Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Trace ve Kellogg Yöntemleri Kullanılarak İntegral Operatörlerinin Özdeğerlerinin Nümerik Hesabı"

Transkript

1 Trce ve Kellogg Yöemleri Kullılrk İegrl Operörlerii Özdeğerlerii Nümerik Hesı Erk Tşdemir () ; Yüksel Soyk () ; Melih Göce (3) (¹)Kırklreli Üiversiesi, Kırklreli, Türkiye, (²)Büle Ecevi Üiversiesi, Zoguldk, Türkiye, (³)Büle Ecevi Üiversiesi, Zoguldk, Türkiye, Öze Bu çlışmd, Trce ve Kellogg yklşım yöemleri kullılrk elirli rsyoel çekirdekli iegrl operörlerii özdeğerleri hesplmışır. Ahr Kelimeler: Özdeğer, İegrl Operör, Özdeğer Yklşımlrı. Kyklr [] M. Krsov, A. Kiselev d G. Mkreko, Prolems d Exercises i Iegrl Equio, Mir Pulisher, Mosco, 97. [] P.K. Kyhe, P. Puri, Compuiol Mehods for Lier Iegrl Equios, Birkhuser, Boso, 00. [3] M.A. Al As, Iegrl Operors ih Riol Kerels, PhD Thesis, Uiversiy of Mcheser, 997. [4] M. Göce, Rsyoel Çekirdekli İegrl Operörler, Dokor Tezi, Zoguldk Krelms Üiversiesi, 00. [5] E. Tşdemir, Poziif iegrl Operörler, Yüksekliss Tezi, Zoguldk Krelms Üiversiesi, 0.

2 . Giriş Equio Secio (Nex) Bu kısımd çlışm oyuc kullılck kvrmlr ve osyolr kısc verilmişir. Burd suul ilgiler Tşdemir (0), Göce (00), Kyhe d Puri (00) ve As (997) kyklrı kullılrk hzırlmışır. Tım.. V ir vekör uzyı ve deklemi sıfırd frklı ir x V Tım. içide ir kredir. İle ir k g :, T L V T x olsu. Bir x skleri içi, çözümüe shipse y T i ir özdeğeri deir., s, : s,,, :, kümesi ölçüleilir ir foksiyo olsu. Şimdi, herhgi ir g s f d f düzlemi L, içi (.) foksiyou ımlylım. g foksiyou ilie ve f de ilimeye olrk kul edilirse o zm (.) formudki dekleme irici ipe Fredholm iegrl deklemi dı verilir. Burd k y deklemi çekirdeği deir. Bu, lieer ir operörü sıfır uzyıı gösermek içi kullıl çekirdek erimii frklı ir kullımıdır. İle ımlı K L L :,, Kf s f d (.) operörüe ir (k çekirdekli y d k çekirdeğii üreiği) Fredholm iegrl operörü vey kısc ir iegrl operör dı verilir. Tım.3 Bir H Hiler uzyı üzeride herhgi ir kompk T operörü içi, ) T i poziif özdeğerleri T T T 3 Azl sırlmsı içide klılıklrı ekrr emek üzere T özdeğerlerii r sırlmsı içide klılıklrı ekrr emek üzere ile göserilir ve T i egif T ile göserilir. ) T i poziif özdeğerlerii syısıı ve egif özdeğerlerii syısıı sırsıyl N T N T ile gösereceğiz. Uyrı.4 Bu çlışmd s cs ve formudki çekirdekleri özel ir hli ol c şrıı sğly çekirdekler iceleecekir. Bu durum As (997) ve Göce (00) rfıd rşırılmış olup poziif özdeğer syısıı N K N K 0 olduğu espi edilmişir. ve egif özdeğer syısıı

3 . Kellogg YöemiEquio Secio (Nex) Bu yöem ile ilgili ilgilere Krsov (97) kyğıd ulşılilir. çekirdeği poziif ımlı simerik ir çekirdek ve foksiyo olsu., s k s d, s k s d, s k s d s, L, içide keyfi ir (.) ile ımlı s K,,,3,... foksiyolr dizisi ve (.) ile elirlee syı dizisi ele lımkdır. çekirdeğii orogol özfoksiyolrı ile orogol olsu fk k özdeğeri olckır. Bu kdirde, olsu. Bulrı yı sır k s s s s,, foksiyolrı, ve ulr krşılık gele özdeğerler s, s,, k s foksiyolrı foksiyou ile orogol olmsı. Bu durumd (.) dizisii limii foksiyo dizisi ykısyckır. k özdeğeri ile eşlee özfoksiyolrı lieer komisyou ol ir foksiyo (.3), 0 dizisi de (.) dizisii ykısdığı foksiyo ykısyckır. ise e küçük özdeğeri vere iki yrı formül uluilir: (.4) Ve

4 (.5) (.4) formülü i değerii olduğud dh üyük olrk verir. çekirdeği poziif ımlı değil ise (.4) ve (.5) formülleri verile çekirdeği özdeğerii e küçük olıı mulk değerii verir. Bu yöem, sdece özdeğerii yklşık değerii ulmk içi ypıl e iyi yklşımdır... Örek Poziif ımlı simerik çekirdek Bu hesplylım. şğıd verilmişir. 5 5 s 9s (.6) çekirdeğie krşılık gele iegrl operörü özdeğerii Kellogg Yöemi ile yklşık olrk Çözüm. s s lıdığıd (.) de verile foksiyolr dizisi 3 5log s d 5 5 s 9s 9 5 3s 35log 3 5log s d 5 5 s 9s s 35log 3 5log 3 s d 5 5 s 9s s olrk elde edilir. Burd, s uluur ve özdeğer yklşık olrk 3 5log 8 5 3s s 35log ds 8 5 3s 35log log log hesplır.

5 .. Örek Poziif ımlı simerik çekirdek Bu hesplylım. şğıd verilmişir s s (.7) çekirdeğie krşılık gele iegrl operörü özdeğerii Kellogg Yöemi ile yklşık olrk Çözüm. s s lıdığıd (.) de verile foksiyolr dizisi 5 6log 7 s d 36 6 s s 6 s 5 5 6log 6log 7 7 s d 36 6 s s s 5 5 6log 4 6log s d 36 6 s s s olrk elde edilir. Burd, uluur ve özdeğer yklşık olrk s 5 6log s 5 s 6log ds s 5 6log log log hesplır.

6 3. Trce YöemiEquio Secio (Nex) Bu yöem ile ilgili ilgilere Krsov (97) kyğıd ulşılilir. k m s, ile m. rdışık çekirdek göserilmek üzere Am km s, d syısı çekirdeğii m. izi dı verilir ve m m K d, s dir. A A m m (3.) Formülü e küçük krkerisik syı ol formülü i değerii olduğud dh üyük olrk verir. ve m i yeerice üyük değerleri içi geçerlidir. (3.) Simerik çekirdekler içi çif mereede izler şğıdki formüller yrdımıyl hesplır. s m m, m, A k s dsd k s dds (3.) 3.. Örek Poziif ımlı simerik çekirdek Bu hesplylım. şğıd verilmişir. 5 5 s 9s (3.3) çekirdeğie krşılık gele iegrl operörü özdeğerii Trce Yöemi ile yklşık olrk Çözüm. (3.3) ile verile çekirdeği simerik olduğud,,,, k s k s z k z dz dz 5 5 s z 9sz 5 5 z 9z s eşiliği elde edilir. (3.) deklemide m= ve m= lıdığıd,

7 A k s, dsd dsd 5 5 s 9s 64 A k s 4, dsd s5 3 dsd 4096 değerleri uluur. Bu değerler, özdeğeri ulmk içi (3.) de yerie yzıldığıd, r özdeğer yklşık olrk olduğu görülür. 3.. Örek Poziif ımlı simerik çekirdek Bu hesplylım. A m Am şğıd verilmişir s s (3.4) çekirdeğie krşılık gele iegrl operörü özdeğerii Trce Yöemi ile yklşık olrk Çözüm. (3.4) ile verile çekirdeği simerik olduğud,,,, k s k s z k z dz dz 36 6 s z sz 36 6 z z s eşiliği elde edilir. (3.) deklemide m= ve m= lıdığıd, 4 A k s, dsd dsd 36 6 s s 5 6 A4 k s, dsd dsd 35 6 s değerleri uluur. Bu değerler, özdeğeri ulmk içi (3.) de yerie yzıldığıd, r özdeğer yklşık olrk

8 A m Am olduğu görülür. 4. Souç Bu çlışmd Trce ve Kellogg yklşım yöemleri kullılrk Ve 5 5 s 9s 36 6 s s rsyoel çekirdeklerie krşılık gele özdeğerler yklşık olrk ümerik içimde hespldı. Elde edile özdeğerler şğıd lo olrk verilmişir. 5 5 s 9s 36 6 s s Trce Yöemi ile ulu özdeğerler 8 35 Kellogg Yöemi ile ulu özdeğerler 8 simerik çekirdeklerie krşılık gele özdeğerler losu. Souç olrk gerek Trce Yöemi ile ulu gerekse Kellogg Yöemi ile yklşık olrk ulu özdeğerler ümerik olrk eşiir Kyklr [] M. Krsov, A. Kiselev d G. Mkreko, Prolems d Exercises i Iegrl Equio, Mir Pulisher, Mosco, 97. [] P.K. Kyhe, P. Puri, Compuiol Mehods for Lier Iegrl Equios, Birkhuser, Boso, 00. [3] M.A. Al As, Iegrl Operors ih Riol Kerels, PhD Thesis, Uiversiy of Mcheser, 997. [4] M. Göce, Rsyoel Çekirdekli İegrl Operörler, Dokor Tezi, Zoguldk Krelms Üiversiesi, 00. [5] E. Tşdemir, Poziif iegrl Operörler, Yüksekliss Tezi, Zoguldk Krelms Üiversiesi, 0.

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi

DERS 4. Determinantlar, Leontief Girdi - Çıktı Analizi DERS Determitlr eotief Girdi - Çıktı lizi.. ir Kre Mtrisi Determitı. Determit kvrmıı tümevrıml tımlycğız. mtrisleri determitıı tımlyrk şlylım. Tım. tımlır. mtrisiidetermitı olrk Örek. mtrisii determitı

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva 1 BÖLÜM 1 KÜMELER VE SAYILAR 1.1 KÜMELER 1.1.1. TEMEL TANIMLAR Kesi ir tımı ypılmmkl erer,sezgisel olrk,kümeye iyi tımlmış iri iride frklı eseler topluluğudur diyeiliriz. Kümeyi meyd getire eselere kümei

Detaylı

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade

a bir reel (gerçel) sayı ve n bir pozitif tam sayı olsun. 1 dir. n a ye üslü ifade ÜSLÜ İFADELER A. Tı bir reel (gerçel syı ve bir pozitif t syı olsu.... te olck şekilde, te ı çrpıı ol deir. ye üslü ifde Kurl. sıfırd frklı bir reel syı olk üzere,. 0 0 0 ifdesi tısızdır.. ( R... 0 7..

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme:

MATEMATİK CANAVARI MATEMATİK FORMÜLLERİ. Devirli Ondalık Sayıyı Rasyonel Sayıya Çevirme: Ardışık Syılr Toplm Formülleri Ardışık syılrı toplmı: 1 + + 3 +...+ =.(+1) Ardışık çift syılrı toplmı : + 4 + 6 +... + =.(+1) Ardışık tek syılrı toplmı: 1 + 3 + 5 +... + ( 1) =.= Ardışık tm kre syılrı

Detaylı

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1

YILLAR ÖSS-YGS ) a 0 ve b 0 olmak üzere; 8) Üslü Denklemler: a -1, a 0, a 1 YILLAR 00 00 00 00 00 00 008 009 00 0 ÖSS-YGS Böle: i,( 0 ÜSLÜ İFADELER R ve Z olk üzere te ı çrpıı deir. ii, (b 0 b b... te Not:.... dır. te... 0 ve... 0. 0 te 0 te ÜSLÜ ÇOKLUKLARLA İLGİLİ ÖZELLİKLER

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

Nümerik Analiz A A -1 =I. Bilgisayar Destekli. Ders notları TERS MATRİS HESABI GAUSS-JORDAN tekniği. m=n

Nümerik Analiz A A -1 =I. Bilgisayar Destekli. Ders notları TERS MATRİS HESABI GAUSS-JORDAN tekniği. m=n ESKİŞEHİR OSMNGZİ ÜNİVERSİESİ Mühedislik Mimrlık Fkültesi İşt Mühedisliği Bölümü EPost: ogu hmettopcu@gmilcom We: http://mmfoguedutr/topcu Bilgisyr Destekli Nümerik liz Ders otlrı hmet OPÇU m Kre mtrisi

Detaylı

ÜNİTE - 7 POLİNOMLAR

ÜNİTE - 7 POLİNOMLAR ÜNİTE - 7 BÖLÜM Polinomlr (Temel Kvrmlr) -. p() = 3 + n 6 ifdesi bir polinom belirttiğine göre n en z 5. p( + ) = + 4 + Test - olduğun göre, p() polinomunun ktsyılr toplmı p() polinomund terimlerin kuvvetleri

Detaylı

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü

ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Fırat Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Fırt Üiversitesi Mühedislik Fkültesi Elektrik - Elektroik Mühedisliği Bölümü ENERJİ İLETİMİ DERSİ (DERS NOTLARI) Hzırly: Arş. Gör. Göky BAYRAK ELAZIĞ-008 İletim Htlrıı Elektriksel Ypısı ) Sürekli Durum:Nomil

Detaylı

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ

DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ C.Ü. İktisdi ve İdri Bilimler Dergisi, Cilt 5, Syı 5 DOĞRUSAL PROGRAMLAMA PROBLEMLERİNİN EXCEL İLE ÇÖZÜMÜ Öğr. Gör. Dr. Mehmet Ali ALAN Cumhuriyet Üiversitesi İktisdi ve İdri Bilimler Fkültesi Öğr. Gör.

Detaylı

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER

TEOG. Tam Sayılar ve Mutlak Değer ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK TAMSAYILAR MUTLAK DEĞER TEOG Tm Syılr ve Mutlk Değer TAMSAYILAR Eksi sonsuzdn gelip, rtı sonsuz giden syılr tm syılr denir ve tm syılr kümesi Z ile gösterilir. Z = {...,,, 1,0,1,,,... } Tmsyılr kümesi ikiye yrılır: ) Negtif Tmsyılr:

Detaylı

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ

2. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ DERS: MATEMATİK II MAT II () ÜNİTE: BELİRLİ İNTEGRALLER KONU:. ARALIKLARIN PARÇALANMASI. BELİRLİ İNTEGRALİN TANIMI ve TEMEL ÖZELLİKLERİ GEREKLİ ÖN BİLGİLER. semolü ve temel toplm ormülleri. Limiti temel

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7.

0;09 0;00018. 5 3 + 3 2 : 1 3 + 2 3 4 5 1 2 işleminin sonucu kaçtır? A) 136 87 0;36 0;09. 10. a = 0,39 b = 9,9 c = 1,8 d = 3,7. MC. + + +.. Rsyonel Syılr TEST I sonsuz kesrinin eşiti kçtır? A) B) C) D) E) 4 www.mtemtikclu.com, 006 Ceir Notlrı. 8. Gökhn DEMĐR, gdemir@yhoo.com.tr 0;0 0;0008 = 0; x ise x kçtır? A) 0,0 B) 0,000 C)

Detaylı

KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI. Fatma İÇER

KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI. Fatma İÇER T.C. DİCLE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KLASİK LEBESGUE UZAYLARINDA HARDY OPERATÖRÜNÜN SINIRLILIĞI Ftm İÇER YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI DİYARBAKIR Hzir 203 TEŞEKKÜR Çlışmmı her

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ Geel olrk 4 tp yötem kullılır.. Düz çzg yötem: Mlı değer zml doğrusl olrk zldığı vrsyılır. Mlı hzmet ömrü boyuc her yıl ç yı mktr mortsm olrk yrılır. V V d = S d:

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21.

DRC. 4. Sekiz basamaklı herhangi bir özel sayı x = abcdefgh olsun. Deneme - 2 / Mat. c m. m m. y Cevap A. Cevap D 21, 25, = = =. 21. Deneme - / Mt MATMATİK DNMSİ. - + -. 0,.., f -, 0, p. 0,. c- m.,,. ^- h.. 7. ^- h 7 - ulunur. +. c m olur.. + + ulunur. ( ) c m + c m. cc m m. c m.. ulunur. evp evp. Sekiz smklı herhngi ir özel syı cdefgh

Detaylı

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı,

TEST. Rasyonel Sayılar. 1. Aşağıdaki bilgilerden hangisi yanlıştır? 2. Aşağıda verilen, 3. Aşağıdaki sayılardan hangisi hem tam sayı, Rsyonel Syılr. Sınıf Mtemtik Soru Bnksı TEST. Aşğıdki bilgilerden hngisi ynlıştır? A) Rsyonel syılr Q sembolü ile gösterilir. B) Her tm syı bir rsyonel syıdır. şeklinde yzıln bütün syılr rsyoneldir. b

Detaylı

TG 15 ÖABT ORTAÖĞRETİM MATEMATİK

TG 15 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 5 ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hkkı sklıdır. Hgi mçl olurs olsu, testleri tmmıı vey ir kısmıı

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

ANKARA ÜN IVERS ITES I FEN B IL IMLER I ENST ITÜSÜ YÜKSEK L ISANS TEZ I. Asl LÜLEC I MATEMAT IK ANAB IL IM DALI ANKARA 2011.

ANKARA ÜN IVERS ITES I FEN B IL IMLER I ENST ITÜSÜ YÜKSEK L ISANS TEZ I. Asl LÜLEC I MATEMAT IK ANAB IL IM DALI ANKARA 2011. ANKARA ÜN IVERS ITES I FEN B IL IMLER I ENST ITÜSÜ YÜKSEK L ISANS TEZ I KES IRL I BASAMAKTAN BAZI D IFERENS IYEL DENKLEM MODELLER I Asl LÜLEC I MATEMAT IK ANAB IL IM DALI ANKARA 2 Her hkk skl d r TEZ ONAYI

Detaylı

ELM207 Analog Elektronik

ELM207 Analog Elektronik ELM7 Alog Elkroik Giriş Bir Fourir srisi priyodik bir ) oksiyouu, kosiüs v siüslri sosuz oplmı biçimid bir çılımdır. ) cos b si ) Bşk dyişl, hrhgi bir priyodik oksiyo sbi bir dğr, kosiüs v siüs oksiyolrıı

Detaylı

AYARLANABİLİR HIZLI SÜRÜCÜLERİN ŞEBEKE ARAYÜZLERİ İÇİN 30 DARBELİ BİR DOĞRULTUCU TASARIMI

AYARLANABİLİR HIZLI SÜRÜCÜLERİN ŞEBEKE ARAYÜZLERİ İÇİN 30 DARBELİ BİR DOĞRULTUCU TASARIMI Gzi Üiv. Müh. Mim. Fk. Der. J. F. Eg. Arh. Gzi Uiv. Cil 4, No 4, 7-8, 9 ol 4, No 4, 7-8, 9 AYARLANABİLİR HZL SÜRÜCÜLERİN ŞEBEKE ARAYÜZLERİ İÇİN 3 DARBELİ BİR DOĞRULTUCU TASARM İrhim SEFA ve Nemi ALTN Elekrik

Detaylı

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24.

DENKLEM ÇÖZME DENKLEM ÇÖZME. Birinci dereceden İki bilinmeyenli. 2x 2 + 5x + 2 = 0. 3x x 2 + 1 = 0. 5x + 3 = 0. x + 17 = 24. DENKLEM ÇÖZME + + = 0 + = 0 + = 0 + y = 0 İkinci dereceden ir ilinmeyenli denklemdir. İkinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden ir ilinmeyenli denklemdir. Birinci dereceden İki ilinmeyenli

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ]

MATRİSLER. r r r A = v v v 3. BÖLÜM. a a L a. v r. a = M a. Matris L L L L. elemanları a ( i = 1,2,..., m ; j = 1,2,... n) cinsinden kısaca A = [ ] 3. BÖLÜM 2 v r = M m v r 2 2 = 22 M m2 v r n n 2n = M mn MTRİSLER gibi n tne vektörün oluşturduğu, r r r = v v v [ L ] 2 n şeklindeki sırlnışın mtris denir. 2 nlitik Geometriden Biliyoruz ki : Mtris 2

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

"DEMOKRATİK KATILIM PLATFORMU" TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ

DEMOKRATİK KATILIM PLATFORMU TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ "DEMOKRATİK KATILIM PLATFORMU" TARAFINDAN 49. TÜRKİYE JEOLOJİ KURULTAYI SIRASINDA YAPILMIŞ OLAN ANKETİN SONUÇLARI VE DEĞERLENDİRMESİ "DEMOKRATİK KATILIM PLATFORMU" trfındn 49, Türkiye Jeoloji Kurultyı

Detaylı

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ

3. BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ . BÖLÜM: ÜSLÜ İFADE VE DENKLEMLER KONU ÖZETİ A. ÜSLÜ İFADELER 6.,, c R olmk üzere. Üslü İfdeler. +. c. = ( + c) dir. Bir syıı kedisi ile tekrrlı çrpımı o syıı kuvvetii lm y d üssüü lm deir. R ve Z + olmk

Detaylı

T.C. NİĞDE ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. NİĞDE ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ MATEMATİK ANABİLİM DALI NİĞDE ÜNİVERSİTESİ YÜKSEK LİSANS TEZİ A M GEÇGEL, 03 FEN BİLİMLER ENSTİTÜSÜ TC NİĞDE ÜNİVERSİTESİ FEN BİLİMLER ENSTİTÜSÜ MATEMATİK ANABİLİM DALI SÜREKLİ GECİKMELİ YÜKSEK MERTEBEDEN NÖTRAL DİFERANSİYEL

Detaylı

ABSOLUTE HAUSDORFF SUMMABILITY OF THE FOURIER SERIES

ABSOLUTE HAUSDORFF SUMMABILITY OF THE FOURIER SERIES Fourier Serilerii Mul Husdor Toplbilmesi C.B.Ü. Fe Bilimleri ergisi ISSN 35-385 C.B.U. Jourl o Sciece 7. ( 3 9 7. ( 3 9 FOURĐER SERĐLERĐNĐN MUTLAK HAUSORFF TOPLANABĐLMESĐ Abdullh SÖNMEZOĞLU Bozo Üiersiesi,

Detaylı

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI

KARŞI AKIŞLI SU SOĞUTMA KULESİ BOYUTLANIDIRILMASI KARŞI AKIŞI SU SOĞUTMA KUESİ BOYUTANIDIRIMASI Yrd. Doç. Dr. M. Turh Çob Ege Üiversitesi, Mühedislik Fkultesi Mkie Mühedisliği Bölümü turh.cob@ege.edu.tr Özet Bu yzımızd ters kışlı soğutm kulelerii boyut

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra;

Üslü Sayılar MATEMATİK. 5.Hafta. Hedefler. Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK. Bu üniteyi çalıştıktan sonra; MATEMATİK Üslü Syılr Öğr.Gör. Esrin PALAS BOZKURT Öğr.Gör. Muhsin ÇELİK 5.Hft Hedefler Bu üniteyi çlıştıktn sonr; Gerçel syılrd üslü işlemler ypbilecek, Üslü denklem ve üslü eşitsizlikleri çözebileceksiniz.

Detaylı

b göz önünde tutularak, a,

b göz önünde tutularak, a, 3.ALT GRUPLAR Tnım 3.. bir grup ve G, nin boş olmyn bir lt kümesi olsun. Eğer ( ise ye G nin bir lt grubu denir ve G ile gösterilir. ) bir grup Not 3.. ) grubunun lt grubu olsun. nin birimi ve nin birimi

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüe BAYILMIŞ Doç.Dr. Cüe BAYILMIŞ Sısl Aliz SAYISAL ANALİZ SAYISAL İNTEGRAL Numericl Iegrio Doç.Dr. Cüe BAYILMIŞ Sısl Aliz İÇİNDEKİLER Sısl İegrl Trpez Ymuk Yöemi Simpso Yöemi /

Detaylı

15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ

15. ANTALYA MATEMATĐK OLĐMPĐYATI (2010) SORULARININ ÇÖZÜMLERĐ . ANTALYA MATEMATĐK OLĐMPĐYATI (00) SORULARININ ÇÖZÜMLERĐ PROBLEM : vrdır? + y y deklemii pozitif tmsyılrd kç (, y ) çözüm ikilisi A) B) 6 C) 4 D) 8 E) Sosuz çoklukt ÇÖZÜM (L. Gökçe): + deklemide pyd eşitleyip

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

SAYILAR TEMEL KAVRAMLAR

SAYILAR TEMEL KAVRAMLAR YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - - 1-1 - 1 Pozitif tmsyılr,negtif tmsyılr ve 0 ın ererce oluşturduğu kümeye Tmsyılr kümesi denir Z ile gösterilir SAYILAR TEMEL KAVRAMLAR Temel

Detaylı

1 ifadesi aşağıdakilerden hangisi ile çarpıldığında, ifadesine eşit olur? çarpım C) 3 D) 6. Çözüm x =? 1 = Sayı = x olsun. x.

1 ifadesi aşağıdakilerden hangisi ile çarpıldığında, ifadesine eşit olur? çarpım C) 3 D) 6. Çözüm x =? 1 = Sayı = x olsun. x. T.C. MĐLLÎ EĞĐTĐM BAKANLIĞI Fe Liseleri, Sosyl Bilimler Liseleri, Güzel Stlr Ve Spor Liseleri Đle Her Türdeki Adolu Liseleri Öğretmelerii Seçme Sıvı 7 Arlık 9 Mtemtik Sorulrı ve Çözümleri 56. çrpım ifdesi

Detaylı

Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar

Euler Yöntemi İle Gerçek Zamanlı Sayısal İntegrasyon İşleminin FPGA Ortamında Gerçekleştirilmesi. İ. Soya, T. Tuncer, Y. Tatar 6 th Itertiol Advced Techologies Symposium (IATS 11), 16-18 My 2011, Elzığ, Turkey Euler Yötemi İle Gerçek Zmlı Syısl İtegrsyo İşlemii FPGA Ortmıd Gerçekleştirilmesi İ. Soy, T. Tucer, Y. Ttr Firt Üiversitesi

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

BASİT RASSAL ÖRNEKLEME. Örnekleme ve Tahmin Teorisi. Örnekleme RASSAL ÖRNEKLEME

BASİT RASSAL ÖRNEKLEME. Örnekleme ve Tahmin Teorisi. Örnekleme RASSAL ÖRNEKLEME BASİT RASSAL ÖRNEKLEME Örekleme ve Thmi Teorii Solu Kitle BüyüklüğüN ol olu bir kitlede büyüklüğüde lıck bir öreği eçilme şı, büyüklüğüdeki bir bşk öreği eçilmei şı ile yı ie bu tür öreklemeye bit rtl

Detaylı

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK

TG 6 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 6 ÖABT ORTAÖĞRETİM MATEMATİK Bu testleri her hkkı sklıdır. Hgi mçl olurs olsu, testleri tmmıı ve ir kısmıı

Detaylı

Dört Bacaklı Eviricinin KGK Uygulamasında Modülasyon Yöntemleri

Dört Bacaklı Eviricinin KGK Uygulamasında Modülasyon Yöntemleri ELECO 6, Elektrik-Elektroik-Bilgisyr Müh. emp., 6- Arlık 6, Burs, syf 9-95 Dört Bklı Eviriii KGK Uygulmsıd Modülsyo Yötemleri Eyyup Demirkutlu üleym Çetiky Ahmet M. Hv ODTÜ Elektrik ve Elektroik Mühedisliği

Detaylı

ALIŞTIRMALAR OCAK ŞUBAT MART ÜRETİLECEK DÖNEM SONU. DEĞİŞİME AÇIK OLUN 1 MALİYET/STANDART MALİYETLER STANDART MALİYETLER

ALIŞTIRMALAR OCAK ŞUBAT MART ÜRETİLECEK DÖNEM SONU. DEĞİŞİME AÇIK OLUN 1 MALİYET/STANDART MALİYETLER STANDART MALİYETLER MALİYET/STANDART MALİYETLER STANDART MALİYETLER 1. Fiili Sndr Mliye Ayırımı: Fiili mliyeler gerçeke olnı, sndr mliyeler ise olmsı gerekeni göserir. Fiili mliyein spnbilmesi için, mliyee konu olyın meydn

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK:

= + + = ETKİNLİK: ( n ) ( ) ETKİNLİK: ERİLER Cebir kurllrı ile ck olu te yıyı toplybiliriz. Bu krşılık mtemtik de ouz yıd yıı toplmı ile de ık ık krşılşmktyız. Öreği; 3 yııı odlık çılımı; 3 3 3 = 0,333... = + + +... gibi bir ouz toplmdır.

Detaylı

http://www.metinyayinlari.com Metin Yayınları

http://www.metinyayinlari.com Metin Yayınları LİMİT İÇ KAPAK Bu kitbı bütü ı hklrı sklıdır. Tüm hklrı, zrlr ve METİN YAYINLARI ittir. Kısme de ols lıtı pılmz. Meti, biçim ve sorulr, ıml şirketi izi olmksızı, elektroik, mekik, fotokopi d herhgi bir

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

Faure Dizili Genetik Algoritmalar İle Toprak Özdirencinin Mevsimsel Değişiminde Transformatör Merkezi Topraklama Sisteminin Optimum Tasarım Stratejisi

Faure Dizili Genetik Algoritmalar İle Toprak Özdirencinin Mevsimsel Değişiminde Transformatör Merkezi Topraklama Sisteminin Optimum Tasarım Stratejisi Süleym Demrel Üverstes, Fe Blmler Esttüsü Dergs, 6- ), 6-76 Fure Dzl Geetk Algortmlr İle Toprk Özdrec Mevsmsel Değşmde Trsformtör Merkez Toprklm Sstem Optmum Tsrım Strtejs Brış GÜRSU *, Melh Cevdet İNCE

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüet BAYILMIŞ Doç.Dr. Cüet BAYILMIŞ Sısl Alz SAYISAL ANALİZ EĞRİ UYDURMA (Curve Fttg) Doç.Dr. Cüet BAYILMIŞ Sısl Alz İÇİNDEKİLER Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Doç.Dr.

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz.

1) Asgari sayıda çevre akımları ve bilinmeyen tanımlayarak değerlerini bulunuz ve güç dengesini sağladığını gösteriniz. ELEKTRİK-ELEKTRONİK DERSİ VİZE SORU ÖRNEKLERİ Şekiller üzerindeki renkli işretlemeler soruy değil çözüme ittir: Mviler ilk şmd sgri bğımsız denklem çözmek için ypıln tnımlrı, Kırmızılr sonrki şmd güç dengesi

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

İMALAT ZAMANLARI HESABI

İMALAT ZAMANLARI HESABI İMAAT ZAMANARI HESABI Bilimi gereği olrk lş kldırm işlemi, ekik ve ekoomik koşllr bğlı olrk gerçekleşirilmekedir. Tekik koşllr, prçy, resim üerideki ögörüle işleme kliesi çerçeveside şekil vermek içi ygl

Detaylı

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu

DOĞRUDA AÇILAR. Temel Kavramlar ve Doğruda Açılar. Açı Ölçü Birimleri. Açı Türleri. çözüm. kavrama sorusu OĞRU ÇILR Temel Kvrmlr ve oğrud çılr Nokt: Nokt geometrinin en temel terimidir. ni, boyu vey yüksekliği yoktur. İnce uçlu bir klemin kğıt üzerinde bırktığı iz olrk düşünebilirsiniz. oğru: üz, klınlığı

Detaylı

TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT

TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT Süleymn Demirel Üniversitesi Ormn Fkültesi Dergisi Seri: A, Syı:, Yıl: 004, ISSN: 130-7085, Syf:160-169 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1 Süleymn KORKUT

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS)

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS) BOYU ANAİZİ- (IMENSIONA ANAYSIS Boyut nlizi deneysel ölçümlerde ğımlı ve ğımsız deney değişkenleri rsındki krmşık ifdeleri elirlemekte kullnıln ir yöntemdir. eneylerde ölçülen tüm fiziksel üyüklükler temel

Detaylı

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında

ORAN ORANTI. Örnek...1 : Örnek...4 : Örnek...2 : Örnek...5 : a 1 2 =2b+1 3 =3c 4. Örnek...6 : Bir karışımda bulunan a, b ve c maddeleri arasında ORAN ORANTI syısının 0 dn frklı oln b syısın ornı :b vey olrk gösterilir. b İki vey dh fzl ornın eşitlenmesiyle oluşn ifdeye orntı denir. b =c d ifdesine ikili orntı denir. Bir orntı orntı sbitine eşitlenerek

Detaylı

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT

DENKLEM ve EŞİTSİZLİKLER ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİTE 2. ÜNİT DENKLEM ve EŞİTSİZLİKLER ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT BİRİNCİ DERECEDEN DENKLEM ve EŞİTSİZLİKLER. Kznım : Gerçek syılr kümesinde birinci dereceden eşitsizliğin özelliklerini belirtir.. Kznım : Gerçek

Detaylı

Cebir Notları Mustafa YAĞCI, Eşitsizlikler

Cebir Notları Mustafa YAĞCI, Eşitsizlikler www.mustfygci.com.tr, 4 Cebir Notlrı Mustf YAĞCI, ygcimustf@yhoo.com Eşitsizlikler S yılr dersinin sonund bu dersin bşını görmüştük. O zmnlr dın sdece birinci dereceden denklemleri içeren mnsınd Bsit Eşitsizlikler

Detaylı

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4.

BİREYSEL YARIŞMA SORULARI. IV. BAHATTİN TATIŞ MATEMATİK YARIŞMASI Bu test 30 sorudan oluşmaktadır. 2 D) a = olduğuna göre, a 1 1. 4 2 3 + 1 4. IV. HTTİN TTIŞ MTEMTİK YRIŞMSI u test 30 sorudn oluşmktdır. İREYSEL YRIŞM SORULRI 1. 4 3 + 1 4. 3 3 + = + 1 + 1 denkleminin çözüm kümesi şğıdkilerden hngisidir? ) 5 3 ) ) 3 D) 13 3 ) { 0 } ) { 1} ) { }

Detaylı

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81.

LOGARİTMA Test -1. olduğuna göre, x kaçtır? olduğuna göre, x aşağıdakilerden hangisidir? A) 3 B) 9 C) 16 D) 64 E) 81. LOGARİTMA Test -. olduğun göre, şğıdkilerden log log log. log olduğun göre, kçtır? 6 6 8. olduğun göre, şğıdkilerden 6. logm olduğun göre, m kçtır? log log log 6 log 6. olduğun göre, şğıdkilerden log log

Detaylı

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ Gzi Üniv. Müh. Mim. Fk. Der. J. Fc. Eng. Arch. Gzi Univ. Cilt 4, No, 9-36, 009 Vol 4, No, 9-36, 009 TRAFİK SAYIMLARI, BÖLGE NÜFUSLARI VE BÖLGELER ARASI UZAKLIKLARI KULLANARAK BAŞLANGIÇ-SON MATRİSİ TAHMİNİ

Detaylı

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU 63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU www.omk.com.tr 01.08.2014 V3185 / V4185 VARİL ISITICISI KULLANIM KILAVUZU OMAK MAKİNA SANAYİİ ve TİCARET LİMİTED ŞİRKETİ DR. MEDİHA ELDEM

Detaylı

ELİPSOİDAL YÜKSEKLİKLERİN ORTOMETRİK YÜKSEKLİĞE DÖNÜŞÜMÜNDE ENTERPOLASYON YÖNTEMLERİNİN KULLANILABİLİRLİĞİ

ELİPSOİDAL YÜKSEKLİKLERİN ORTOMETRİK YÜKSEKLİĞE DÖNÜŞÜMÜNDE ENTERPOLASYON YÖNTEMLERİNİN KULLANILABİLİRLİĞİ SÜ ü-m Fk Derg, c9, s, 4 J FcEgArc Selcuk Uv, v9,, 4 EİPSOİDA YÜSEİERİN ORTOETRİ YÜSEİĞE DÖNÜŞÜÜNDE ENTERPOASYON YÖNTEERİNİN UANIABİİRİĞİ Cevt İNA ve Ceml Özer YİĞİT SÜü-mFkültes, Jeod ve Fot ü Bölümü,

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ eliz ALÇIN İSTATİSTİK ANABİLİM DALI ANKARA Her akkı saklıdır rd. Doç. Dr. ılmaz AKDİ daışmalığıda,

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü

Yukarıdaki sonucu onaylarım. Prof. Dr. Ülkü MEHMETOĞLU. Enstitü Müdürü ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ DURAĞAN OLMAYAN ZAMAN SERİLERİNDE KOİNTEGRASYON VEKTÖRÜNÜN TAHMİNİ ÜZERİNE BİR ÇALIŞMA Yudum BALKAYA İSTATİSTİK ANABİLİM DALI ANKARA 006 Her

Detaylı

TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Principle Component Analysis Use in Fisheries

TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Principle Component Analysis Use in Fisheries ÇÜ Fe ve Mühedislik Bilimleri Dergisi Yıl:0 Cil:6-3 TEMEL BİLEŞENLER ANALİZİNİN SU ÜRÜNLERİNDE KULLANIMI * Pricile Comoe Aalysis Use i Fisheries Leve SANGÜN Su Ürüleri Aabilim Dalı Musafa AKAR Su Ürüleri

Detaylı

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER

1. ÜNİTE. Sayılar ve Cebir 9.2 DENKLEM VE EŞİTSİZLİKLER . ÜNİTE Sılr ve Cebir 9. DENKLEM VE EŞİTSİZLİKLER Trihte ilk ölçme tekikleri prmk klılığı, el geişliği, krış, k gibi ort bodki bir isı vücududki prç ve mesfelerde ol çıkılrk oluşturulmuştur. Fkt ticret

Detaylı

MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE

MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE MALTA HAÇI MEKANİZMASININ KİNEMATİĞİ ÜZERİNE Yrdımcı Doçent Doktor Yılmz YÜKSEL 1. GİRİŞ Tekstil Mklnlrmd hmmddeyi mmul mdde hline getirirken çoğu kere bir çok teknik iş belirli bir sıry göre rdrd ypılmktdır.

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

Abdullah Ayd n ÜNLÜ Harun ER

Abdullah Ayd n ÜNLÜ Harun ER OAÖĞEİM MAEMAİK Adullh Ayd ÜNLÜ Hru E Millî Eğitim Bklığı lim ve eriye Kuruluu..9 trih ve 8 syılı krrı ile öğretim yılıd itire (eş) yıl süre ile ders kitı olrk kul edilmiştir. YAYINCILIK ANAY VE CAE L

Detaylı

2.I. MATRİSLER ve TEMEL İŞLEMLER

2.I. MATRİSLER ve TEMEL İŞLEMLER Nzım K. Ekinci Mtemtiksel İktist Notlrı.I. MTRİSLER ve TEMEL İŞLEMLER Tnım.. Mtris. şğıdki gibi stırlr ve sütunlr biçiminde sırlnmış reel syı tblolrın mtris denir............. n n n... mtrisinin n stırı

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

ÜÇ FAZLI BIR ASENKRON MOTORDA MANYETIK SÜSPANSIYONLU YATAK UYGULAMASI

ÜÇ FAZLI BIR ASENKRON MOTORDA MANYETIK SÜSPANSIYONLU YATAK UYGULAMASI ÜÇ FAZL BR ASENKRON MOTORDA MANYETK SÜSPANSYONLU YATAK UYGULAMAS Osm GÜRDAL*, Yusuf ÖNER** *Gzi Üiversitesi, Tekik Egitim Fkültesi, Elektrik Egitimi Bölümü, Tekikokullr, ANKARA **Pmukkle Üiversitesi, Elektrik

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Ösöz Değerli Öğreciler, Bu fsiül ortöğretimde bşrıızı yüseltmeye, üiversite giriş sıvlrıd yüse pu lmız yrdımcı olm içi özele hzırlmıştır. Koulr lmlı bir bütü oluşturc şeilde hücrelere yrılr işlemiştir.

Detaylı

1.Düzlemde Eğik ve Dik Koordinat Sistemi

1.Düzlemde Eğik ve Dik Koordinat Sistemi Düzlemde Eğik ve Dik Koordin Sisemleri -Düzlem Anliik Geomeri-Bki Krlığ.Düzlemde Eğik ve Dik Koordin Sisemi Bu bölüme Anliik Geomerinin kuruluşun emel eşkil eden ve dın Nok-Vekör eşlemesi dieceğimiz düzlemin

Detaylı