Süre: 80 Dakika Lütfen adınızı ve

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre

Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Jeodezi 7 1 Elipsoid Üçgenlerinin Hesaplanması Yedek Hesap Yüzeyi olarak Küre Elipsoid yüzeyinin küçük parçalarında oluşan küçük üçgenlerin (kenarları 50-60 km den küçük) hesaplanmasında klasik jeodezide

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz.

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER. Yatay bir düzlem yüzeye gelen hidrostatik kuvvetin büyüklüğünü ve etkime noktasını bulmak istiyoruz. BTMIŞ YÜZEYLERE ELEN HİDROSTTİK KUVVETLER DÜZLEM YÜZEYLER Yata Yüeler Sıvı üei Yata bir dülem üee gelen idrostatik kuvvetin büüklüğünü ve etkime noktasını bulmak istioru. d d Kuvvetin Büüklüğü :Şekil deki

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Gerçek Zamanlı kuzey Gerçek Zamanlı g

Gerçek Zamanlı kuzey Gerçek Zamanlı g Gerçek Zamanlı kuzey Gerçek Zamanlı g Özet Ahmet Yalçın - Ankara 007 XYZ : xyz : r(t) : Uzayda sabit referans koordinat sistemi, XYZ ye göre dönen koordinat sistemi xyz koordinat sistemi içindeki noktasal

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s

r r s r i (1) = [x(t s ) x(t i )]î + [y(t s ) y(t i )]ĵ. (2) r s Bölüm 4: İki-Boyutta Hareket(Özet) Bir-boyutta harekeçin geliştirilen tüm kavramlar iki-boyutta harekeçin genelleştirilebilir. Bunun için hareketli cismin(parçacığın) yer değiştirme vektörü xy-düzleminde

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

EKVATORAL KOORDİNAT SİSTEMİ

EKVATORAL KOORDİNAT SİSTEMİ EKVATORAL KOORDİNAT SİSTEMİ Dünya nın yüzeyi üzerindeki bir noktayı belirlemek için enlem ve boylam sistemini kullanıyoruz. Gök küresi üzerinde de Dünya nın kutuplarına ve ekvatoruna dayandırılan ekvatoral

Detaylı

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ 1 BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ ROTORLARDA STATİK VE DİNAMİKDENGE (BALANS) DENEYİ 1. AMAÇ... 2 2. GİRİŞ... 2 3. TEORİ... 3 4. DENEY TESİSATI... 4 5. DENEYİN YAPILIŞI... 7 6.

Detaylı

Şekil 6.1 Basit sarkaç

Şekil 6.1 Basit sarkaç Deney No : M5 Deney Adı : BASİT SARKAÇ Deneyin Amacı yer çekimi ivmesinin belirlenmesi Teorik Bilgi : Sabit bir noktadan iple sarkıtılan bir cisim basit sarkaç olarak isimlendirilir. : Basit sarkaçta uzunluk

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Bilgisayar Grafikleri

Bilgisayar Grafikleri Bilgisayar Grafikleri Konular: Cismin Tanımlanması Bilindiği gibi iki boyutta noktalar x ve y olmak üzere iki boyutun koordinatları şeklinde ifade edilirler. Üç boyutta da üçüncü boyut olan z ekseni üçücü

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ

DİNAMİK. Ders_10. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ DİNAMİK Ders_10 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2016-2017 GÜZ KÜTLE ATALET MOMENTİ Bugünün Hedefleri: 1. Rijit bir cismin

Detaylı

3.5. KOLLEKTİF MODEL 3.5.1. DEFORME ÇEKİRDEKLERDE ROTASYONEL HAREKET

3.5. KOLLEKTİF MODEL 3.5.1. DEFORME ÇEKİRDEKLERDE ROTASYONEL HAREKET .HAFTA.5. KOLLEKTİF MODEL.5.. DEFOME ÇEKİDEKLEDE OTASYONEL HAEKET N ve Z sayıları nadir toprak elementler ve aktinit çekirdeklerde olduğu gibi sihirli sayılardan uzaklaştıklarında küresel kabuk modeli

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir Soru 1: Şekil-1 de görülen düzlem gerilme hali için: a) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir eden gerilme bileşenlerini, gerilme dönüşüm denklemlerini kullanarak

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

BÖLÜM 1 Uçak Dinamiğine Giriş. Hazırlayan: Ozan ÖZTÜRK

BÖLÜM 1 Uçak Dinamiğine Giriş. Hazırlayan: Ozan ÖZTÜRK BÖLÜM 1 Uçak Dinamiğine Giriş Hazırlayan: Ozan ÖZTÜRK Dev Makineler Bir Uçağın Tasarım Bileşenleri Uçak Ne Demek Uçak veya tayyare, hava akımının kanatların altında basınç oluşturması yardımıyla havada

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

AccTR Virtual Institute of Accelerator Physics. The Physics of Particle Accelerators An Introduction. Chapter : 3.12, 3.13

AccTR Virtual Institute of Accelerator Physics. The Physics of Particle Accelerators An Introduction. Chapter : 3.12, 3.13 AccTR Virtual Institute of Accelerator Physics http://www.cern.ch/acctr The Physics of Particle Accelerators An Introduction Klaus Wille Chapter : 3.12, 3.13 By Betül YASATEKİN 1.10.2012, Ankara 1 İçindekiler

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI

BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI tasarım BELĐRLĐ BĐR SIKMA KUVVETĐ ETKĐSĐNDE BĐSĐKLET FREN KOLU KUVVET ANALĐZĐNĐN YAPILMASI Nihat GEMALMAYAN, Hüseyin ĐNCEÇAM Gazi Üniversitesi, Makina Mühendisliği Bölümü GĐRĐŞ Đlk bisikletlerde fren sistemi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LİSELERARASI ORTAK DENEME SINAVI

LİSELERARASI ORTAK DENEME SINAVI LİSELERARASI ORTAK DENEME SINAVI SINAV KURALLARI 1-) Sınavın süresi 5 saattir. Sağlıklı ve adil sonuçların elde edilebilmesi için süre kuralına özen gösterilmesi önemle rica olunur. 2-) Sınava katılan

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

RÖLATİF HAREKET ANALİZİ: İVME

RÖLATİF HAREKET ANALİZİ: İVME RÖLATİF HAREKET ANALİZİ: İVME AMAÇLAR: 1. Rijit bir cisim üzerindeki noktanın ivmesini ötelenme ve dönme birleşenlerine ayırmak, 2. Rijit cisim üzerindeki bir noktanın ivmesini rölatif ivme analizi ile

Detaylı

A B = A. = P q c A( X(t))

A B = A. = P q c A( X(t)) Ders 19 Metindeki ilgili bölümler 2.6 Elektromanyetik bir alanda yüklü parçacık Şimdi, kuantum mekaniğinin son derece önemli başka bir örneğine geçiyoruz. Verilen bir elektromanyetik alanda hareket eden

Detaylı

Fizik 101: Ders 3 Ajanda

Fizik 101: Ders 3 Ajanda Anlamlı Saılar Fizik 101: Ders 3 Ajanda Tekrar: Vektörler, 2 ve 3D düzgün doğrusal hareket Rölatif hareket ve gözlem çerçeveleri Düzgün dairesel hareket Vektörler (tekrar) Vektör (Türkçe) ; Vektör (Almanca)

Detaylı

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler İÇİNDEKİLER Kuadratik Yüeler Uada İkinci Dereceden Yüeler 1 0.1. Elipsoid 2 0.2. Hiperboloid 4 0.2.1. Tek Kanatlı Hiperboloid 4 0.2.2. Çift Kanatlı Hiperboloid 4 0.3. Paraboloid 5 0.3.1. Eliptik Paraboloid

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

13. ÜNİTE KUVVET VE VEKTÖRLER

13. ÜNİTE KUVVET VE VEKTÖRLER 13. ÜNİTE KUVVET VE VEKTÖRLER KONULAR 1. VEKTÖR 2. Skaler Büyüklükler 3. Vektörel Büyüklükler 4. Vektörün Yönü 5. Vektörün Doğrultusu 6. Bir Vektörün Negatifi 7. Vektörlerin Toplanması 8. Uç Uca Ekleme

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS . Sayı Mayıs 6 A COMMTATIVE MLTIPLICATION OF DAL NMBER TRIPLETS L.KLA * & Y.YAYLI * *Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü 6 Tandoğan-Ankara, Türkiye ABSTRACT Pfaff [] using quaternion product

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Maden Mühendisliği Bölümü MDM 240 Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.) K.T.Ü Makine Müh. Bölümü, Oda No:

Detaylı

2 SABİT HIZLI DOĞRUSAL HAREKET

2 SABİT HIZLI DOĞRUSAL HAREKET 2 SABİT HIZLI DOĞRUSAL HAREKET Bu deneyin amacı, hava masası deney düzeneği kullanarak, hiç bir net kuvvetin etkisi altında olmaksızın hareket eden bir cismin düz bir çizgi üzerinde ve sabit hızla hareket

Detaylı

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Fizik 101: Ders 6 Ajanda Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Özet Dinamik. Newton un 3. yasası Serbest cisim diyagramları Problem çözmek için sahip olduğumuz gereçler:

Detaylı

Fizik 101: Ders 4 Ajanda

Fizik 101: Ders 4 Ajanda Fizik 101: Ders 4 Ajanda Tekrar ve devam: Düzgün Dairesel Hareket Newton un hareket yasaları Cisimler neden ve nasıl hareket ederler? Düzgün Dairesel Hareket Ne demektir? Nasıl tanımlarız? Düzgün Dairesel

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar

Manyetizma. Manyetik alan çizgileri, çizim. Manyetik malzeme türleri. Manyetik alanlar. BÖLÜM 29 Manyetik alanlar ÖLÜM 29 Manyetik alanlar Manyetik alan Akım taşıyan bir iletkene etkiyen manyetik kuvvet Düzgün bir manyetik alan içerisindeki akım ilmeğine etkiyen tork Yüklü bir parçacığın düzgün bir manyetik alan içerisindeki

Detaylı

BÖLÜM Turbomakinaların Temelleri:

BÖLÜM Turbomakinaların Temelleri: 1 BÖLÜM 2 2.1. Turbomakinaların Temelleri: Yenilenebilir ve alternatif enerji kaynaklarının iki önemli kategorisi rüzgar ve hidroelektrik enerjidir. Fosil yakıtların bilinenin dışındaki alternatif uygulamalarından

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DÜZLEMSEL HOMOTETİK HAREKETLER ALTINDA KAPALI YÖRÜNGE EĞRİSİNİN KUTUPSAL ATALET MOMENTİ İÇİN HOLDITCH-TİPİ TEOREMLER MUTLU AKAR DOKTORA TEZİ MATEMATİK

Detaylı

Karadeniz Teknik Üniversitesi

Karadeniz Teknik Üniversitesi Karadeniz Teknik Üniversitesi MHN 243 Sürmene Deniz Bilimleri Fakültesi Gemi İnşaatı ve Gemi Makineleri Mühendisliği Bölümü, Dinamik Dersi 2013-2014 Güz Yarıyılı Dersi Veren: Ömer Necati Cora (Yrd.Doç.Dr.)

Detaylı