1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1. Tabanı 2a büyük eksenli, 2b küçük eksenli elips ile sınırlanan ve büyük eksene dik her kesiti kare olan cismin 16ab 2 hacmini bulunuz."

Transkript

1 MAT -MATEMATİK (5-5 YAZ DÖNEMİ) ÇALIŞMA SORULARI. Tabaı a büyük ekseli, b küçük ekseli elips ile sıırlaa ve büyük eksee dik her kesiti kare ola cismi 6ab hacmii buluuz. Cevap :. y = ve y = eğrileri ile sıırlı R bölgesi = doğrusu etrafıda dödürülüyor. Meydaa gele döel cismi hacmii dilimleme yötemi (pul metodu) ile buluuz. Cevap :. y = ve y = ile sıırlı bölge y-eksei etrafıda dödürülüyor. Meydaa gele döel cismi hacmii 6 buluuz. Cevap : 5 4. y = ve y = ile sıırlı bölge = doğrusu etrafıda dödürülüyor. Meydaa gele döel cismi hacmii silidirik kabuk yötemi ile buluuz. Cevap : 5. y = 4 + eğrisii = de = ye kadar uzuluğuu buluuz. Cevap : y =, eğrisi -eksei etrafıda dödürülüyor. Meydaa gele döel yüzeyi (kürei bir parçası) alaıı buluuz. Cevap : 7. = (ey + e y ), y l eğrisi y-eksei etrafıda dödürülüyor. Meydaa gele döel yüzeyi alaıı buluuz. Cevap : ( 5 + l ) 6 8. y =, = ve y = 4 ile sıırlı bölgei (.y, I. bölg eksei etrafıda dödürülmesiyle oluşa cismi hacmii dilimleme yötemi ile buluuz. C: v = (4 4 ) = = 9 5 y eksei etrafıda dödürülmesiyle oluşa cismi hacmii kabuk yötemi ile buluuz. C: v = (4 ) 9. y = eğrisii = ile = arasıda kala parçasıı y eksei etrafıda dödürülmesiyle oluşa yüzeyi alaıı itegral ile ifade ediiz. (NOT:İtegrali hesaplayıız.) C: Y.A. =. y = ( ) eğrisii = ile = 4 arasıda kala parçasıı uzuluğu edir? C: 5 6 ( L = ( + 4 ). + cos =? C: cot + csc + c veya ta( ) + c 9. =? C: + c =? C: + l + 4 l + + c 4 4. y = +, y =, = ve = ile sıırlı bölge (NOT: İtegralleri hesaplamayıız.) alaıı itegral ile ifade ediiz. C: ( + ) çevre uzuluğuu itegral ile ifade ediiz. C: Çevre=L , L = c) eksei etrafıda dödürülmesiyle oluşa cismi hacmii itegral ile ifade ediiz. C: V = [ ( + ) ] y eksei etrafıda dödürülmesiyle oluşa cismi hacmii itegral ile ifade ediiz. C: V = ( + ) + ()

2 5. ( )( + ) =? C: l 4 l( + ) + ta + c 6. Düzlemde y = ile y = i sıırladığı bölgei eksei y eksei c) y = doğrusu etrafıda dödürülmesiyle oluşa cismi hacmii buluuz. 7. Düzlemde = y ile y = eğrilerii düzlemde sıırladığı bölgei eksei y eksei c) = doğrusu etrafıda dödürülmesiyle oluşa döel cismi hacmii buluuz. 8. = y + 4y, y eğrisii uzuluğuu buluuz. y = l(si), eğrisii uzuluğuu buluuz. c) y = cos tdt, eğrisii uzuluğuu buluuz. 9. y = eğrisi, eksei ile = doğrusuu sağıda belirlee bölgei alaıı -eksei etrafıda dödürülmesiyle oluşa döel cismi hacmii c) y-eksei etrafıda dödürülmesiyle oluşa döel cismi hacmii (vars buluuz.. 6k 4k + =? k=. 7 k(k + ) =? k=. Aşağıdaki geelleştirilmiş (has olmay itegralleri hesaplayıız: ( e, ( l, (c), ( + Cevaplar: (, ( 4, (c) 4, ( ıraksak. Aşağıdaki has olmaya itegralleri yakısak veya ıraksaklıklarıı belirleyiiz: e dt + (, ( t si t, (c), ( 4 + Cevaplar: ( yakısak, ( ıraksak, (c) yakısak, ( yakısak 4. Aşağıdaki has olmaya itegralleri yakısak veya ıraksaklıklarıı belirleyiiz: ı) l) e e f) 4 5 i) + m) 4 sec c) l l g) j) + l ) yakısak? ıraksak? (Cevap: Yakısak) + 4 e yakısak? ıraksak? (Cevap: Yakısak) ( + ) yakısak? ıraksak? (Cevap: Yakısak) e + e h) e l 6 4 ) (e k) (l ) o) (l ) p,hagi p ler içi yakısaktır?

3 e yakısak? Iraksak? (Cevap: Iraksak) + l ıraksak? yakısak? (Cevap: Yakısak) + Iraksak? yakısak? (Cevap: Yakısak) + si Iraksak? yakısak? (Cevap: Iraksak) e yakısak? Iraksak? (Cevap: Yakısak) yakısak? ıraksak? (Cevap: Iraksak) ( + ) 4. Aşağıdaki kutupsal deklemleri yerie geçecek kartezye deklemleri buluuz: ( r = cot θ csc θ, ( r = csc θe r cos θ, (c) r = cos θ + si θ Cevaplar: ( = y, ( y = e, (c) ( ) + (y ) = ( ) 5. Aşağıdaki kartezye deklemleri degi ola polar deklemleri buluuz: ( = y, ( + y = 4, (c) y =, ( + (y ) = 4 (Cevaplar: ( θ = 4, ( r = veya r =, (c) r = sec θ, ( r = 4 si θ 6. Aşağıdaki kutupsal deklemleri verile eğrileri çiziiz: ( r = + si θ, ( r = + cos θ, (c) r = cos θ, ( r = cos θ 7. r = si θ çemberii ve r = + si θ kardiyoidii çiziiz. ( Çemberle kardiyoidi kesim oktalarıı buluuz. ( Çemberi içide ve kardiyoidi dışıda kala bölgeyi çiziiz. (c) ( de çizile bölgei alaıı buluuz. 8. r = + si θ kardiyoid eğrisii uzuluğuu buluuz. (Cevap: 8 ) 9. r = cos θ çemberii içide ve r = çemberii dışıda kala bölgei alaıı buluuz. (Cevap: + ) 4. r = cos θ( kutupsal eğrisi -eksei etrafıda dödürülüce meydaa gele döel yüzeyi alaıı buluuz. (Cevap: ) ) 4. Aşağıdaki dizileri varsa limitii buluuz: ( 5 + 7, ( + e, (c) si, ( ( ), (! 4. {a } dizisi a =, a + = 6 + a ( =,,, ) eşitlikleri ile taımlaıyor. Bu dizii; ( arta, ( üstte ile sıırlı, (c) yakısak ve limitii olduğuu gösteriiz. 4. Aşağıdaki dizileri yakısaklıklarıı veya ıraksaklıklarıı iceleyiiz.yakısak iseler limitlerii buluuz. a = l (yak, ) a = 8 + (yak, ) c) a =! a = + (yak, )

4 a = + ( ) (yak, ) f) a =, tek ise + (yak,, çift ise g) a = l( ) (yak, ) h) a = (yak, ) i) lim ( ) =? k= ) 44. Aşağıda verile serileri yakısak veya ıraksaklığıı belirleyiiz, Yakısak seriler içi toplamlarıı buluuz: ( ( k, ( 5 k k +, (c) ) k (k + ), ( ( k ) 4 k k= k= 45. Aşağıda verile serileri yakısak veya ıraksaklığıı belirleyiiz: e k l k (, ( k k, (c) e k ( k l k k k= k= 46. Verile serileri yakısak veya ıraksaklığıı belirleyiiz: ta k ( + k, ( k 4 + k k 5 + k +, (c) k + k +, k=4 k= k= k= k= k= ( k= + cos k k 47. Aşağıdaki serileri yakısak veya ıraksak olup olmadıklarıı belirleyiiz.yakısak olaları(toplamıı) değerii buluuz ( ) (yak, ) = c) e e (yak, e ) = cos( ) =.9 = 9( ) (yak, 9 99 ) f) (yak, ) 4.5 g) e (yak, e ) = h) ( + )( + ) (yak, 4 ) i) (arcta( + ) arcta()) (yak, 4 ) 48. Aşağıdaki serileri yakısak veya ıraksaklıklarıı belirleyiiz, edelerii açıklayıız. + si (yak) l k k= 4

5 c) ( + ) = arcta() 5 (yak) (yak) f) ( cos ) (yak) g) e = k= (yak) h) k l k l(l k) i) ( arcta()) (yak) = 49. Aşağıdaki serileri ıraksaklıklarıı veya yakısaklık türlerii belirleyiiz. + + (koşullu yakısak) 5 7 ( ) e c) ( ) l ( ) cos (mutlak yakısak) (koşullu yakısak) (koşullu yakısak) f) ( ) + l( + ) (koşullu yakısak) 5. Aşağıdaki serileri yakısaklıklarıı veya ıraksaklıklarıı belirleyiiz. l 5 (yakısak) c) (!) e ( ) f) lim c g) lim (yakısak) () ( + ) (yakısak)! (4 ) 4 7 ( ) 4 6 () (yakısak)! = olduğuu gösteriiz. =, (c R sabit olmak üzer olduğuu gösteriiz.! 5. Aşağıdaki kuvvet serilerii yakısaklık kümelerii ve yakısaklık yarıçaplarıı buluuz. ( + 7) ((, ), R = )! = = + ([, ), R = ) 5

6 c) = = f) = ([, ], R = ) ( ) + ( [, ], R = ) + ( + )( + ) ( + 5) ([ 6, 4], R = 5) ( 5 ( 4) g)! = ) ( (, ), R = ) ([, 5], R = ) 4 6 h) 5 ( ) 4 ((, ), R = ) ( i) ( ) (, ), R = ) j)! ([, ), R = ) 5. Aşağıdaki foksiyoları Maclauri Serileri i buluuz. ( ( ) + ) + c) ( + ) ( ( = ( ) + ) + ) = ( ( + + ) ) = ( ) + + l ( ( + ) ) f) + (= ) = ( ) ( ) g)f() = l i = deki Taylor serilerii buluuz. ( ( ) ) h)f() = si i = deki Taylor serisii buluuz. = (si =! ( ) + 4! ( )4 6! ( )6 + ) i)f() = i = deki Taylor serilerii buluuz. ( ( ) ( + )( ) ) = j)f() = e i = deki Taylor serisii buluuz. (e ( + ) )! =, : tam değer foksiyou 6

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden

n 1 1. Pratik Bilgi-1 in y a(x r) k türünden 2. Pratik Bilgi-1 x a(y k) r türünden Pratik Bilgi-1 (İtegralsiz Ala Bulma) a eğrisi ile ve 0 doğrularıı sıırladığı ala ise, a eğrisi ile 0 ve a doğrularıı sıırladığı ala dir. Ugulama-1.1 Muharrem Şahi eğrisi ile ve 0 doğrularıı sıırladığı

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ

İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Prof.Dr.Hüseyi ÇAKALLI İKİNCİ BÖLÜM REEL SAYI DİZİLERİ Bu ölümde dizileri, yi tım kümesi doğl syılr kümesi, değer kümesi, reel syılr kümesii ir lt kümesi ol foksiyolrı iceleyeceğiz... Ykısk Diziler. Öce

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

DENEYİN ADI: UYARTIM SARGISI AYRI BİR KAYNAKTAN BESLENEN (YABANCI UYARTIMLI) SARGILI KUTUPLU DC MOTORUN BOŞ ÇALIŞMA KARAKTERİSTİĞİ

DENEYİN ADI: UYARTIM SARGISI AYRI BİR KAYNAKTAN BESLENEN (YABANCI UYARTIMLI) SARGILI KUTUPLU DC MOTORUN BOŞ ÇALIŞMA KARAKTERİSTİĞİ DENEYİN D: YRTM SRGS YR BİR KYNKTN BESENEN (YBNC YRTM) SRG KTP DC MOTORN BOŞ ÇŞM KRKTERİSTİĞİ yartım akımı (kutup akımı) sabit tutula sargılı kutuplu DC motoru edüvi gerilimi ile devir sayısı (mil hızı)

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI . INIF MATEMATİK ÜÇRENK ORU BANKAI Mil lî E i tim Ba ka l Ta lim ve Ter bi ye Ku ru lu Ba ka l.8. ta rih ve sa y l ka ra r ile ka bul edi le ve - Ö re tim Y l da iti ba re uy gu la a cak ola prog ra ma

Detaylı

Diş sayısı tam sayı olması gerekmektedir. p p d. d m = ve

Diş sayısı tam sayı olması gerekmektedir. p p d. d m = ve DĐŞLĐLER Diş Boyuları Taba Kavisi (Fille Radius) Diş başı yüksekliği (Addedum) Taba yüksekliği(dededum) Diş yüksekliği (Addedum +Dededum) Taksima (Circular pich) Diş kalılığı (Tooh Thickess) Dişler arasıdaki

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri)

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) Bölümü Dersin Kodu ve Adı K MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1- Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2- Fonksiyonlar,

Detaylı

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU.

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU. T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI Yüksek Lisas Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU Elif SERİN Tez Daışmaı Yrd. Doç. Dr.Abdullah SÖNMEZOĞLU Yozgat 202

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.C. YÜKSEKÖĞRETİM KURULU ÖĞRENCİ SEÇME VE YERLEŞTİRME MERKEZİ LİSANS YERLEŞTİRME SINAVI MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 9 HAZİRAN 00 BU SORU KİTAPÇIĞI 9 HAZİRAN 00 LYS MATEMATİK

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(015)-Ara Sınav S-1) Merkezi M(, 1) de olan ve 4y + 1 = 0 doğrusundan 4 birimlik bir kiriş ayıran çemberin S-) Merkezi M(,4) de olan ve + 5y 10 = 0 doğrusundan

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

TMOZ/tmoz@yahoogroups.com Kasım - 2005 Ters trigonometrik fonksiyonlar Eyüp Kamil Yeşilyurt Alaattin Altuntaş Mustafa Yağcı Dikkat edilmeyen veya önemsenmeyen ayrıntılar bir gün sizi de rahatsız edebilir.

Detaylı

VEKTÖR SENSÖR DİZİNLERİ İÇİN AKUSTİK MOD HÜZME OLUŞTURUCU

VEKTÖR SENSÖR DİZİNLERİ İÇİN AKUSTİK MOD HÜZME OLUŞTURUCU 10. ULUSAL AKUSTİK KONGRESİ YILDIZ TEKNİK ÜNİVERSİTESİ ODİTORYUMU, İSTANBUL 16-17 Aralık 2013 VEKTÖR SENSÖR DİZİNLERİ İÇİN AKUSTİK MOD HÜZME OLUŞTURUCU M. Berke Gür 1 1 Bahçeşehir Üiversitesi, Beşiktaş,

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış.

Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. Hata! Yer işareti tanımlanmamış. İÇİNDEKİLER MOTOR KONTROL SİSTEMLERİ VE TEMEL MEKANİK BİLGİLER... Hata! Yer işareti taımlamamış.. GİRİŞ... Hata! Yer işareti taımlamamış.. HAREKET ŞEKİLLERİ... Hata! Yer işareti taımlamamış... Doğrusal

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005

x13. ULUSAL MATEMATİK OLİMPİYATI - 2005 TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI x13. ULUSAL MATEMATİK OLİMPİYATI - 005 BİRİNCİ AŞAMA SINAVI Soru kitapçığı türü A 1. AB = olmak üzere, A

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİK TESTİ (Mat ). u testte srasla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için arlan ksmna işaretleiniz.. f, 0 ise =, = 0 ise fonksionu için,

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI

KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI KIRIKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ KOMPLEKS FONKSİYONLARDA REZİDÜ VE BAZI UYGULAMALARI SEVGİ İŞLER EYLÜL 5 ÖZET KOMPLEKS FONKSİYONLARDA REZİDÜ VE

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır.

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır. 009 - ÖSS / MT- MTEMTİK TESTİ (Mat ). u testte 0 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. ( )( ) + 4. m = olduğuna göre, m + ifadesinin değeri işleminin

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) ÖSS MT- / 008 MTEMTİK TESTİ (Mat ). u testte sırasıla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. + = olduğuna

Detaylı

8. sınıf ders notları zfrcelikoz@yahoo.com

8. sınıf ders notları zfrcelikoz@yahoo.com III - SAYI ÖRÜNTÜLERİ Htırltm: Syılrı virgülle yrılrk, birbirii rdı dizilmesie syı dizisi, dizideki her bir syıy d terim deir. hrfi verile örütüde syılrı sırsıı belirte semboldür ve ici syıy örütüü geel

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

ŞEKER PANCARI KÜSPESİ KARBOKSİMETİL SELÜLOZUNUN GÖRÜNÜR VİSKOZİTESİNE SICAKLIK VE KONSANTRASYONUN ETKİSİ

ŞEKER PANCARI KÜSPESİ KARBOKSİMETİL SELÜLOZUNUN GÖRÜNÜR VİSKOZİTESİNE SICAKLIK VE KONSANTRASYONUN ETKİSİ ŞEKER PACARI KÜSPESİ KARBOKSİMETİL SELÜLOZUU GÖRÜÜR VİSKOZİTESİE SICAKLIK VE KOSATRASYOU ETKİSİ Hasa TOĞRUL, urha ARSLA Fırat Üiversitesi, Mühedislik Fakültesi, Kimya Mühedisliği Bölümü-ELAZIĞ ÖZET Şeker

Detaylı

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur?

3 VEKTÖRLER. Pilot uçağın kokpit inden havaalanını nasıl bulur? 3.1 Koordinat sistemleri 3.2 Kartezyen koordinatlar 3.3 Vektörler 3.4 Vektörlerin bileşenleri 3.5 Vektörlerin toplanması 3.6 Vektörlerin çıkarılması 37Bii 3.7 Birim vektör 3 VEKTÖRLER Pilot uçağın kokpit

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ

2013 KAMU PERSONEL SEÇME SINAVI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI VE ÇÖZÜMLERİ 0 KAMU PERSONEL SEÇME SINAI ÖABT MATEMATİK ÖĞRETMENLİĞİ (İLKÖĞRETİM) TESTİ DEĞERLENDİRME RAPORU, SORULARI E ÇÖZÜMLERİ Temmuz, 0 MATEMATİK (İLKÖĞRETİM) ÖĞRETMENLİĞİ Analizden soru sorulmuştur. İlk 8 soru

Detaylı

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ

AKIŞKAN BORUSU ve VANTİLATÖR DENEYİ AKIŞKA BORUSU ve ATİLATÖR DEEYİ. DEEYİ AMACI a) Lüle ile debi ölçmek, b) Dairesel kesitli bir borudaki türbülaslı akış şartlarıda hız profili ve eerji kayıplarıı deeysel olarak belirlemek ve literatürde

Detaylı

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN

LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN LİSE ÖĞRENCİLERİNE OKULDA YARDIMCI VE ÜNİVERSİTE SINAVLARINA (YGS ve LYS NA) HAZIRLIK İÇİN Konu Anlatımlı Örnek Çözümlü Test Çözümlü Test Sorulu Karma Testli GEOMETRİ 1 Hazırlayan Erol GEDİKLİ Matematik

Detaylı

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik.

Şekil 2. Sabit hızla dönen diskteki noktanın anlık yüksekliğini veren grafik. FREKANS ve AYF Düzeli olarak tekrar ede olayları sıklığıı belirtmek içi kullaıla periyod kelimesi yerie birim zamada gerçekleşe tekrar etme sayısı da kullaılır ve bua frekas deir. Ayı şekilde periyodik

Detaylı

3.2.3 DC Şönt Motora Yolverme... 58 3.2.4 DC Şönt Motorun Devir Sayısı Ayar Metotları... 63 3.2.5 DC Şönt Motorun Dönüş Yönünün Değiştirilmesi...

3.2.3 DC Şönt Motora Yolverme... 58 3.2.4 DC Şönt Motorun Devir Sayısı Ayar Metotları... 63 3.2.5 DC Şönt Motorun Dönüş Yönünün Değiştirilmesi... İÇİNDEKİLER ELEKTRİKLE TAHRİKİN TANII VE TEEL EKANİK BİLGİLER.... GİRİŞ.... ELEKTRİKLE TAHRİKTE HAREKET ŞEKİLLERİ..... Doğrusal Hareket..... Döer Hareket... 4.3 HAREKET OLAYLARININ KİNETİĞİ... 6.4 BİRİ

Detaylı

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir?

ÇÖZÜM.1. S.1. Uyarılmış bir hidrojen atomunda Balmer serisinin H β çizgisi gözlenmiştir. Buna göre,bunun dışında hangi serilerin çizgileri gözlenir? KONU:ATOM FİĞİ ebuyukfizikci@otmail.com HAIRLAYAN ve SORU ÇÖÜMLERİ:Amet Selami AKSU Fizik Öğretmei www.fizikvefe.com S.1. Uyarılmış bir idroje atomuda Balmer serisii H β çizgisi gözlemiştir. Bua göre,buu

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Geometrik Çizimler-1 TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Geometrik Çizimler-1 2/32 Geometrik Çizimler - 1 Geometrik Çizimler-1 T-cetveli ve Gönye kullanımı Bir doğrunun orta noktasını bulma

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)...

DİZİLER... 213. Dizilerde İşlemler... 213. Dizilerin Eşitliği... 214. Monoton Diziler... 215. Alt Dizi... 216. Konu Testleri (1 6)... ÜNİTE GERÇEK TOPLAM SAYI ÇARPIM DİZİLERİ ARİTMETİK SEMBOLÜ DİZİ Böüm Dizier GERÇEK SAYI DİZİLERİ ARİTMETİK DİZİ GEOMETRİK DİZİ SERİLER DİZİLER..................................................................

Detaylı

ELK464 AYDINLATMA TEKNİĞİ

ELK464 AYDINLATMA TEKNİĞİ ELK464 AYDNLATMA TEKNİĞİ Fotometrik Büyüklükler Fotometrik Yasalar (Hafta) Yrd.Doç.Dr. Zehra ÇEKMEN Fotometrik Büyüklükler şık Akısı (Ф) Birimi Lümen (lm) Bir ışık kaynağının her doğrultuda verdiği toplam

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

Çözüm: Yanıt:E. Çözüm:

Çözüm: Yanıt:E. Çözüm: ., -< 0 önermesinin olumsuzu, aşağıdakilerden, - 0 B), -> 0, -> 0, - 0 E ), - 0, -< 0 önermesinin olumsuzu, +- 0 dir.. a A önermesi p, b B önermesi q ve c C önermesi de r ile gösterildiğine göre A = B

Detaylı

3-Şekil bakımından kararlı ve sarsıntıya dayanıklı olması. 4-Işık renginin mümkün oldukça güneş ışığına yakın olması

3-Şekil bakımından kararlı ve sarsıntıya dayanıklı olması. 4-Işık renginin mümkün oldukça güneş ışığına yakın olması Işık Kayakları Geel olarak ışık kayaklarıda ş özellikler araır. 1-Etkilik faktörüü büyük olması 2-Ömrüü z olması 3-Şekil bakımıda kararlı ve sarsıtıya dayaıklı olması 4-Işık regii mümkü oldkça güeş ışığıa

Detaylı

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri

π a) = cosa Öğrenci Seçme Sınavı (Öss) / 17 Haziran 2007 Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 7 Haziran 7 Matematik II Soruları ve Çözümleri. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * ( + i) işleminin sonucu

Detaylı

MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni

MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni aşağıdakilerden hangisidir? A) Estetik görünmesi için. B) Rahat

Detaylı

ILMO 2009. c www.sbelian.wordpress.com sbelianwordpress@gmail.com. İstanbul Liseler Arası Matematik Olimpiyatı (ILMO) sorularından bir

ILMO 2009. c www.sbelian.wordpress.com sbelianwordpress@gmail.com. İstanbul Liseler Arası Matematik Olimpiyatı (ILMO) sorularından bir İstabul L ıseler Arası Matemat ık Ol ımp ıyatı ILMO 9 Çözümler ı c www.sbelia.wordpress.com sbeliawordpress@gmail.com Her yıl KOÇ Üiversitesi Bi Topluluğu Öğreci Klübü tarafıda düzelee, İstabul Liseler

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

Şekildeki gibi yarıçapları 1 cm olan üç çember birbirine teğettir. Bu çemberler arasındaki a- lan kaç cm 2 dir? A) π. E) π+ 2 3. Çözüm: üçgendir. 2.

Şekildeki gibi yarıçapları 1 cm olan üç çember birbirine teğettir. Bu çemberler arasındaki a- lan kaç cm 2 dir? A) π. E) π+ 2 3. Çözüm: üçgendir. 2. . + - + + - x y x y x y x y ifadesi aşağıdakilerden hangisine eşittir? ) - B) - C) - x y x y x y D) - E ) 5 - x y x y + - + + - 5 - x y x y x y x y x y. Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04.

π θ = olarak bulunur. 2 θ + θ θ θ θ θ π 3 UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ 22.04. UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II VİZE SORULARI ÇÖZÜMLERİ.04.006. Aşağıdaki gibi, M ve M merkezli br yarıçaplı iki dairenin kesişimi şeklinde bir park inşa edilmektedir. Bu iki dairenin

Detaylı

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git)

Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) Facebook Fun Sayfamız Twitter Sayfamız Ossmat.com Matematik-Fizik-Kimya-Biyoloji Hakkında Herşey (ana sayfaya git) (adsbygoogle = window.adsbygoogle []).push({}); Çıkmış Soru Çözümlerİ Çözümleri Matematik

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1

GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE. Abdullah AKKURT 1, Hüseyin YILDIRIM 1 IAAOJ, Scietific Sciece, 23,(2), 22-25 GENELLEŞTİRİLMİŞ FRACTİONAL İNTEGRALLER İÇİN FENG Qİ TİPLİ İNTEGRAL EŞİTSİZLİKLERİ ÜZERİNE Adullh AKKURT, Hüseyi YILDIRIM Khrmmrş Sütçü İmm Üirsitesi, Fe-Edeiyt Fkültesi

Detaylı

PEANO UZAYLARI VE HAHN-MAZURKIEWICZ TEOREMİ ÜZERİNE

PEANO UZAYLARI VE HAHN-MAZURKIEWICZ TEOREMİ ÜZERİNE SAÜ Fe Edebiyat Dergisi (-) Z.GÜNEY ve M.ÖZKOÇ PEANO UZAYLAR VE HAHN-MAZURKEWCZ TEOREMİ ÜZERİNE Zekeriya GÜNEY, Murad ÖZKOÇ Muğla Üiversitesi Eğitim Fakültesi Ortaöğretim Fe ve Matematik Alalar Eğitimi

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

HELİSEL DİŞLİ ÇARKLAR

HELİSEL DİŞLİ ÇARKLAR HELİSEL DİŞLİ ÇARKLAR Helisel Dişli Çarkların Yapısı 2 Düz dişli çarklardaki darbeli ve gürültülü çalışma koşullarının önüne geçilmesi, daha sessiz-yumuşak kavrama sağlanması ve mukavemetin artırılması

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ

ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ DOKUZ EYLÜL ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM ARALIĞINDA DĐNAMĐK ANALĐZĐ Kerem GÜRBÜZ Hazira, 011 ĐZMĐR ÇOK SERBESTLĐK DERECELĐ SĐSTEMLERĐN ZAMAN TANIM

Detaylı

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ

FİBER BRAGG IZGARA TABANLI OPTİK SENSÖRÜN ANALİZİ FİER RAGG IZGARA TAANLI OPTİK SENSÖRÜN ANALİZİ Lale KARAMAN 1 N. Özlem ÜNVERDİ Elektroik ve Haberleşme Mühedisliği ölümü Elektrik-Elektroik Fakültesi Yıldız Tekik Üiversitesi, 34349, eşiktaş, İstabul 1

Detaylı

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI 36 İNCELEME - ARAŞTIRMA BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI Erdal KOÇAIC*^ ÖZET Büyük ölçekli harita yapımında G İ R İŞ uygulanabilen "Stereografik çift Stereografik

Detaylı

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular:

BÖLÜM 8 ALAN ETKİLİ TRANSİSTÖRLER (JFET) Konular: ALAN ETKİLİ TRANİTÖRLER (JFET) BÖLÜM 8 8 Koular: 8.1 Ala Etkili Joksiyo Trasistör (JFET) 8. JFET Karakteristikleri ve Parametreleri 8.3 JFET i Polarmaladırılması 8.4 MOFET 8.5 MOFET i Karakteristikleri

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

TOPOĞRAFYA Temel Ödevler / Poligonasyon

TOPOĞRAFYA Temel Ödevler / Poligonasyon TOPOĞRAFYA Temel Ödevler / Poligonasyon Yrd. Doç. Dr. Aycan M. MARANGOZ ÇEVRE MÜHENDİSLİĞİ BÖLÜMÜ JDF 264/270 TOPOĞRAFYA DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz/marangoz.htm

Detaylı

MATEMATİK 1 TESTİ (Mat 1)

MATEMATİK 1 TESTİ (Mat 1) MTMTİK TSTİ (Mat ). u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. a ve b sıfırdan farklı gerçel sayılar olmak üzere, a a b = = a b b olduğuna

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı

Toplam İkinci harmonik. Temel Üçüncü harmonik. Şekil 1. Temel, ikinci ve üçüncü harmoniğin toplamı FOURIER SERİLERİ Bu bölümde Fourier serilerinden bahsedeceğim. Önce harmoniklerle (katsıklıklarla) ilişkili sinüsoidin tanımından başlıyacağım ve serilerin trigonometrik açılımlarını kullanarak katsayıları

Detaylı

DİŞLİ ÇARKLAR SAKARYA ÜNİVERSİTESİ MAKİNE MÜH. BÖLÜMÜ MAKİNE ELEMANLARI DERS NOTU. Doç.Dr. Akın Oğuz KAPTI

DİŞLİ ÇARKLAR SAKARYA ÜNİVERSİTESİ MAKİNE MÜH. BÖLÜMÜ MAKİNE ELEMANLARI DERS NOTU. Doç.Dr. Akın Oğuz KAPTI DİŞLİ ÇARKLAR MAKİNE MÜH. BÖLÜMÜ MAKİNE ELEMANLARI DERS NOTU Doç.Dr. Akın Oğuz KAPTI Dişli Çarklar 2 Dişli çarklar, eksenleri birbirine paralel, birbirini kesen ya da birbirine çapraz olan miller arasında

Detaylı

İNTEGRAL KONU ANLATIMI ÖRNEKLER

İNTEGRAL KONU ANLATIMI ÖRNEKLER İNTEGRL KONU NLTIMI ÖRNEKLER Ġtgrl lmk, türi ril ir oksio lmk tır d,, d oksio olrk rildiğii =F i istdiğii rslım d içi i cid idsi: d = + dir, hrhgi ir sit df d koģl sğl = F oksio i gör itgrli dir d F içimid

Detaylı