YÜKSEK GERİLİMDE KISA DEVRE VE KISA DEVRELERİN UNİTER HESABI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YÜKSEK GERİLİMDE KISA DEVRE VE KISA DEVRELERİN UNİTER HESABI"

Transkript

1 YÜKSEK GERİLİMDE KISA DEVRE VE KISA DEVRELERİN UNİTER HESABI Dr. Doğan Haktanır (MASHRAE, MInst.D, TCEE, MAIEE) (Makine, Elektrik, Elektronik, Bilgisayar ve Bina Hızmetleri Mühendisi) e-posta: ÖZET Elektrik devrelerinin hesabında genellikle önde gelen kural ve teoremlerin başında Ohm, Thevenin, Kirchoff tur. Karmaşık devrelerde Kirchoff kanunundan çıkıp da Thevenin denkliğine geçildiğinde, bu karmaşık devre hesapları kısmen kolay bir manzara görünümüne bürünür. Ancak yüksek gerilim söz konusu olduğu zaman bunların yerini alan üniter sistem (per unit system) bu kural ve teoremlerin yetişemediği sorunlara el atar. Bu yazıda ele alacağım konu bu sistemin tanıtımı ve yüksek gerilim üreten jeneratör ile yüksek gerilim dağıtan transformatörlerle ilgili bazı uygulamaları ortaya koymaktır. 1. GİRİŞ Teknolojinin gittikçe ilerlediği, çoğalan dünya nüfuzunun gittikçe arttığı bir ortamda elektrik enerji ihtiyacı yükseldikçe yükselmektedir. Bu da mevcut enerji nakli yollarının daha yüksek kapasiteli olmasını, hacimlerinin mümkün mertebe küçük olmasını gerektirir. Bunu sağlayabilmek için bilim adamları enerji naklinin arabası olan kablolar üzerinde araştırma yapmışlar ve bazı buluşlarla soruna çözüm getirmeye çalışmışlardır. Beş, on, yirmi yıl evvelisine kadar, sorunu çözme açısından, elektrik akımı iletiminde bakır kablolara yakın olan alüminyum kablolarla enerji naklinin yapılmasını ortaya çıkardılar. Ancak zaman mevhumu bu kabloların bir dezavantajı olduğunu ortaya çıkardı. Bu dezavantaj bu tür kabloların oksitlenme olayıdır. Çalışmalarını başka yöne teksif eden bilim adamları geçen yıl içerisinde çok yeni bir buluşla sorunu çözümleme aşamasına geldiler. Bu buluşların başında karbon kablolar gelmektedir [1]. Ancak çok kullanışlı olan bu kabloların imali yüksek bir maliyet getirir ve kullanımını olumsuz yönde etkiler. Enerji nakli ile ilgili bir başka seçenek de yüksek gerilim kullanmaktır. Ohm kanunu tahtında yükselen gerilim oranında akım da azalır, bu da kabloların çaplarının küçülmesini sağlar. Yüksek gerilimin diğer bir avantajı da voltaj düşüklüğünün asgariye indirgenmesidir. Şu an kabloların yüksek kapasiteli enerji naklini sağlamak için onlara yüksek gerilim uygulanması kabul edilen yöntemlerin başında gelir. Jeneratörlerin yüksek gerilim üretmek için yapılışlarının başlıca nedeni bu oluşumdan kaynaklanmaktadır. Ancak gerilim yükseldikce sorunlar ve emniyet hususları da artar [2]. Yüksek gerilimin getirdiği tehlikelerin büyüklüğü karşısında özel tedbirler alınması, özel cihazların kullanılması, kablo izolasyonunun yüksek gerilime dayanacak biçimde özel yapılması ve koruyucu devrelerin oluşturulması gerekmektedir. Yüksek gerilimin taşınması öngörülen bir teşkilatta koruma cihazlarını seçebilmek için teşkilat içerisinde bulunan kabloların çalışacakları akım sığası ile bu akımın azami siddetini tayin etmek zorunluluğu vardır. fazlı bir sistemde kısa devre oluşması halinde bu gereklilik kaçınılmaz duruma gelmektedir. Böyle bir durumda üreten sistemin ve kabloların korunması, kabloların kısa devre yaptığı yerden salt kabloların oluşturduğu direnç, transformatör sarım reaktif direnci ile jeneratörün iç direncine bağlı olmaktadır. Böyle bir durumda kısa devre hesaplamaları büyük bir önem kazanır. 2. KISA DEVRE HALLERİ Elektrik akımı taşıyan devrelerde kısa devre olması olağandır. Özellikle yüksek gerilim ihtiva eden sistemlerde. Böyle bir durum çok büyük tehlikeler arzeder. Bugün gerek sistemi, gerekse sistemde görev yapan elemanları korumak için çeşitli önlemlerin alınması başlıca yaptırımlar arasına girmiştir. Kısa devre kırmızı, sarı, mavi, nötür ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. Toprak ve nötür hattı arasındaki kısa devre konunun dışında kalırlar. Kısa devreler oluşumlarına göre değişik karakteristikler gösterirler. Üç fazın birden kısa devre olması, iki fazın kısa devre olması, herhangi bir fazın nötürle kısa devre olması, toprak hattının herhangi bir fazla kısa devre olması gibi. Tüm üç fazı birden kapsamına alan kısa devreler simetrik hata olarak tanımlanır. Diğer kısa devreler ise asimetrik olarak adlandırılır. Şunu da kabul etmek gerekir ki üç fazlı sistemlerde simetrik olarak tanımlanmasına karşın kısa devre sonucu meydana gelecek dalga oluşumları simetrik

2 olmayabilir. Bu oluşumlar devrede olan potansiyelin sıfır veya sıfıra yaklaşık bir düzeyde, belkide çok kısa bir zaman süresindeki hallerde kendini gösterir. Şekil 1. anılan devrelerdeki asimetrik dalga oluşumunu yansıtır. formüller değil de basit formüllerin kullanımını gerektirir. Şekil 1. yüksek gerilim kısa devrelerinde asimetrik dalga oluşumu. İKİ FAZ ARASI KISA DEVRE Herhangi bir yüksek gerilim hesaplamasında en kötü ihtimal olan iki fazın kısa devre hali esas alınır. Şekil 2 iki fazın kısa devre durumu yansıtmaktadır. Şekil. Yüksek gerilim hatlarında tek fazın kısa devre olması halindeki empedans 5. TOPRAK HATTI İLE OLAN KISA DEVRELER Elektrik akımını ileten fazlardan herhangi birinin toprakla temas etmesi ve toprakla olan bir kısa devre oluşturması durumudur. Bu durumda kısa devreyi oluşturan hattan besleme hattının verebileceği kadar akım toprak hattı aracılığıyle devresini tamamlar. Şekil 4 böyle bir kısa devreyi temsil eder. Şekil 2. Yüksek gerilim hatlarında iki fazın kısa devre olması halindeki empedans Yukarıdaki şekilden de anlaşılacağı gibi hattın birinin direnci sıfır olarak kabul edilir ve kısa devre akımı en hat safhaya ulaşır. 4. TEK FAZ KISA DEVRE Tek faz kısa devre durumları üç fazdan herhangi birinin nötür ile temasıdır. Bu durumlara tek faz kısa devre durumu denir. Şekil böyle bir durumu yansıtmaktadır. Bilahare gösterilen şekilden de anlaşılacağı gibi fazlar arası kısa devreler en şiddetli akımları oluşturur ve bunları hesaplamak için karmaşık Şekil 4. Yukarıdaki şekil ve denk şaması bir faz ile toprak hattının kısa devre olması durumunu simgeler. Bu tür kısa devrenin empedansı diğer kısa devrelere nispeten daha yüksektir. Nedeni ise toprağın iletkenlere nazaren daha dağişik bir karakteristiğe sahip olmasıdır. 6. KOMPLEKS SİSTEMLER Yukarıda belirtilen durumlar basit örnekleri oluştururlar. Bunların hesapları belki Ohm, Kirchoff ve Thevenin kuralları ile çözümlenebilirler, ancak

3 daha karmaşık devreler söz konusu olduğunda, durumda büyük farklılıklar meydana gelir. Bu devreler öyle devrelerdir ki birçok üretim merkezlerinden enerji elde ederler ve bu enerjiler yine çember (ring circuit) sistemleri kullanarak yüksek gerilim enerji dağıtımı yaparlar. İşte böyle bir ortamda kısa devre arızaları başgötersin. Bu durumlarda anılan kurallar karmaşıklıklar içerisinde bocalarlar. Şekil 5 basit bir dağıtım üretim sisteminin yapısını sembolize etmektedir. Bu sistemin A üretecinde bir kısa devre oluşmuştur. İşte üniter sistem böyle karmaşık hesaplamaları kolayca yapmak için geliştirildi ve ismine de per unit impedance, üniter sistem dendi. uygunluk sağlayabilir, hesaplamalar buna dayandırılarak yapılabilir. Diyagramları daha da basitleştirmek için genellikle şekil 6 te belirtilen voltaj kısım bu etapta kaale alınmaz. Bu durumda devremiz yeni baştan çizilmesi halinde şekil 7 daki şama ortaya çıkar. Şekil 7. Yukarıdaki şekil empedanları açısından Üreteçlerin şematik bağlantılarını sembolize eder Şekil 5. Yukarıdaki şekil üç üretecin paralel bağlantısını ve A üretecinde bir kısa devre olduğunu simgeler Şekil 5 te gösterilen karmaşık hesaplamalardan kurtulmak açısından şekil 6 teki devre onun yerini alabilir. 7. ÜNİTER HESAP SİSTEMİ NEDİR? Üniter sistemin ne olduğunu açıklamadan önce aşağıdaki hesaplamalara bir göz atalım: Diyelim ki elimizde 15 kva, 11kV/415V üç fazlı bir transformatör var. Tabl 1 deki verilere dayanarak bu transformatörün azami yük altındaki akım gücü şöyledir: = 48A 415 Bu transformatöre şekil 8 deki gibi tam yük verilmesi halinde bunun empedansı ne olabilir? Şekil 6. Bu üreteçlerin hesaplamalar açısından eşdeğer devresi yukarıda gösterilmiştir Üniter sistemi kullanarak sistemin her elemanının eşdeğer empedansını tek faz üzerinden şekil 6 teki gibi bir şamasını çıkarabilir, bir eşdeğerlik denklemi kurabiliriz. Bu durumda üreteçlerin ağ veya ağlar içerisindeki şekilleri şekil 7 de belirlenen krokiye Şekil 8. Yukarıdaki şekil yüksek gerilimle beslenen bir transformatöre bağlanan azami yükü simgelemektedir

4 Ohm kanunu uyarınca bu düzeneğin azami yük altındaki empedansı: olur. 240V = A ( ohms) Uniter sistemde bu bulgular bir yüzdelik olarak belirlenmekte ve jeneratör veya transformatörlerin üzerine reactance (reaktans) olarak kaydedilmektedir []. Örneğin %5.09, %6.0 reaktans gibi. Bundan da şu sonuca varabiliriz; iki misli bir reaktans tam yükün yarısını, yalın kat ise yükün kendini verir. İşte üniter sistem ve işlevi bu kadar basitleştirilmiştir. Üniter sisteme dayanarak bir transformatörün veya bir jeneratörün kısa devre arızaları altında akım cinsinden kapasitesini hesaplamak kolayaşmış olur. Örneğin: Üreticilerden verilen bilgiye dayanarak diyelim ki bir transformatörün reaktansı %5.09 dur. Yukarıdaki transformatörü ele alalım. Ohm kanununa göre bu transformatörün azami yükü 48 amperdir. Kısa devre durumları altında üniter sisteme dayalı formülümüzü tatbik edersek formül: sistemlerdeki kısa devre durumlarındaki kullanımıdır. Kısa devre durumlarında bir jeneratörün, bir transformatörün dayanma gücünü kolayca hesaplayabilmek için bu aygıtların imalatçıları, aygıtların üzerine yerleştirilen bilgi levhalarında üniter sistemin birimi olan reaktans değerliklerini belirtmektedirler. Aşağıdaki tablo GCE tarafından yapılan yüksek gerilim transformatörlerinin empedanslarının yanında rektans değerliklerini de kapsamına alır [4]. TABLO 1 olur. Azami yük. Üniter reaktans Bu formül altında elde mevcut değerlikleri yerlerine koyarsak kısa devre elektrik akımının: 48A = 8.6kA olduğunu görürüz. Üniter birim p.u. (5.09/100) olarak da yazılabilir. Üniter sistemde empedansın yüzdelik olarak ifade edilmesi hesaplamaları çok kolaylaştırmıştır. Örneğin 8.6 ka in %50 si 4. ka dir, gibi. Tabii ki bu durumda yüzdeliğin herhangi bir kesiri de alınabilir. 8. ÜNİTER HESAP SİSTEMİNİN TATBİK SAHASI Ortaya atılan her hesabın kendine göre bir tatbik sahası vardır. Kimyadaki periodik cetvel, geometrideki trigonometrik işlemler gibi üniter sistemin de bir tatbik sahası vardır. Bu saha yüksek gerilim üreten veya yayan aygıtlardır. Örneğin: Jeneratörler, transformatörler. Yine üniter sistemin uygulanma sahası ve faydalı olduğu alanlar bu 9. ÖRNEKLER Üniter sistemdeki hesaplamalara ışık tutacak bir örnek ele alalım: Üç fazlı bir sistemde, değişik kapasitesi olan iki adet 6600 volt geriliminde iki jeneratör ele alalım ve bu jeneratörleri paralel bir bağlantı düzeni içerisine yerleştirelim. Bu jeneratörlerden biri MVA öteki de 4MVA, rektansları ise %7 ile %8 olsun. Bu jeneratörlerin bağlantı yaptıkları ağ sisteminin arıza akım düzeyi 100MVA devre kesicilerinin de 150 MVA olsun. Şekil 9 yukarıda anlatılanları kapsamına alan bir devrenin simgedir. Bu sistemde herhangi bir kısa devre durumunda, düzen içerisinde işlem yapacak devre kesicilerinin ayarlarında kullanılacak değerliklerin üniter sistem üzerinden hesabını yapalım

5 Verilen değerliklere göre rektanslar ondalık kesre döndürülebilir. Bu durumda %7=0.07 p.u., %8= 0.08 p.u. olur. Eğer bütün empedansları 4MVA tabanı üzerinden alırsak hesap devremiz şöyle bir şekil alır: Şekil 10. Yukarıdaki şekil ele alınan problemin denklik devresini yansıtmaktadır. Bu devrede esas alınan taban 4MVA üzerinedir Şekil 9. Yukarıdaki şekil iki jeneratörün ana ağ şebekesine yapılan bağlantı noktasını belirler. İlgili değerlikler şekil içerisinde yer almıştır Eğer verilen değerliklere uygun olarak bir şama çizersek isteneni anlama açısından bize büyük yardımı olur. Şekil 9 probleme ışık tutacak bir çizelgeyi yansıtmaktadır. Yukarıda belirtilen şamaya verilen değerlikleri yerleştirelim. Burada bilmemiz gereken bir husus vardır ki reaktif değerlikler, sanal olduklarını göstermek için (j) simgesini alırlar. Şöyle ki: j 0.07 p.u., j 0.08 p.u. gibi. Yalnız problemin çözümüne başlamadan önce birim ve değerlikleri değişik olan bu sistemleri aynı birim değerlikler dizisi üzerinden ifade etmemiz gerekir. Şöyleki: Husule gelen arıza düzeyi = Burada dikkat edilecek bir husus varsa üniter hesap sistemi ile MVA lik jeneratörün reaktansının ne kadar kolay bulunabileceğidir. İşlemimize bunu da katarsak Denklemimizin ne kadar kolaylaşmış olduğunu görürüz. Aşağıdaki şekil bu sonucu çok iyi biçimde ifade etmektedir. Şekil 11. Şeklimiz gerekli indirgemeler yapıldıktan sonra problemin denklik durumu yukarıdaki şekilde gösterilen duruma dönüşür. Bundan da anlaşılacağı gibi bağlantı barasının arıza düzeyinin 150 MVA yin altında olabilmesi için reaktif eşitlik aşağıdaki işlemden kolayca bulunabilir. (taban) VA değerliği. p.u. empedans 4MVA( taban) 150MVA = p. u. 100 MVA 4MVA = p. u. empedans Bulunan bu sonuç denklemin sonucudur. Bu sonuçtan giderek şekilde belirtilen X r bilinmeyeninin değerliğini bulmak pek zor olmayacaktır. Şöyleki: ( X ) 0.41 r X r = Hesap sonucu 4 MVA lik jeneratörün ağ sistemi empedansına dayalı ortak değerliği j 0.04 p.u. olur

6 Bu ise bize X r ı reaktans cinsinden yuvarlak olarak 0.0 p.u. veya % olarak vermektedir. Yalnız dikkat edilmesi gereken bir husus var. Bu da bu değerliğin kısa devre şartları altındaki değerliğidir. Tam yük altındaki elektrik akımı ise: olur Devrenin faz voltajı ise: = 50A 11. KAYNAKLAR [1] Eureka, (2001). Innovative Engineering Design Publication, Bahar 2001 sayısı, (s.8). [2] Cole N, Lowry G, (1992). Electrical Services Part 1, Overcurrent Protection, Brunel University Press, (s.-9). [] Norman L D, (1992). Electrical Services, Current Rating of Cables, South Bank University Press, (s.4-8). [4] GEC, (1989). Transformers Data Manual, şirket teknik yayını =.8kV tam yük altındaki reaktans ise: = j10.86 olduğu bulunur. Bu sonuca üniter birimi uygularsak devrenin direnci: olarak bulunur. j = 0.26 Ω Yukarıdaki hesaplamalardan da görüleceği gibi üniter sistemdeki hesaplamalar bizi birçok karmaşık hesaplardan kurtarır. 10. SONUÇ Teknoloji sürekli olarak devinmektedir. Bu devinme yeni buluşları gerektirir. Yeni buluşlar veya mevcutlar üzerine imal edilen gelişmeler karmaşık hesapları da beraberinde getirir. Bu durum karşısında bilim adamları çıkacak sorunlara cevap verebilmeleri için çalışmalarına daha büyük bir ivme ile devam etmelidirler. Ancak ortaya koyacakları hesapların mümkün mertebe basit ve anlaşılabilir türden olması projelerdeki işlemleri daha da kolaylaştıracak ve hesaplamalarda zamanı büyük ölçüde azaltacak proje maliyetlerine de bir miktar katkıda bulunmuş olacaktır

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir.

KANUNLAR : Bir iletkenin iki ucu arasındaki potansiyel farkının,iletkenden geçen akım şiddetine oranı sabittir. KANUNLAR : Elektrik ve elektronikle ilgili konuları daha iyi anlayabilmek için, biraz hesap biraz da kanun bilgisine ihtiyaç vardır. Tabii bunlar o kadar zor hasaplar değil, yalnızca Aritmetik düzeyinde

Detaylı

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki

Detaylı

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY 324-04 ĐNÖNÜ ÜNĐERSĐTESĐ MÜHENDĐSĐK FAKÜTESĐ EEKTRĐK-EEKTRONĐK MÜH. BÖ. ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DERE E KISA DERE KARAKTERİSTİKERİ DENEY 4-04. AMAÇ: Senkron jeneratör olarak çalışan üç faz senkron makinanın

Detaylı

KISA DEVRE HESAPLAMALARI

KISA DEVRE HESAPLAMALARI KISA DEVRE HESAPLAMALARI Güç Santrali Transformatör İletim Hattı Transformatör Yük 6-20kV 154kV 380kV 36 kv 15 kv 11 kv 6.3 kv 3.3 kv 0.4 kv Kısa Devre (IEC) / (IEEE Std.100-1992): Bir devrede, genellikle

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin. DENEY 2 2.1. AC GERİLİM ÖLÇÜMÜ 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. AC voltmetre, AC gerilimleri ölçmek için kullanılan kullanışlı bir cihazdır.

Detaylı

ÜÇ-FAZ SENKRON JENERATÖRÜN GERİLİM REGÜLASYONU DENEY 324-05

ÜÇ-FAZ SENKRON JENERATÖRÜN GERİLİM REGÜLASYONU DENEY 324-05 ĐNÖNÜ ÜNĐERSĐTESĐ MÜHENDĐSĐK FAKÜTESĐ EEKTRĐK-EEKTRONĐK MÜH. BÖ. ÜÇ-FAZ SENKRON JENERATÖRÜN GERİİM REGÜASYONU DENEY 4-05. AMAÇ: Rezistif, kapasitif, ve indüktif yüklemenin -faz senkron jeneratörün gerilim

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

Isc, transient şartlarında, Zsc yi oluşturan X reaktansı ve R direncine bağlı olarak gelişir.

Isc, transient şartlarında, Zsc yi oluşturan X reaktansı ve R direncine bağlı olarak gelişir. Sadeleştirilmiş bir şebeke şeması ; bir sabit AC güç kaynağını, bir anahtarı, anahtarın üstündeki empedansı temsil eden Zsc yi ve bir yük empedansı Zs i kapsar. (Şekil 10.1) Gerçek bir sistemde, kaynak

Detaylı

MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ VE MV 1420 İLETİM HATTI ÜZERİNDEKİ GERİLİM DÜŞÜMÜ

MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ VE MV 1420 İLETİM HATTI ÜZERİNDEKİ GERİLİM DÜŞÜMÜ MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ VE MV 1420 İLETİM HATTI ÜZERİNDEKİ GERİLİM DÜŞÜMÜ MV 1438 KABLO HAT MODELİ KARAKTERİSTİKLERİ Genel Bilgi MV 1438 hat modeli 11kV lık nominal bir gerilim için

Detaylı

Yüksek Gerilim Tekniği İÇ AŞIRI GERİLİMLER

Yüksek Gerilim Tekniği İÇ AŞIRI GERİLİMLER İÇ AŞIRI GERİLİMLER n Sistemin kendi iç yapısındaki değişikliklerden kaynaklanır. n U < 220 kv : Dış aşırı gerilimler n U > 220kV : İç aşırı gerilimler enerji sistemi açısından önem taşırlar. 1. Senkron

Detaylı

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ 7. DİENÇ SIĞA (C) DEELEİ AMAÇ Seri bağlı direnç ve kondansatörden oluşan bir devrenin davranışını inceleyerek kondansatörün durulma ve yarı ömür zamanını bulmak. AAÇLA DC Güç kaynağı, kondansatör, direnç,

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİ

ÖLÇÜ TRANSFORMATÖRLERİ 1 ÖLÇÜ TRANSFORMATÖRLERİ Normalde voltmetrelerle en fazla 1000V a kadar gerilimler ölçülebilir. Daha yüksek gerilimlerde; Voltmetrenin çekeceği güç artar. Yüksek gerilimden kaynaklanan kaçak akımların

Detaylı

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları.

İç direnç ve emk. Seri bağlı dirençler. BÖLÜM 28 Doğru Akım Devreleri. İç direnç ve emk. ve emk. Elektromotor kuvvet (emk) kaynakları. BÖLÜM 8 Doğru Akım Devreleri Elektromotor Kuvveti emk iç direnç Seri ve Paralel Bağlı Dirençler Eşdeğer direnç Kirchhoff Kuralları Düğüm kuralı İlmek kuralı Devreleri Kondansatörün yüklenmesi Kondansatörün

Detaylı

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1 THEVENIN VE NORTON TEOREMLERİ Bu teoremler en güçlü analiz tekniklerindendir EBE-25, Ö.F.BAY THEVENIN EŞDEĞER TEOREMİ DOĞRUSAL DEVRE Bağımsız ve bağımlı kaynaklar içerebilir DEVRE A v O _ a + i Bağımsız

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI ERİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI KOMPANZASYON DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

Konu: GÜÇ HESAPLARI:

Konu: GÜÇ HESAPLARI: Konu: GÜÇ HESAPLARI: Aktif Güç hesaplamaları Reaktif Güç hesaplamaları Görünen(gerçek) Güç hesaplamaları 3 fazlı sistemler Faz farkları 3 fazlı sistemlerde güç GÜÇ BİRİMLERİ kva birimi bir elektrik güç

Detaylı

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır.

V R. Devre 1 i normal pozisyonuna getirin. Şalter (yukarı) N konumuna alınmış olmalıdır. Böylece devrede herhangi bir hata bulunmayacaktır. Ohm Kanunu Bir devreden geçen akımın şiddeti uygulanan gerilim ile doğru orantılı, devrenin elektrik direnci ile ters orantılıdır. Bunun matematiksel olarak ifadesi şöyledir: I V R Burada V = Gerilim (Birimi

Detaylı

Elektrik Makinaları I

Elektrik Makinaları I Elektrik Makinaları I Açık Devre- Kısa Devre karakteristikleri Çıkık kutuplu makinalar, generatör ve motor çalışma, fazör diyagramları, güç ve döndürmemomenti a) Kısa Devre Deneyi Bağlantı şeması b) Açık

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Bu bölüm, çeşitli şekillerde birbirlerine bağlanmış bataryalar, dirençlerden oluşan bazı basit devrelerin incelenmesi ile ilgilidir. Bu tür

Detaylı

bölüm POWER AMPLIFIERS

bölüm POWER AMPLIFIERS bölüm POWER AMPLIFIERS T H E S O U N D R E I N F O R C E M E N T H A N D B O O K Power amplifiers 1990 (second editions) by YAMAHA corporation of America and Gary Dacis & Associates Hal Leonard Publishing

Detaylı

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

14. ÜNİTE GERİLİM DÜŞÜMÜ

14. ÜNİTE GERİLİM DÜŞÜMÜ 14. ÜNİTE GERİLİM DÜŞÜMÜ KONULAR 1. GERİLİM DÜŞÜMÜNÜN ANLAMI VE ÖNEMİ 2. ÇEŞİTLİ TESİSLERDE KABUL EDİLEBİLEN GERİLİM DÜŞÜMÜ SINIRLARI 3. TEK FAZLI ALTERNATİF AKIM (OMİK) DEVRELERİNDE YÜZDE (%) GERİLİM

Detaylı

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek

Örneğin bir önceki soruda verilen rüzgâr santralinin kapasite faktörünü bulmak istersek KAPASİTE FAKTÖRÜ VE ENERJİ TAHMİNİ Kapasite faktörü (KF) bir santralin ne kadar verimli kullanıldığını gösteren bir parametredir. Santralin nominal gücü ile yıllık sağladığı enerji miktarı arasında ilişki

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI DC SERİ JENERATÖR KARAKTERİSTİKLERİNİN İNCELENMESİ DERSİN

Detaylı

AŞIRI GERİLİMLERE KARŞI KORUMA

AŞIRI GERİLİMLERE KARŞI KORUMA n Aşırı akımlar : Kesici n Aşırı gerilimler: 1. Peterson bobini 2. Ark boynuzu ve parafudr 3. Koruma hattı 26.03.2012 Prof.Dr.Mukden UĞUR 1 n 1. Peterson bobini: Kaynak tarafı yıldız bağlı YG sistemlerinde

Detaylı

SÜPER POZİSYON TEOREMİ

SÜPER POZİSYON TEOREMİ SÜPER POZİSYON TEOREMİ Süper pozisyon yöntemi birden fazla kaynak içeren devrelerde uygulanır. Herhangi bir elemana ilişkin akım değeri bulunmak istendiğinde, devredeki bir kaynak korunup diğer tüm kaynaklar

Detaylı

9. ÜNİTE OHM KANUNU KONULAR

9. ÜNİTE OHM KANUNU KONULAR 9. ÜNİTE OHM KANUNU KONULAR 1. FORMÜLÜ 2. SABİT DİRENÇTE, AKIM VE GERİLİM ARASINDAKİ BAĞINTI 3. SABİT GERİLİMDE, AKIM VE DİRENÇ ARASINDAKİ BAĞINTI 4. OHM KANUNUYLA İLGİLİ ÖRNEK VE PROBLEMLER 9.1 FORMÜLÜ

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

MOSFET. MOSFET 'lerin Yapısı

MOSFET. MOSFET 'lerin Yapısı MOSFET MOSFET 'lerin Yapısı JFET 'ler klasik transistörlere göre büyük bir gelişme olmasına rağmen bazı limitleri vardır. JFET 'lerin giriş empedansları klasik transistörlerden daha fazla olduğu için,

Detaylı

Güç kaynağı, genel tanımıyla, bir enerji üreticisidir. Bu enerji elektrik enerjisi olduğu gibi, mekanik, ısı ve ışık enerjisi şeklinde de olabilir.

Güç kaynağı, genel tanımıyla, bir enerji üreticisidir. Bu enerji elektrik enerjisi olduğu gibi, mekanik, ısı ve ışık enerjisi şeklinde de olabilir. GÜÇ KAYNAKLARI Güç kaynağı, genel tanımıyla, bir enerji üreticisidir. Bu enerji elektrik enerjisi olduğu gibi, mekanik, ısı ve ışık enerjisi şeklinde de olabilir. Konumuz elektronik olduğu için biz elektronik

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri DENEY NO : 3 DENEYİN ADI : FET - Elektriksel Alan Etkili Transistör lerin Karakteristikleri DENEYİN AMACI : FET - Elektriksel Alan Etkili Transistör lerin karakteristiklerini çıkarmak, ilgili parametrelerini

Detaylı

FET Transistörün Bayaslanması

FET Transistörün Bayaslanması MOSFET MOSFET in anlamı, Metal Oksit Alan Etkili Transistör (Metal Oxide Field Effect Transistor) yada Geçidi Yalıtılmış Alan etkili Transistör (Isolated Gate Field Effect Transistor) dür. Kısaca, MOSFET,

Detaylı

DEVELOPİNG A MATLAB/GUI BASED FAULT CALCULATION INTERFACE USING SYMMETRICAL COMPONENTS METHOD

DEVELOPİNG A MATLAB/GUI BASED FAULT CALCULATION INTERFACE USING SYMMETRICAL COMPONENTS METHOD 5. Uluslararası İleri Teknolojiler Sempozyumu (ATS 9), 3-5 Mayıs 9, Karabük, Türkiye SİMETRİLİ BİLEŞENLER METODU KULLANLARAK MATLAB/GU TABANL BİR ARZA HESAB ARAYÜZÜ GELİŞTİRME DEELOPİNG A MATLAB/GU BASED

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analizi gerçek hayatta var olan fiziksel elemanların matematiksel olarak modellenerek gerçekte olması gereken

Detaylı

TOPRAKLAMA VE POTANSİYEL SÜRÜKLENMESİ

TOPRAKLAMA VE POTANSİYEL SÜRÜKLENMESİ TOPRAKLAMA VE POTASİYEL SÜRÜKLEMESİ Genel bilgi Generatör, transformatör, motor, kesici, ayırıcı aydınlatma artmatürü, çamaşır makinası v.b. elektrikli işletme araçlarının, normal işletme anında gerilim

Detaylı

ÖLÇME VE ÖLÇÜ ALETLERİ

ÖLÇME VE ÖLÇÜ ALETLERİ ÖLÇME VE ÖLÇÜ ALETLERİ 1. KISA DEVRE Kısa devre; kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. Kısa devre olduğunda

Detaylı

2. DA DEVRELERİNİN ANALİZİ

2. DA DEVRELERİNİN ANALİZİ 2. DA DEVRELERİNİN ANALİZİ 1 Hatları birbirini kesmeyecek şekilde bir düzlem üzerine çizilebilen devrelere Planar Devre adı verilir. Hatlarında kesişme olan bazı devreler de (şekil-a) kesişmeleri yok edecek

Detaylı

10. ÜNİTE ENERJİ İLETİM VE DAĞITIM ŞEBEKELERİ

10. ÜNİTE ENERJİ İLETİM VE DAĞITIM ŞEBEKELERİ 10. ÜNİTE ENERJİ İLETİM VE DAĞITIM ŞEBEKELERİ KONULAR 1. Elektrik Enerjisi İletim ve dağıtım Şebekeleri 2. Şebeke Çeşitleri 10.1. Elektrik Enerjisi İletim ve dağıtım Şebekeleri Elektrik enerjisini üretmeye,

Detaylı

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1.

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1. KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I THEENİN ve NORTON TEOREMLERİ Bir veya daha fazla sayıda Elektro Motor Kuvvet kaynağı bulunduran lineer bir devre tek

Detaylı

3. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr

3. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr 3. HAFTA BLM223 Yrd. Doç Dr. Can Bülent FİDAN hdemirel@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 3. OHM KANUNU, ENEJİ VE GÜÇ 3.1. OHM KANUNU 3.2. ENEJİ VE GÜÇ 3.3.

Detaylı

REAKTİF GÜÇ İHTİYACININ TESPİTİ. Aktif güç sabit. Şekil 5a ya göre kompanzasyondan önceki reaktif güç. Q 1 = P 1 * tan ø 1 ( a )

REAKTİF GÜÇ İHTİYACININ TESPİTİ. Aktif güç sabit. Şekil 5a ya göre kompanzasyondan önceki reaktif güç. Q 1 = P 1 * tan ø 1 ( a ) REAKTİF GÜÇ İHTİYACININ TESPİTİ Aktif güç sabit Şekil 5a ya göre kompanzasyondan önceki reaktif güç Q 1 = P 1 * tan ø 1 ( a ) kompanzasyondan sonra ise Q = P 1 * tan ø ( b ) dir. Buna göre kondansatör

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

4.4. Gerilim Kararlılığının Temel Geçici Hal Durumu

4.4. Gerilim Kararlılığının Temel Geçici Hal Durumu 49 4.4. Gerilim Kararlılığının Temel Geçici Hal Durumu Đletim sistemine bağlı bir asenkron motorun şekil (4.3.b) ' deki P-V eğrileriyle, iletim sisteminin P-V eğrilerini biraraya getirerek, sürekli hal

Detaylı

V cn V ca. V bc. V bn. V ab. -V bn. V an HATIRLATMALAR. Faz-Faz ve Faz-Nötr Gerilimleri. Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri

V cn V ca. V bc. V bn. V ab. -V bn. V an HATIRLATMALAR. Faz-Faz ve Faz-Nötr Gerilimleri. Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri HATIRLATMALAR Faz-Faz ve Faz-Nötr Gerilimleri V cn V ca V ab 30 10 V an V aa = V cc = V bb V aa = V bb = V cc V bn V bc V ab 30 -V bn V aa = V aa V bb V aa = V aa cos(30) 30 V an V aa = V aa cos(30) =

Detaylı

Yükleme faktörü (Diversite) Hesabı

Yükleme faktörü (Diversite) Hesabı DERSİMİZ BİNALARDAKİ GÜCÜN HESAPLANMASI Yükleme faktörü (Diversite) Hesabı BİR ÖRNEK VERMEDEN ÖNCE IEE REGULATION 14. EDITION a GÖRE YAPILAN GÜÇ YÜKLEME FAKTÖRÜNÜ İNCELEYELİM.BU TABLO AŞAĞIDA VERİLECEKTİR.

Detaylı

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Koruma Röleleri AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Trafolarda meydana gelen arızaların başlıca nedenleri şunlardır: >Transformatör sargılarında aşırı yüklenme

Detaylı

Isı ile emk elde etmek

Isı ile emk elde etmek ELEKTRİK ÜRETİMİ Isı ile emk elde etmek İki farklı iletkenin birer uçları birbirine kaynak edilir ya da sıkıca birbirine bağlanır. boşta kalan uçlarına hassas bir voltmetre bağlanır ve birleştirdiğimiz

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05 EELP212 DERS 05 Özer ŞENYURT Mayıs 10 1 BĐR FAZLI MOTORLAR Bir fazlı motorların çeşitleri Yardımcı sargılı motorlar Ek kutuplu motorlar Relüktans motorlar Repülsiyon motorlar Üniversal motorlar Özer ŞENYURT

Detaylı

154 kv 154 kv. 10 kv. 0.4 kv. 0.4 kv. ENTERKONNEKTE 380 kv 380 kv. YÜKSEK GERĠLĠM ġebekesġ TRF. MERKEZĠ ENDÜSTRĠYEL TÜK. ORTA GERĠLĠM ġebekesġ

154 kv 154 kv. 10 kv. 0.4 kv. 0.4 kv. ENTERKONNEKTE 380 kv 380 kv. YÜKSEK GERĠLĠM ġebekesġ TRF. MERKEZĠ ENDÜSTRĠYEL TÜK. ORTA GERĠLĠM ġebekesġ ENTERKONNEKTE 380 kv 380 kv 154 kv YÜKSEK GERĠLĠM ġebekesġ 154 kv 154 kv TRF. MERKEZĠ 10 kv 34.5 kv ENDÜSTRĠYEL TÜK. DAĞITIM ġebekesġ ORTA GERĠLĠM ġebekesġ KABLOLU 0.4 kv TRAFO POSTASI 0.4 kv BESLEME ALÇAK

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ EEKTRİK DEVREERİ-2 ABORATUVARI VIII. DENEY FÖYÜ SERİ VE PARAE REZONANS DEVRE UYGUAMASI Amaç: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini ölçmek, rezonans eğrilerini

Detaylı

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( )

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( ) Ders Tanıtım Formu Dersin Adı Öğretim Dili Temel elektronik Türkçe Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (X ) Uzaktan Öğretim(

Detaylı

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır?

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır? 1- Doğa ve çevreye fazla zarar vermeden devamlı ve kaliteli bir hizmet veya mal üretimi sırasında iş kazalarının meydana gelmemesi ve meslek hastalıklarının oluşmaması için alınan tedbirlerin ve yapılan

Detaylı

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ AMAÇLAR 6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ 1. Değeri bilinmeyen dirençleri voltmetreampermetre yöntemi ve Wheatstone Köprüsü yöntemi ile ölçmeyi öğrenmek 2. Hangi yöntemin hangi koşullar

Detaylı

DİĞER ANALİZ TEKNİKLERİ

DİĞER ANALİZ TEKNİKLERİ DİĞER ANALİZ TEKNİKLERİ ÖĞRENME HEDEFLERİ DOĞRUSALLIK SUPERPOZİSYON KAYNAK DÖNÜŞÜMÜ THEVENIN VE NORTON TEOREMLERİ ENFAZLA GÜÇ AKTARIMI EBE-215, Ö.F.BAY 1 BAZI EŞDEĞER DEVRELER EBE-215, Ö.F.BAY 2 DOĞRUSALLIK

Detaylı

kullanılması,tasarlanması proje hizmetleriyle sağlanabilmektedir. ALİŞAN KIZILDUMAN - KABLO KESİTLERİ VE GERİLİM DÜŞÜMÜ HESAPLARI - 24-25.11.

kullanılması,tasarlanması proje hizmetleriyle sağlanabilmektedir. ALİŞAN KIZILDUMAN - KABLO KESİTLERİ VE GERİLİM DÜŞÜMÜ HESAPLARI - 24-25.11. teknik ağırlıklı ekipmanların,ürünlerin,proseslerin, sistemlerin ya da hizmetlerin tasarımı hayata geçirilmesi,işletilmesi,bakımı,dağıtımı,tekni k satışı ya da danışmanlık ve denetiminin yapılması ve bu

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I FET KARAKTERİSTİKLERİ 1. Deneyin Amacı JFET ve MOSFET transistörlerin

Detaylı

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI AMAÇ: Dirençleri tanıyıp renklerine göre değerlerini bulma, deneysel olarak tetkik etme Voltaj, direnç ve akım değişimlerini

Detaylı

GARANTİ KARAKTERİSTİKLERİ LİSTESİ 132/15 kv, 80/100 MVA GÜÇ TRAFOSU TANIM İSTENEN ÖNERİLEN

GARANTİ KARAKTERİSTİKLERİ LİSTESİ 132/15 kv, 80/100 MVA GÜÇ TRAFOSU TANIM İSTENEN ÖNERİLEN EK-2 1 İmalatçı firma 2 İmalatçının tip işareti 3 Uygulanan standartlar Bkz.Teknik şartname 4 Çift sargılı veya ototrafo Çift sargılı 5 Sargı sayısı 2 6 Faz sayısı 3 7 Vektör grubu YNd11 ANMA DEĞERLERİ

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

Elektrik Motorları ve Sürücüleri - 4

Elektrik Motorları ve Sürücüleri - 4 Elektrik Motorları ve Sürücüleri - 4 BİR FAZLI TRANSFORMATÖRLER 2 Bir fazlı trafoların önemi ve tanıtılması AC nin gerilimve akımdeğerinin istenilen seviyeye alçaltılıp yükseltilmesinde kullanılan makinelere

Detaylı

REAKTİF GÜÇ İHTİYACININ TESPİTİ. Aktif güç sabit. Şekil 5a ya göre kompanzasyondan önceki reaktif güç. Q 1 = P 1 * tan ø 1 ( a )

REAKTİF GÜÇ İHTİYACININ TESPİTİ. Aktif güç sabit. Şekil 5a ya göre kompanzasyondan önceki reaktif güç. Q 1 = P 1 * tan ø 1 ( a ) REAKTİF GÜÇ İHTİYACININ TESPİTİ Aktif güç sabit Şekil 5a ya göre kompanzasyondan önceki reaktif güç Q = P * tan ø ( a ) kompanzasyondan sonra ise Q 2 = P * tan ø 2 ( b ) dir. Buna göre kondansatör gücü

Detaylı

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır?

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır? 1- Doğa ve çevreye fazla zarar vermeden devamlı ve kaliteli bir hizmet veya mal üretimi sırasında iş kazalarının meydana gelmemesi ve meslek hastalıklarının oluşmaması için alınan tedbirlerin ve yapılan

Detaylı

Anten Tasarımı. HFSS Anten Benzetimi

Anten Tasarımı. HFSS Anten Benzetimi Bu dokümanda, antene ait temel bilgiler verilmiş ve HFSS programında anten tasarımının nasıl yapıldığı gösterilmiştir. Anten Tasarımı HFSS Anten Benzetimi KAZIM EVECAN Dumlupınar Üniversitesi Elektrik-Elektronik

Detaylı

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları Direnç (R) Alternatif gerilimin etkisi altındaki direnç, Ohm kanunun bilinen ifadesini korur. Denklemlerden elde edilen sonuç

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Elektrik Dağıtım Şebekesi: İletim hattından gelen ve şalt merkezlerinde gerilim seviyesi düşürülen elektriği, ev ve işyerlerine getiren şebekedir.

Elektrik Dağıtım Şebekesi: İletim hattından gelen ve şalt merkezlerinde gerilim seviyesi düşürülen elektriği, ev ve işyerlerine getiren şebekedir. DAĞITIM TRAFOLARI Genel Tanımlar Elektrik Dağıtım Şebekesi: İletim hattından gelen ve şalt merkezlerinde gerilim seviyesi düşürülen elektriği, ev ve işyerlerine getiren şebekedir. EEM13423 ELEKTRİK ENERJİSİ

Detaylı

AŞAĞIDAKİ BÖLÜM, ABB SACE NİN (A.G. ŞALTERLERLE İLGİLİ) KORUMA NOTLARINDAN DERLENMİŞTİR.

AŞAĞIDAKİ BÖLÜM, ABB SACE NİN (A.G. ŞALTERLERLE İLGİLİ) KORUMA NOTLARINDAN DERLENMİŞTİR. AŞAĞIDAKİ BÖLÜM, ABB SACE NİN (A.G. ŞALTERLERLE İLGİLİ) KORUMA NOTLARINDAN DERLENMİŞTİR. A- HAT KORUMA: Hat işletme ve korumasını sağlayan kesicinin doğru seçimi, aşağıdaki parametreleri bilmeyi gerektirir:.hattın

Detaylı

Süperpozisyon/Thevenin-Norton Deney 5-6

Süperpozisyon/Thevenin-Norton Deney 5-6 Süperpozisyon/Thevenin-Norton Deney 5-6 DENEY 2-3 Süperpozisyon, Thevenin ve Norton Teoremleri DENEYİN AMACI 1. Süperpozisyon teoremini doğrulamak. 2. Thevenin teoremini doğrulamak. 3. Norton teoremini

Detaylı

YÜKSEK AKIM LABORATUVARI

YÜKSEK AKIM LABORATUVARI YÜKSEK AKIM LABORATUVARI [*] Gelişen teknolojilerle birlikte günlük yaşantıda kullanılan elektrikli cihazların sayısı artmakta ve buna bağlı olarak da şebekeden çekilen güç miktarı sürekli olarak artış

Detaylı

TORAKLAMA. - Genel Bilgi - Kontrol Yöntemi - Örnekler

TORAKLAMA. - Genel Bilgi - Kontrol Yöntemi - Örnekler TORAKLAMA - Genel Bilgi - Kontrol Yöntemi - Örnekler Genel Bilgi Topraklama Nedir? Elektrik Topraklama Nedir? tesislerinde aktif olmayan bölümler ile sıfır iletkenleri ve bunlara bağlı bölümlerin, bir

Detaylı

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EEM201 DEVRE ANALİZİ I LABORATUARI. Deney 2. Süperpozisyon, Thevenin,

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EEM201 DEVRE ANALİZİ I LABORATUARI. Deney 2. Süperpozisyon, Thevenin, TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EEM201 DEVRE ANALİZİ I LABORATUARI Deney 2 Süperpozisyon, Thevenin, Norton Teoremleri Öğrenci Adı & Soyadı: Numarası: 1 DENEY

Detaylı

Yrd. Doç. Dr. Levent Çetin. Alternatif Gerilim. Alternatif Akımın Fazör Olarak İfadesi. Temel Devre Elemanlarının AG Etkisi Altındaki Davranışları

Yrd. Doç. Dr. Levent Çetin. Alternatif Gerilim. Alternatif Akımın Fazör Olarak İfadesi. Temel Devre Elemanlarının AG Etkisi Altındaki Davranışları Yrd. Doç. Dr. Levent Çetin İçerik Alternatif Gerilim Faz Kavramı ın Fazör Olarak İfadesi Direnç, Reaktans ve Empedans Kavramları Devresinde Güç 2 Alternatif Gerilim Alternatif gerilim, devre üzerindeki

Detaylı

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. TEMEL BİLGİLER İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. Yalıtkan : Elektrik yüklerinin kolayca taşınamadığı ortamlardır.

Detaylı

DERS BİLGİ FORMU. Okul Eğitimi Süresi

DERS BİLGİ FORMU. Okul Eğitimi Süresi ) GÜÇ ELEKTRONİĞİ (0860120203-0860170113) VE ENERJİ Zorunlu Meslek i Seçmeli (Proje, Ödev, Araştırma, İş Yeri ) 4 56 44 100 Kredisi 3+1 4 Bu derste; yarı iletken anahtarlama elemanları, doğrultucu ve kıyıcı

Detaylı

DİRENÇLER DĠRENÇLER. 1. Çalışması:

DİRENÇLER DĠRENÇLER. 1. Çalışması: DİRENÇLER DĠRENÇLER 1. Çalışması: Dirençler üzerlerinden geçen akıma zorluk gösteren devre elemanlarıdır. Bu özelliklerinden dolayı gerilimi sınırlamak için kullanılırlar. Çalışırken direnç üzerinde, direncin

Detaylı

YÜKSEK GERİLİM ELEMANLARI. Prof. Dr. Özcan KALENDERLİ

YÜKSEK GERİLİM ELEMANLARI. Prof. Dr. Özcan KALENDERLİ YÜKSEK GERİLİM ELEMANLARI Prof. Dr. Özcan KALENDERLİ Yüksek Gerilim Elemanları A. Temel Elemanlar; 1. Generatörler 2. Transformatörler 3. Kesiciler 4. Ayırıcılar 5. İletim Hatları 6. Direkler 7. İzolatörler

Detaylı

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU No Soru Cevap 1-.. kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. 2-, alternatif ve doğru akım devrelerinde kullanılan

Detaylı

Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27(1): 48-61 (2011)

Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27(1): 48-61 (2011) 48 Sakarya ili Sapanca ilçesinin Adapazarı ve Kırkpınar trafo merkezlerinden beslenmesi durumundaki kısa devre güçlerinin karşılaştırılması ve uygun koruma elemanlarının belirlenmesi Nihat PAMUK TEİAŞ

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3 ÇEVRE (GÖZ) AKIMLARI YÖNTEMİ Arş. Gör. Sümeyye BAYRAKDAR Arş. Gör.

Detaylı

TOPRAKLAMA Topraklama,

TOPRAKLAMA Topraklama, TOPRAKLAMA Elektrik tesislerinde aktif olmayan bölümler ile sıfır iletkenleri ve bunlara bağlı bölümlerin, bir elektrot yardımı ile, toprakla iletken bir şekilde birleştirilmesine Topraklama denilmektedir.

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ Üretim merkezlerinde üretilen elektrik enerjisini dağıtım merkezlerine oradan da kullanıcılara güvenli bir şekilde ulaştırmak için EİH (Enerji İletim Hattı) ve

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) (ELP211) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) (ELP211) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

ED8-STATİK VE DİNAMİK KGK

ED8-STATİK VE DİNAMİK KGK ED8-STATİK VE DİNAMİK KGK 2013 Statik ve Dinamik KGK Karşılaştırması MALİYET 1- Satın alma Dinamik KGK dünyada KGK marketinin sadece %4,3 üne sahiptir, geriye kalan %95,7 si ise statik KGK lere aittir.

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

TEMEL ELEKTRONĠK DERS NOTU

TEMEL ELEKTRONĠK DERS NOTU TEMEL ELEKTRONĠK DERS NOTU A. ELEKTRONĠKDE BĠLĠNMESĠ GEREKEN TEMEL KONULAR a. AKIM i. Akımın birimi amperdir. ii. Akım I harfiyle sembolize edilir. iii. Akımı ölçen ölçü aleti ampermetredir. iv. Ampermetre

Detaylı

YG Tesislerinde Manevralar Mustafa Fazlıoğlu Elektrik Mühendisi mustafa.fazlioglu@emo.org.tr

YG Tesislerinde Manevralar Mustafa Fazlıoğlu Elektrik Mühendisi mustafa.fazlioglu@emo.org.tr YG Tesislerinde Manevralar Mustafa Fazlıoğlu Elektrik Mühendisi mustafa.fazlioglu@emo.org.tr Manevra: Sistemin tamamını veya muhtelif kısımlarını gerilim altına almak veya gerilimsiz duruma getirmek için

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ

DOĞRU AKIM DEVRE ANALİZİ Ö. ŞENYURT - R. AKDAĞ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ ÜÇÜNCÜ BÖLÜM: OHM KANUNU, İŞ, ENERJİ VE GÜÇ Anahtar Kelimeler Enerji, ohm kanunu, kutuplandırma, güç,güç dağılımı, watt (W), wattsaat (Wh), iş. Teknik elemanların kariyerleri için ohm kanunu esas teşkil

Detaylı

RES ELEKTRIK PROJELENDIRME SÜREÇLERI O Z A N B A S K A N O Z A N. B A S K A N @ K E S I R. C O M. T R + 9 0 ( 5 3 9 ) 7 8 5 9 7 1 4

RES ELEKTRIK PROJELENDIRME SÜREÇLERI O Z A N B A S K A N O Z A N. B A S K A N @ K E S I R. C O M. T R + 9 0 ( 5 3 9 ) 7 8 5 9 7 1 4 RES ELEKTRIK PROJELENDIRME SÜREÇLERI O Z A N B A S K A N O Z A N. B A S K A N @ K E S I R. C O M. T R + 9 0 ( 5 3 9 ) 7 8 5 9 7 1 4 ÖZET Önbilgi Projelendirmeye Bakış Elektriksel Tasarım Ön-Hazırlık Enterkonnekte

Detaylı

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ 13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye

Detaylı