GÖRÜNTÜ ANALİZİ. Doç. Dr. Füsun Balık ŞANLI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GÖRÜNTÜ ANALİZİ. Doç. Dr. Füsun Balık ŞANLI"

Transkript

1 GÖRÜNTÜ ANALİZİ Doç. Dr. Füsun Balık ŞANLI

2 Ders Düzeni Ders Uygulama Ödev? Sınavlar Sınavlar 1. Ara Sınav 2. Ara Sınav Yıl Sonu Sınavı

3 Yaralanılan Kaynaklar GÖRÜNTÜ İSLEME,TEKNOLOJİLER VE UYGULAMALARI Mehmet Karakoç Ege Üniversitesi - Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Anabilim Dalı UZAKTAN ALGILAMA Anadolu Üniversitesi Yazarlar: Prof.Dr. Filiz SUNAR (Ünite 1-8) Prof.Dr. Coşkun ÖZKAN (Ünite 3,6,7) Dr. Batuhan OSMANOĞLU (Ünite 4)

4 Yıliçi başarı notu: (2 Yıliçi sı navı ) /2 ± (Ödev 5 puan) veya (21Yıliçi sı navı +1 Ödev) ) /2 Yıl sonu başarı Ön koşul: %70 Devam Yıliçi başarı notu % 60 + Yıl sonu sınavı notu % 40 ve çan eğrisi

5 Dersin Amacı Temel kavramlar Bilgi ve beceri -- --

6 İçerik Görüntü /Sayısal Görüntü Görüntü analizi uygulama alanları Görüntü topolojisi Görüntü bölütleme (segmentasyon)yöntemleri Özellik çıkarma yöntemleri Doku analizi Obje temelli sınışandırma Obje temelli ve piksel temelli sınışandırmanın karşılaştırılması Görüntü işlemede bulanık mantık Görüntü işlemede yapay zeka uygulamaları

7 Görüntü işlemede temel kavramlar Piksel(pixel):picture element sözcüklerinin birleşmesiyle oluşmuştur, görüntünün birim elemanını ifade eder. Parlaklık(intensity):x ve y uzaysal boyutlar olmak üzere (x,y), x ve y koordinatlarında ki pikselin parlaklık değerinigösterir. Ayrıklaştırma (Digitizing): Analog görüntünün sayısal sistemde ifade edilebilmesi için önce uzaysal boyutlarda sonlu sayıda ayrık parçaya bölünmesi (örnekleme, sampling), sonrada herbir parçadaki analog parlaklık değerinin belli sayıda ayrık sayısal seviyelerden biri ile ifade edilmesi(kuantalama, quantizing) gerekir. Çözünürlük (Resolution): görüntünün kaç piksele bölündüğünü, yani kaç pikselle temsil edildiğini gösterir. Çözünürlük nekadar yüksekse, görüntü okadar yüksek frekansta örneklenmiş olur ve görüntüdeki ayrıntılar okadar belirginleşir. Uzaysal Frekanslar (Spatial Frequencies): Uzaysal boyutlarda belli bir mesafede parlaklık değerinin değişim sıklığını ifade ederler.

8 Analog ve Sayısal Görüntü

9 Analog ve Sayısal Görüntü Sayısal fotoğraf Doğrudan sayısal kameralarla Analog fotograf taranarak (ışık yoğunluğu ölçülerek Gri değer Orijinal fotoğraf da sürekli değer Sayısal fotoğraf da kesikli değer piksel boyutu büyüdükçe kesiklilik artar

10 Sayısal Görüntü

11

12

13 Görüntü gösterimi Bir sayısal görüntü, analogresmin örneklenmesi ve kuantalanması sonucunda elemanları reel sayılardan oluşan bir matrix formunda ifade edilir. Yani f(x,y) şeklindeki bir sayısal image, M satır N sütundan oluşmuş MxN elemanlı bir matristir.

14 Önemli görüntü formatları MATLAB ındesteklediği önemli görüntü formatları Başlıca görünt işleme programlarının desteklediği önemli resim formatları ERDAS.img PCI.pix

15 Sayısal Görüntü Piksel görüntüyü oluşturan en küçük anlamlı eleman koordinatı ve her bir piksel alanına karşılık gelen gri değeri vardır matris olarak ifade edilir x 0 gij 255 y

16 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm =25400

17 Pikesel/dpi Örnek Bir harita yada fotoğraf 400 dpi ile taranmış ise piksel boyutu nedir? dpi=dot per inch 1 inch =25.4 mm = / 400 = 63

18 Pikesel/dpi Örnek Bir harita yada fotoğraf 1200 dpi ile taranmış ise piksel boyutu nedir? 1 inch =25.4 mm = / 1200 = 21

19 Pikesel/dpi Örnek Fotogrametrik uygulamalarda piksel boyutu 10 dan büyük olmaması gerekirse fotoğraşar kaç dpi taranmalıdır? 1 inch =25.4 mm = /x dpi = 10 x=2540 dpi

20 Pikesel/dpi Örnek 1/4000 ölçekli bir harita 200 dpi ile tarandığında her bir pikselin büyüklüğü yeryüzünde kaç metreye karşılık gelir? 200 dpi taranmış bir haritada piksel boyutu = 25.4mm/200 dpi = mm 1/4000 ölçeğinde piksel boyutu = 4000 x = 508mm ~ 0.5m Bir pikselin örttüğü alan 0.5 x 0.5=0.25m2

21 Pikesel/dpi Örnek 300 dpi ile taranmış 1/ ölçekli bir haritanın piksel boyutu ne kadardır? 1 piksel boyutu 1 / 300 dpi = 25.4 mm/ 300 = (25.4/100)m/ 300 = 25.4/3000m 1/ ölçeğinde piksel boyutu = x 25.4/3000m = 2.1 m ~ 2 m

22 Pikesel/dpi GSD = Ground Sample Distance (Yer örenekleme aralığı) Örneğin kamera çözünürlüğü 2 megapiksel (veya 1600 x 1200 piksel) olan bir kamera ile yerdeki ayırma gücü 1 cm olan resim çekmek istiyorsak : Kameraların GSD = Ground Sample Distance(Yer örenekleme aralığı) GSD?

23 Pikesel/dpi GSD = Ground Sample Distance (Yer örenekleme aralığı) mr x piksel fiziksel boyutu ( ) = GSD -Öncelikle kamera kayıt alanı buyuküğünün bilinmesi gerek 6mm x 4.5 mm x 5.99mm=27 mm2 2 megapiksel = piksel 26,955mm2= piksel = piksel y 4.5mm 26,955 2 = 2piksel = 1 piksel 13,4775 2= 3.7 ayırma gücü

24 Sayısal/ Dijital Kameralar ile Örnek mr x piksel fiziksel boyutu ( ) = GSD mr x 3.7( ) = 1 cm mr= / 3.7( ) mr=2700

25 Pikesel/dpi Örnek 8 bit gri seviyeli, 200dpi, jpg formatında bir görüntümüz olsun. Bu görüntü 450x450piksel dir. Dolayısıyla resmin boyutu 2.25x2.25inçolur. Bu resim f değişkenine atanmış olsun. Biz buresmi tiff formatında, sıkıştırmadan, sf ismiyle saklamak isteyelim. Daha sonra 450x450piksel sayısını değiştirmeden boyutunu1.5x1.5inç yapalım. 450x450 piksellik bir resmin çözünürlüğü 200dpi ise bu resim; 450dot/200dpi=2.25x2.25 inç boyutlarında olur. 450x450 piksellik bir resmi 1.5x1.5inç boyutunda ifade edersek; bir doğrultudaki piksel sayısı 450/1.5=300dpiolur. veya 2.5x2.5 inç boyutundan 1.5x1.5 inç boyutuna düşürülürse,resmin çözünürlüğü (2.25/1.5)x200=300dpiolur.

26 Görüntü Nitelikleri Renk Her bir piksele ilişkin bir renk söz konusudur. En sık kullanılan renk uzaylarından biri RGB dir. RGB renk uzayı, Kırmızı (Red), Yesil (Green) ve Mavi (Blue) ana renklerinin belirli oranlarda karısımı ile elde edilen yaklaşık 17 milyon rengi içerir. Sekil: RGB uzayına göre renklerin olusturulması

27 Gerçek hayattaki renklerin tamamını yeşil, kırmızı ve mavinin birleşimleri ile elde edebiliyoruz. Yandaki şekilden de görüleceği üzere bu üç renk yüzde 100 karışırsa beyaz, yüzde 0 lık bir oran olduğunda ise siyah görüntü elde edilir. Görüntü Nitelikleri Renk RGB, monitör ve televizyonlarda kullanılan renk uzayıdır. Bunun yanında CMYK adlı baskılı medyalarda kullanılan diğer bir renk uzayı daha vardır.

28 Görüntü Nitelikleri Renk Aşağıda 32bit uzunluğunda bir renk kodu (gerçek renk) olduğu varsayılsın. Şekilden de görüleceği üzere ilk 8 bit kırmızı, ikinci 8 bit yeşil, üçüncü 8 bit mavi için ayrılmıştır. Son 8 bit ise piksellerin saydamlık bilgisini tutan alfa kanalı olarak adlandırılır. Kırmızıya tahsis edilen ilk 8 bitte kırmızı, 2 8 = 256 adet farklı renk tonu alabilir. Yeşile tahsis edilen ikinci 8 bitte yeşil, 2 8 = 256 adet farklı renk tonu alabilir. Maviye tahsis edilen üçüncü 8 bitte mavi 2 8 = 256 adet farklı renk tonu alabilir. Son 8 bitin renk ile alakası olmadığından; toplamda 256 x 256 x 256 = farklı renk elde edilebilir.

29 Görüntü Nitelikleri Renk Gerçek rengi ifade eden değer, 32 bit yer kaplamasına rağmen gösterimde ilk 3 bölümdeki 8 bit kullanılır. Farklı gösterimleri vardır. RGB (125,33,0), RGB (0,0,0), RGB (255, 10, 98) vb olabileceği gibi aşağıdaki gibi de heksadesimal şekilde gösterilebilir. Örneğin; Beyaz RGB (FFFFFF) = RGB(255,255,255) = RGB( , , ) Siyah RGB (000000) = RGB(0,0,0) = RGB ( , , )

30 Görüntü Nitelikleri RGB Renk Uzayında Yüksek Renk (High Colour) Kavramı: Gerçek renk 32 bit ile ifade edilirken yüksek renk 16 bitlik yer kaplar. Kırmızı için 5 bit, yeşil için 6 bit ve mavi için 5 bit kullanılır. Kırmızıya tahsis edilen 5 bitte kırmızı, 2 5 = 32 adet farklı renk tonu alabilir. Yeşile tahsis edilen 6 bitte yeşil, 2 6 = 64 adet farklı renk tonu alabilir. Maviye tahsis edilen 5 bitte mavi 25 = 32 adet farklı renk tonu alabilir. Toplamda; 32 x 64 x 32 = farklı renk elde edilebilir. RGB (31,63,31) beyazı, RGB(0,0,0) siyahı tanımlar. Renk

31 RGB Renk Uzayında 256 Renk Kavramı: 256 renk (8 bit) 256 renk (8 bit) kavramında hangi rengin kaç bit yer kaplayacağı belli değildir. Renk paletinden gerçeğe yakın renk seçmek için kırmızı, yeşil ve mavi 8 biti en uygun değer şekilde kullanır. Örneğin bazen kırmızı 2, yeşil 3, mavi 3 bit ile ifade edilince en canlı renk elde edilirken; bazen de kırmızı 3 yeşil 2 mavi 3 bit ile ifade edilince en canlı renk elde edilir. Sistemin 256 renge ayarlı olduğunu fakat 16 bitlik bir resim dosyası açtığımızı varsayalım. Bu durumda mevcut renklerin değişik birleşimleri kullanılarak üretilemeyen renge yakın bir renk oluşturulur ve bu renk üretilmesi gereken rengin yerine gösterilir. Buna dithering denir. Tabi ki bu yöntemle elde edilmiş bir resmin kalitesi orijinal resme göre çok daha düşüktür. Renk derinliği arttıkça; görüntüdeki her bir noktacığın ifade edilebilmesi için gerekli olan boyut arttığından, doğru orantılı olarak görüntünün toplam boyutu da artar. Örneğin 16 bit renk derinliği olan bir fotoğraf, aynı çözünürlükteki 8 bit renk derinliği olan diğer fotoğraftan 2 kat daha fazla yer kaplar. Sonuç olarak renk derinliği ne kadar fazla olursa, her bir noktacık gerçek renge o kadar yakın bir renk alır. Buna karşılık boyutu da o kadar büyük olur. Günümüzde 32bit yer kaplayan 24bitlik renk derinliği, dijital paneller için standart olmuş durumdadır.

32 Görüntü Nitelikleri Radyomrtrik çözünürlük Dijital olarak ifade edilen görüntüdeki nokta sayısı (dot)ne kadar fazla olursa o kadar gerçeğe yakın netlikte bir görüntü oluşmaktadır. Ayrıca her bir noktanın ifade edeceği renk de ne kadar gerçeğe yakın olursa o kadar gerçeğe yakın netlikte bir görüntü elde edilmiş olur. Görüntüyü oluşturan her bir noktacığın (piksel) alabileceği renk aralığı ne kadar fazla ise o noktacık da renk havuzunda gerçeğe daha yakın bir renk alacaktır. Buna renk derinliği denir. Genelde bit olarak ifade edilir.

33 Görüntü Nitelikleri Radyomrtrik çözünürlük n = 2^b olmak üzere, b değeri görüntünün 1 pikselini ifade etmek için gereken bit sayısıdır. Örneğin b=8 ise 256 adet gri tonu

34 Görüntü Nitelikleri Radyomrtrik çözünürlük 1bit renk derinliğine sahip bir noktacık 2 1 = 2 adet renk alabilir. (siyah ve beyaz) 2 bit renk derinliğine sahip bir noktacık 2 2 = 4 adet renk alabilir. 3 bit renk derinliğine sahip bir noktacık 2 3 = 8 adet renk alabilir. 4 bit renk derinliğine sahip bir noktacık 2 4 = 16 adet renk alabilir. 6 bit renk derinliğine sahip bir noktacık 2 6 = 64 adet renk alabilir. 7 bit renk derinliğine sahip bir noktacık 2 7 = 128 adet renk alabilir. 8 bit renk derinliğine sahip bir noktacık 2 8 = 256 adet renk alabilir. 11 bit renk derinliğine sahip bir noktacık 2 11 = adet renk alabilir. 16 bit renk derinliğine sahip bir noktacık 2 16 = adet renk alabilir. 24 bit renk derinliğine sahip bir noktacık 22 4 = adet renk alabilir. (yaklaşık 16.7 milyon) 32 bit renk derinliğine sahip bir noktacık 2 32 = adet renk alabilir. (yaklaşık 4.3 milyar)

35 Boyut Hesabı: Görüntü Nitelikleri Radyomrtrik çözünürlük Tek bir görüntünün boyutu = düşey nokta sayısı x yatay nokta sayısı x renk derinliği Örneğin 16 bit renk (orta gerçek renk) derinliğine sahip 1024 x 768 çözünürlükteki sıkıştırılmamış bir fotoğrafın boyutunu hesaplayalım: Boyut = 1024 x 768 x 16 = bit = Byte = 1536 kb = 1,5 MB 8 bit = 1 byte 1024 byte = 1 kbyte 1024 kbyte = 1 mbyte 1024*8*1024 = bit

36 Görüntü Nitelikleri Radyomrtrik çözünürlük Spektral çözünürlük Mekansal/Uzaysal/ Geometrik çözünürlük Zamansal çözünürlük İleriki bölümlerde tanımlanacaktır.

37 UYDU GÖRÜNTÜSÜ Bu bölümde; Uydu görüntüsü Görüntü histogramı Anlık görüş alanı (IFOV) Çözünürlük kavramı (görüntü niteliği) Raster / Vektör veri

38 UYDU GÖRÜNTÜSÜ Uzaktan Algılama işlemi iki temel aşamadan oluşur. Bunlar; "Veri Elde Etme" ve "Veri İşleme" aşamalarıdır. A Veri elde etme F F Veri işleme H H

39 UYDU GÖRÜNTÜSÜNÜN Elde Edilmesi İşlenmesi A. Enerji Kaynağı: Hedefe bir kaynak tarafından enerji gönderilmesi gerekmektedir. Bu kaynak hedefi aydınlatır veya hedefe elektromanyetik enerji gönderir. Optik uydular için enerji kaynağı güneştir, ancak radar uyduları kendi enerji kaynaklarını üzerlerinde taşır ve elektromanyetik enerji üreterek hedefe yollarlar. B. Işınım ve Atmosfer: Enerji, kaynağından çıkarak hedefe yol alırken atmosfer ortamından geçer ve bu yol boyunca bazı etkileşimlere maruz kalır. C. Hedef ile Etkileşim: Atmosfer ortamından geçen elektromanyetik dalga, hedefe ulaştığında hem ışınım hem de hedef özelliklerine bağlı olarak farklı etkileşimler oluşur. D. Enerjinin Algılayıcı Tarafından Kayıt Edilmesi: Algılayıcı hedef tarafından yayılan ve saçılan enerjiyi algılar, ve buna ilişkin veri kayıt edilir. E. Verinin İletimi, Alınması : Hedeften toplanan enerji miktarına ait veri algılayıcı tarafından kayıt edildikten sonra, görüntüye dönüştürülmek ve işlenmek üzere bir uydu yer istasyonuna gönderilir. F H. Verinin İşlenmesi: Uydu yer istasyonuna gönderilen veri ön işleme/ işleme adımlarından sonra çeşitli uygulama alanlarına göre değerlendirilir

40 DİJİTAL UYDU GÖRÜNTÜSÜ Uydu görüntü verileri birçok farklı algılayıcı sistemlerden toplanıp farklı yollardan uydu yer istasyonlarına iletilse de alınan tüm görüntüler bazı ortak özelliklere sahiptir.

41 DİJİTAL UYDU GÖRÜNTÜSÜ Optik Görüntü Genel anlamda, bir görüntü, üç boyutlu gerçek fiziksel uzayın iki boyutlu bir gösterilimidir. İnsan görme sistemi bir görüntü girdi verisini mekânsal olarak dağılmış ışık enerjisinin toplamı olarak algılar. Bu şekildeki algılama optik görüntü olarak adlandırılır.

42 DİJİTAL UYDU GÖRÜNTÜSÜ Optik Görüntü Analog fotoğraşar, sürekli bir f(x,y) fonksiyonudur. f(x,y) fonksiyonunun değeri, x,y mekânsal değişkenlerle belirtilen konumdaki genlik (yoğunluk) Sürekli bir fonksiyona sahip analog bir görüntü mekânsal değişkenlerine ve genliğe göre ayrık hale getirilirse sonuçta oluşan ayrık f(x,y) fonksiyonu dijital görüntü olarak adlandırılır. Bu bağlamda uydu görüntüsü hedefin basit bir fotoğraf kamerası ile çekilen analog bir görüntüsü olmayıp görüntüyü oluşturan dijital veri setinin toplamından oluşan dijital bir görüntüdür.

43 Uydu görüntüsü hedefin basit bir fotoğraf kamerası ile çekilen analog bir görüntüsü olmayıp görüntüyü oluşturan dijital veri setinin toplamından oluşan dijital bir görüntüdür. Analog bir görüntünün dijital görüntüye dönüştürülmesi ya da Dijitalleştirme olarak da adlandırılan bu işlem, örnekleme (sampling) ve nicemleme (quantization- genliğin ayrıklaştırılması) adımlarından oluşur. DİJİTAL UYDU GÖRÜNTÜSÜ Optik Görüntü

44 DİJİTAL UYDU GÖRÜNTÜSÜ Optik Görüntü Örnekleme sürekli görüntü fonksiyonundan (parlaklık) dijital eşdeğerine belirli noktalarda yapılan bir geçiştir

45 Bu örnekleme noktalarının düzlemde sıralanmasıyla oluşan geometrik ilişki grid olarak tanımlanır. Gridi oluşturan her bir örnekleme noktası piksel (pixel; picture x element) olarak adlandırılan bir resim elemanına karşılık gelir. DİJİTAL UYDU GÖRÜNTÜSÜ Optik Görüntü Diğer bir ifade ile örnekleme işlemiyle dijital bir görüntünün en küçük birimi olan pikseller elde edilirken nicemleme işlemiyle gri yoğunluk değerleri (belirli konumda yeryüzü bölgesinden yansıtılan veya yayılan elektromanyetik enerjinin kaydı - parlaklık değeri, DN) elde edilmektedir

46 Bir pikselin bir veri dosyasında veya görüntüdeki konumu bir koordinat sistemi ile gösterilir. İki boyutlu koordinat sisteminde, satır ve sütundan (N x M) oluşangrid sistemi ile belirtilen her bir piksel konumunun 2 koordinat değeri (x,y) vardır. Böyle bir grid içinde yer alan görüntü verileri raster veri olarak adlandırılır. DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri

47 DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri

48 DİJİTAL UYDU GÖRÜNTÜSÜ Görüntü boyutu Dijital bir görüntü, elemanları, uzaydaki x,y konumlarına karşılık gelen noktaları n f(x,y) parlaklık değerlerini içeren bir matristir. Görüntü verisinin boyutu veri katmanı (bant) sayısı ile saptanır

49 Genel dört farklı grupta toplanmaktadır: 1. Binari görüntü en basit görüntü çeşidi olup sadece 0 veya 1 olmak üzere 2 değer (siyah ve beyaz) alırlar 2. Gri renk seviyeli görüntü monokrom veya tek renkli görüntülerdir. Renk bilgisi içermeyip sadece parlaklık bilgisi içerirler 3. Renkli görüntü renk, cisimlerin farklı dalga boyuna sahip elektromanyetik dalgaları farklı şekilde yansıtma özellikleri (parlaklık değeri) ile ilişkilidir. Doğal renkli görüntü, elektromanyetik spektrumun kırmızı, yeşil ve mavi bölgelerinden alınmış dijital görüntülerin bilgisayar ekranında RGB katmanlarında görüntülenmesi ile elde edilir 4. Çok spektrumlu görüntü DİJİTAL UYDU GÖRÜNTÜSÜ Görüntü türleri görünür spektrumun dışındaki bölgelerden alınan ve yanlış renkli görüntü olarak da adlandırılan görüntülerdir. Örneğin morötesi, kızıl ötesi dalga boyları gibi. Bu tür verilerin kaynağı, uydu sistemleri,su altı algılama sistemleri, değişik tipteki uçak radarları, kızıl ötesi görüntüleme sistemleri ve tıbbi tanı görüntüleme sistemleridir

50 DİJİTAL UYDU GÖRÜNTÜSÜ Görüntü türleri

51 DİJİTAL UYDU GÖRÜNTÜSÜ Renkli görüntü parlak kırmızı koyu yeşil sarı mor beyaz koyu gri Uzaktan Algılama teknolojisinin kullanılmaya başlandığı ilk zamanlarda doğada tüm objelerin farklı ayırt edilebilir bir spektral yansıması olduğu düşünülüyordu. Ancak böyle olmadığı görüldü.. Örneğin iki farklı ağaç türü yılın belli zaman diliminde farklı yansıma yaparken başka bir zaman diliminde aynı yansımayı yapabileceği tespit edildi.

52 İşlenmemiş ham uydu görüntüleri genelde gri renk seviyesi formatında depolanırlar genellikle 256 (8bit) dir DİJİTAL UYDU GÖRÜNTÜSÜ Renkli görüntü Her bir değer cisimlerden yansıtılan parlaklık değerini gösterir. Bir cismin uydu görüntüsünde ayırt edilebilirliği, görüntünün mekânsal, spektral ve radyometrik çözünürlükleri ile ilişkilidir. Buna ek olarak dikkate alınması gereken diğer faktörler ise cismin; boyutu, doğrultusu, rengi (ya da spektral yansıtım özelliği), dokusu, arka plan ile kontrastı, örüntüsü, diğer cisimlerle olan birleşimi

53 Eğer görüntüde yeterli kontrast varsa, diğer bir ifade ile görüntüde ilgilenilen cisim ile etrafındaki komşu cisimlerin (yeryüzü özelliklerinin) rölatif parlaklık değerleri arasındaki fark yüksek ise cisimlerin tanınması daha kolaydır, aksi durumda ilgilenilen cisim görüntüde saptanamayabilir. Bant 3 kırmızı bölgeden alınan görüntü DİJİTAL UYDU GÖRÜNTÜSÜ Kontrast Bant 4 kızıl ötesi bölgesinden alınan görüntü (bitkiye duyarlı)

54 DİJİTAL UYDU GÖRÜNTÜSÜ Kontrast Görüntülerdeki kontrastın oldukça düşük ve insan gözünün sınırlı sayıda gri renk tonu seviyesini ayırt edebiliyor olması nedeniyle işlenmemiş, ham uydu görüntü verileri yorumlama açısından pek uygun olamamaktadır. Bu amaca yönelik olarak işlenmemiş görüntü bantları arasındaki kontrastı artırmak için birçok farklı görüntü işleme teknikleri kullanılmaktadır. Ancak bu yöntemlerin kullanılabilmesiiçin görüntü karakteristiklerinin iyi bilinmesi gerekmektedir.

55 Kontrast, bir cismi (veya görüntüdeki temsilini) diğer cisimlerden ve arka plandan ayırt etmeye yarayan görsel özelliklerdeki farklılıktır. Görsel algılamada kontrast, bir cismin aynı görüş alanında bulunan diğer cisimlerle olan renk ve parlaklığındaki farklılıklar ile belirlenir. En basit ifade ile kontrast, görüntüdeki en parlak bölüm ile en karanlık bölüm arasındaki fark olarak tanımlanabilir. Görüntüde yeterli kontrast olup olmadığı görüntü histogramına bağlı olarak analiz edilir. DİJİTAL UYDU GÖRÜNTÜSÜ Kontrast

56 Görüntülerdeki kontrastın oldukça düşük ve insan gözünün sınırlı sayıda gri renk tonu seviyesini ayırt edebiliyor olması nedeniyle işlenmemiş, ham uydu görüntü verileri yorumlama açısından pek uygun olamamaktadır. Bu amaca yönelik olarak; DİJİTAL UYDU GÖRÜNTÜSÜ Kontrast işlenmemiş görüntü bantları arasındaki kontrastı artırmak için birçok farklı görüntü işleme teknikleri kullanılmaktadır. bu yöntemlerin kullanılabilmesim için görüntü karakteristiklerinin iyi bilinmesi gerekmektedir

57 GÖRÜNTÜS KARAKTERİSTİKLERİ Histogram Görüntü histogramı, dijital bir görüntüdeki tonal frekans dağılımının grafik gösterimidir. Diğer bir ifade ile görüntüdeki her bir parlaklık değerini içeren toplam piksel sayısı ile görüntü piksellerinin istatistiksel dağılımı gösterilmektedir. Sıklıkla histogram, her bir parlaklık seviyesindeki (DN) piksel sayısının görüntüdeki toplam piksel sayısına oranı olan bağıl frekans ile de belirlenmektedir. Frekans gösteriminde, düşey eksen belirli bir gri renk tonu seviyesi için toplam piksel sayısını, yatay eksen ise olası bütün parlaklık değerlerini küçükten büyüğe doğru (görüntünün dinamik aralığı) göstermektedir.

58 GÖRÜNTÜS KARAKTERİSTİKLERİ Histogram Diğer bir ifade ile histogramın sol tarafı koyu renk tonuna, orta bölgeler orta gri renk tonuna ve sağ tarafı ise açık renk tonuna sahip pikselleri göstermektedir. Görüntü histogramına bakılarak öncelikle görüntüdeki tonal dağılım hakkında bir fikir edinilir ve görüntünün görsel kalitesinin arttırlıması için gerekli görüntü işleme adımları belirlenir

59 GÖRÜNTÜS KARAKTERİSTİKLERİ Histogram 3 bitlik 4 bantlı yapay bir dijital uydu görüntüsünde, Bant 1 in frekans dağılımı ve histogram grafiği

60 Sayısal Görüntü İstatistiksel Parametreleri Piksel ölçü vektörü (xij); tek bir pikselin tüm bantlar için veri dosya değeridir. Örneğin 4 spektral bantlı bir IKONOS görüntüsündeki herhangi bir piksel ölçüvektörü; DN=[DN B1 DN B2 DN B3 DN B4 ] ile gösterilir. Burada; DN Bi bantındaki piksel yansıtım değeridir. Bir önceki histogram örneğindeki sentetik görüntü verisi için satır-sütun koordinatları (1,1) olan pikselin ölçü vektörü = [ ] dır.

61 Sayısal Görüntü İstatistiksel Parametreleri (Aritmetik) Ortalama (μ) Görüntüyü oluşturan her bir bant için genel parlaklığı yansıtır. Herhangi bir bant için (i-j) satır-sütun konumundaki bir pikselin dijital değeri DN p ve N toplam veri (piksel) sayısı olmak üzere

62 Sayısal Görüntü İstatistiksel Parametreleri Mod, Medyan Mod; histogramın maksimum olduğu diğer bir deyişle frekansı en büyük parlaklık değeridir. Birden fazla mod olabilir (bimodal = çift hörgüçlü histogram). Eğer bütün parlaklık değerleri aynı frekans değerine sahip olsaydı mod tanımlı olmazdı. Medyan; histogram alanını eşit iki parçaya bölen dijital değerdir. Toplam piksellerin %50 si bu değerin altında ve %50 si de bu değerin üstündedir. Diğer bir ifadeyle, görüntüdeki bütün pikseller gri değerlerine göre küçükten büyüğe sıralandığında tam orta sıradaki parlaklık/gri değeri verinin medyanıdır. Örn., bir görüntü verisi için toplam 25 piksel olduğunda tam orta nokta 13. sıraya karşılık gelir.

63 Sayısal Görüntü İstatistiksel Parametreleri Varyans, Standart sapma Varyans ( 2 ); verinin ortalama değer etrafındaki yayılımını anlamak için kullanılır. Veri kümesindeki her bir eleman ile verinin ortalaması arasındaki farkların karelerinin ortalaması alınmaktadır. Standart sapma ( ), varyansın pozitif kareköküne eşittir ve verinin ortalama değerden tam olarak ne kadar saptığını göstermektedir

64 Sayısal Görüntü İstatistiksel Parametreleri Standart sapma histogram genişliğini de (ortalama değer etrafındaki yayılma) gösterdiği için görüntü kontrastının bir ölçüsü olarak da kullanılmaktadır örn., küçük standart sapma değeri, düşük kontrastlı düz bir görüntüyü belirtir. Grafik teki yüzdeler, ait oldukları ortalama değer etrafındaki simetrik aralıkların, tüm verinin yüzde kaçını içerdiğini göstermektedir. Verinin histogram eğrisi böyle bir çan eğrisine uygunluk gösterdiği sürece bu oranlar her zaman geçerlidir. Bu özel durum için verinin aritmetik ortalama, mod ve medyan değerleri de aynı değere eşittir.

65 Sayısal Görüntü İstatistiksel Parametreleri Yukarıdaki örnek sentetik görüntü verisi için merkezi ve yayılım (dağılım) istatistikleri aşağıdaki gibidir.

66 Sayısal Görüntü İstatistiksel Parametreleri Kovaryans Kovaryans ( ij ); çok spektrumlu bir görüntüde kovaryans, farklı spektral bantlar arasındaki ortak değişkenliğin lineer bir ölçüsüdür. Örneğin B1 ve B2 bantları arasındaki kovaryans değeri aşağıdaki eşitlikle hesaplanabilir:

67 Sayısal Görüntü İstatistiksel Parametreleri Korelasyon, Korelasyon Katsayısı Korelasyon; iki değişken (bant) arasındaki lineer bağımlılığı gösteren bir ölçüttür. Korelasyon katsayısı ( ij ); kovaryans değerinin normalize edilmiş hali olduğu için birimsizdir. Bu amaçla kovaryans katsayıları ilgili değişkenlerin standart sapmalarının çarpımıyla bölünerek normalize edilirler. Örneğin B1 ve B2 bantlarıarasındaki korelasyon katsayısı aşağıdaki eşitlikte veril miştir: = Kovaryans B 1 B 2 Standart sapma B1 x Standart sapma B1 Korelasyon, [-1 +1] kapalı aralığında değerler alır Korelasyon katsayısının işareti ilişkinin yönünü gösterirken, sayısal değeri lineer ilişkinin gücünü gösterir.

68 Sayısal Görüntü İstatistiksel Parametreleri Korelasyon, Korelasyon Katsayısı Verilerdeki istatistiksel ilişkilerin yararlı bir özetidir. Yüksek varyans, ilgili bant için daha fazla bilgi içeriğni gösterir. Yüksek korelasyon ilgili bantlar arasında büyük miktarda bilgi tekrarı olduğunu gösterir. Düşük korelasyon her bir bantın bir diğerinde bulunmayan bilgi içeriğni ifade eder.

69 Sayısal Görüntü İstatistiksel Parametreleri Korelasyon, Korelasyon Katsayısı Genellikle, çok spektrumlu görüntü verileri için kovaryans ve korelasyon değerleri matris diziliminde gösterilir. Örneğin bir önceki sentetik görüntü verisi için Kovaryans matrisi (a) ve Korelasyon matrisi (b) aşağıda örüldüğü gibidir.

70 Sayısal Görüntü İstatistiksel Parametreleri Kovaryans, Korelasyon Katsayısı ij = ij ve ij = ij dolayısıyla olduğu için bu matrisler simetriktir. Kovaryans matrisinde köşegen üzerindeki sayılar ilgili bantların varyans değerlerine karşılık gelmektedir. Korelasyon matrisinde de köşegen üzerindeki değerler bantların kendileriyle olan ilişkilerini gösterdiğ için 1 dir. Korelasyon, birbirinden bağımsız iki değişken için sıfır ve birbiriyle aynı olan değişkenler için birdir. Negatif değerler ilişkinin ters yönlü olduğunu gösterir. Değişkenler arasındaki ilişki lineer değilse, korelasyon ayırt edici istatistiksel bir özellik olamaz.

71 Sayısal Görüntü Spektral uzaklık Spektral uzaklık; n-boyutlu spektral uzayda (bant sayısı n olan) hesaplanan Öklit uzaklığıdır. Bi bantında p ve k piksellerinin dijital değerleri Burada B i bantında p ve k piksellerinin dijital değerleri Örneğin 4 boyutlu sentetik verideki 3-4 ve 5-1 satır-sütun koordinatlarına karşılık gelen iki piksel arasındaki spektral mesafe: Burada, p pikselinin ölçü vektörü [ ] ve k pikselinin ölçü vektörü de [ ] dür.

72 Lineer kontrast yayma/germe Histogramdan yararlanılarak görüntüdeki kontrastın zenginleştirilmesi yöntemlerinden biridir; g 2 (x.y)=(g 1 (x.y) + t 1 ) t 2 t 1, t 2 : dönüşüm parametreleri, seçilebilir g 1 : girdi görüntü g 2 : çıktı görümntü,< g 2 min, g 2 max > aralığındadır t 1 = g 2 min - g 1 min g 2 max - g 2 min t 2 = g 1 max - g 1 min Örnek/ orijinal görüntünün min gri değeri 89 ve maksimim gri değeri 176 olsun. Gri değerleri [ 0,255] arasında yamak istersek t 1 =0-89=-89 t 2 = (255-0) / (176-89) = 2.93

73 Lineer kontrast yayma/germe g Örnek n a) Görüntü hakkında bilgi veriniz b) Yeni görüntünün lineer kontrast yöntemi ile elde edilecek gri değerlerini hesaplayınız c) Histogramını ve kümülatif histogramını çiziniz t 1 =0-15=-15 t 2 = (31-0) / (20-15) = 6.2 g 2 (x.y)=(g 1 (x.y) + t 1 ) t 2 g 1 =15 için g 2 =(15+ (-15)) x6.2=0 g 1 =16 için g 2 =(16+ (-15)) x6.2=6.2.. g 1 g

74 Histogramı = % % % % % %

75 Kümülatif histogramı = % % % % % %

76 Histogram eşitleme Histogramdan yararlanılarak görüntüdeki kontrastın zenginleştirilmesi yöntemlerinden bir diğeridir Örnek için: Bakınız Doç. Dr. Bülent Bayram Görüntü İşleme Ders Nortu

77 ÇÖZÜNÜRLÜK Birçok uzaktan algılama algılayıcısı, verileri uzaktan algılamada geçerli olan temel prensiplere bağlı olarak algılamış olsa da, sonuç görüntüsünün formatı ve kalitesi çok farklılık gösterebilir. Bu farklılıklar dört farklı uydu çözünürlüğü ile ilişkilidir Mekansal/Konumsal/Geometrik Spektral Zamansal Radyometrik

78 Çözünürlük Geometrik/Mekansal Bir görüntünün /geometrik/uzaysal/mekansal çözünürlüğü (spatial resolution), ilgili görüntünün 1 pikselinin fiziksel büyüklüğüne eşittir. Kısaca çözünürlük, bir görüntünün detaylanabilir en küçük parçasıdır.

79 Çözünürlük Geometrik/Mekansal Mekânsal çözünürlük görüntüde ayırt edilebilir detay seviyesini gösteren bir özelliktir. Diğer bir ifade ile bir uydu görüntüsünde görünen detaylar algılayıcının mekânsalçözünürlüğüne bağlı olup, bu değer görüntünün en küçük elemanı olan bir pikselin yeryüzündeki kapladığı alana karşılık gelmektedir. Örneğin NOAA uydusundaki AVHRR algılayıcısı1kmx1km SPOT pankromatik (P) görüntüsünde ise bir piksel ise10m x 10m lik IKONOS -Pan - 1mxm

80 Yeryüzünde algılanan minimum alan görüntünün maksimum mekânsal çözünürlüğüne eşit olup bu alan, algılayıcının platform yüksekliğine ve Anlık GörüşAlanı (IFOV) ile ifade edilen gözleme açısına bağlı olarak belirlenir. Daha küçük gözleme açısı veya daha alçak uydu yüksekliği daha küçük IFOV a neden olur. Gözleme doğrultusunun nadir doğrultuda veya eğik algılama olması durumu dayerde kaplanan alana etki etmektedir.

81 Whiskbroom tarayıcılar için bu durum mekânsalçözünürlüğün görüntü merkezinden kenarlara doğru değişmesine neden olmaktadır Pushbroom tipi tarayıcı sistemler için; Yer çözünürlük elemanı = Uydu yüksekliği (H) Anlık görüş alanı (IFOV) olarak belirlenir, burada IFOV, radyan cinsinden ölçülmektedir.

82 Mekânsal çözünürlük açısından uydu görüntüleme sistemleri: Düşük mekânsal çözünürlüklü sistemler (30 - >1 km) Orta mekânsal çözünürlüklü sistemler (4 m - 30 m) Yüksek mekânsal çözünürlüklü sistemler (0.5 m - 4 m) olarak gruplandırılmaktadır.

83

84 Yüksek ve düşük mekânsal çözünürlüğe sahip dijital görüntülerdeki temelavantaj ve dezavantajlar

85 UYDU SİSTEMLERİ-Görüntülerin Özellikleri Yersel Ayırma Gücü Piksel büyüklüğü 2 2 ~3piksel LANDSAT 30 x30 SPOT 20m x 20m / pan 10m x 10m IKONOS 4m x 4m / pan 1m x 1m QUICKBIRD 60 cm x 60cm

86 Pikesel/dpi Örnek Bir Landsat görüntüsünde 450 hektar alan kaç piksel ile örtülür? Landsat 30mx 30 m 450x10000= m 2 30x30=900m /900= 5000piksel ~71x71

87 Pikesel/dpi Örnek Bir SPOT görüntüsünde 450 hektar alan kaç piksel ile örtülür? SPOT 20 m x 20 m 450x10000= m 2 20x20=400m /400= piksel SPOT pankromatik 10 m x 10 m 10x10=100m /100= piksel

88 Pikesel/dpi Örnek Bir IKONOS görüntüsünde 450 hektar alan kaç piksel ile örtülür? IKONOS 4m x 4m 450x10000= m 2 4x4=16m /16= pikse IKONOS pankromatik 1m x 1m 1x1=1m /1= piksel

89 Pikesel/dpi Örnek Bir QUICKBIRD görüntüsünde 450 hektar alan kaç piksel ile örtülür? 450x10000= m 2 60x60=3600 cm 2 =0.36m /0.36= piksel

90 UYDU SİSTEMLERİ Görüntülerin Özellikleri Spektral Ayırma Gücü- Nesnelerin ve arazi türlerinin uzaktan algılama yolu ile ayırt edilebilmelerinin en önemli nedeni spektral özelliklerinin değişiklik göstermesidir. Algılayıcılar bu değişimleri fark edecek şekilde tasarlanır Her spektral aralık elektromanyetik spektrumun bir bölgesine duyarlıdır Spektral dalga boyu genişliği: Bir algılayıcının, elektromanyetik spektrumda kaydedebildiği spesifik dalga boyu aralığıdır. Algılama yapılan bant sayısı: Bant sayısı arttıkça spektral çözünürlük de artmaktadır.

91

92 Genel olarak spektral çözünürlüğe bağlı olarak algılayıcı sistemler; geniş-bant aralıklı, dar-bant aralıklı, spektral, hiperspektral algılayıcılar olarak gruplandırılırlar.

93 Yüksek ve düşük spektral çözünürlüğe sahip dijital görüntülerdeki temel avantaj ve dezavantajlar aşağıda verilmektedir: Dar bant aralığına sahip bantlar daha fazla spektral detay içerirler, ancak daha az enerjiye diğer bir ifade ile düşük sinyal gücüne sahiptirler. Çok bantlı veri daha fazla bilginin depolanması, iletilmesi ve işlenmesini gerektirir. Ancak daha fazla bant sayısı daha fazla spektral detay içerdiğinden cisimlerin ayırt edilmesinde daha çok kolaylık sağlamaktadır.

94 UYDU SİSTEMLERİ-Görüntülerin Özellikleri Radyometrik Ayırma Gücü Bir piksele ait yayın şiddeti (amplitude) Ayırma gücü sayısal olarak bit cinsinden ifade edilir 2 8, 2 11, = 256 [0-255] 2 11 = 2048 [0-2047] 2 16 = [ ]

95 UYDU SİSTEMLERİ-Görüntülerin Özellikleri Radyometrik çözünürlük bir görüntü dosyasının boyutunu (depolama alanını) da hesaplamada kullanılır. Örneğin 100 x 100 pikselden oluşan 8bit lik bir görüntünün kapladığı alan; Dosya boyutu = Görüntü boyutu (satır * sütun) Radyometrik çözünürlük (bit) = = bit veya bayt dır.

96 UYDU SİSTEMLERİ-Görüntülerin Özellikleri Zamansal Ayırma Gücü Uydunun aynı bölgeden arka arkaya geçişi arasındaki süre Bu ise uydudan uyduya farklılık göstermektedir, diğer bir ifade ile bazı uydu sistemleri birkaç saatte, bazıları ise birkaç gün sonra aynı bölgeden algılama yapabilmektedir. LANDSAT-TM uydusu 16 günde NOAA/AVHRR günde 2 kez Bazı uygulamalar için görüntülerin alınma aralığı önem taşır Tarım alanlarının izlenmesinde : Gün Kent alanlarının bümesinin izlenmesinde : Yıl

97 UYDU SİSTEMLERİ-Görüntülerin Özellikleri Zamansal çözünürlük, tek bir görüntü yerine aynı algılayıcının zaman içerisinde algıladığı seri görüntüleri belirttiğinden özellikle değişim saptama uygulamalarıiçin çok önemlidir. Zamansal çözünürlük özellikle; yeryüzünün belirli bölgeleri için (örn. tropik bölgeler) bulutsuz görüntü alma olanağının sınırlı olması durumunda, insan ve/veya doğal kaynaklı afet olaylarının (sel baskını, gemilerden yağ tabakası deşarjı, vb.) izlenmesinde, çok-zamanlı görüntülerin karşılaştırılmalarını (örn. böcek istilası durumunda zarar gören orman kaynaklarının yıldan yıla izlenmesi ve yayılımının belirlenmesi)gerektiren uygulamalarda, dinamik özelliğe sahip arazi örtü sınışarının (örn. buğday ürünü gelişiminin izlenmesi) zaman içindeki gelişiminin izlenmesinde oldukça kritik bir faktör olduğundan, uzaktan algılama uygulamalarında kullanılacak algılayıcı seçiminde büyük önem taşımaktadır.

98 Dijital /Sayısal Görüntü İşleme Görsel yorumlama Ön işleme Görüntü zenginleştirme Radyometrik Düzeltme Geometrik Düzeltme Oran görüntüleri Filtreleme Ana Bileşen Dönüşümü

99 Dijital /Sayısal Görüntü İşleme Sayısal görüntülerden amaca uygun bilgilerin çıkartılmasında genel olarak iki farklı yöntem kullanılır: Görsel analiz görüntüler bu konuda tecrübe sahibi kişiler tarafından görsel/optik olarak yorumlanırlar. Kantitatif analiz görüntüler bilgisayar ortamında oldukça karmaşık olabilen matematik istatistik algoritmalarla işlenirler.

100 Dijital /Sayısal Görüntü İşleme Sayısalgörüntünün bilgisayar ortamında değişik algoritmalarla analizinde göz önüne alınan genel işleme adımları aşağıda verilmektedir: Ön işleme Görüntü zenginleştirme Spektral dönüşüm Mekânsal dönüşüm Sınıfandırma

101 Sayısal Görüntü İşleme Görsel Analiz Görsel yorumlama farklı algılama sistemlerinden elde edilmiş görüntülerin (uçak-/uydu-bazlı görüntü) optik olarak yorumlanarak değerlendirilmesi ve değişik fiziksel özelliklerinin sınışandırılmasıdır. İşlemin başarısı, analizcinin görüntüdeki mekânsal, spektral ve zamansal öğeleri analiz edebilme yeteneğine sıkı sıkıya bağlıdır. Bilginin mekânsal özellikleri genellikle objelerin şekil, büyüklük, oryantasyon, örüntü ve doku nitelikleriyle açıklanır.

102 Sayısal Görüntü İşleme Görsel Analiz Görsel Yorumlama da dikkate alına temel özellikler

103 Sayısal Görüntü İşleme Görsel Analiz Bilginin mekânsal özellikleri genellikle objelerin şekil, büyüklük, oryantasyon, örüntü ve doku nitelikleriyle açıklanır. Örnek:Yollar, caddeler, yerleşim yerleri, kıyı şeritleri, sulama sistemleri,nehirler, kırıklı örüntüler, sık veya seyrek dokular mekânsal özelliklerdeki farklılıklara göre rahatça ayırt edilebilir. Cisimlerin spektral nitelikleri renk olarak algılanır. Analizcinin önceden arazi örtü tiplerinin spektral özelliklerini ve görüntünün nasıl algılandığını bilmesi gerekir. Zamansal özellikler, belirli bir objenin belirli bir zaman aralığındaki değişimini yorumlamak için kullanılırlar. Bunun için ilgili tarihlerde incelenen bölgeye ait görüntülerin elde edilmiş olması gerekir.

104 Sayısal Görüntü İşleme Görsel Analiz Görsel yorumlamada görüntünün mekânsal ve radyometrik detaylarının analizi oldukça kaba olduğundan belirtilen niteliklere göre görsel yorumlamanın daha doğru yapılabilmesi için genellikle görüntülere görüntü zenginleştirme teknikleri uygulanır. örn. kontrast artırımı

105 Sayısal Görüntü İşleme Görsel Analiz Büyüklük, objelerin diğer objelere göre ölçeğini gösterir. Örneğin, kamu binaları genellikle konut binalarından daha büyüktür. Biçim, objelerin fiziksel dış sınırlarının oluşturduğu genel formu veya konfigürasyonudur. İki boyutlu değerlendirmelerde sadece uzunluk ve genişlik söz konusu olurken, üç boyutlu stereoskopik değerlendirmelerde yükseklik bilgisi de biçim özelliğine dâhildir. Örüntü, objelerin mekânsal dizilimidir. Örneğin bir otoparkta hem belirli şekiller hem de objeler arasındaki belirli ilişkiler (aralarındaki boşluk, yönelimleri) tekrarlanmaktadır. Bu özellikler bir otoparkın rahatlıkla ayırt edilmesini ve tanınmasını sağlar. Aynı durum bir meyve bahçesiyle bir orman arasındaki farkı oluşturur.

106 Sayısal Görüntü İşleme Görsel Analiz Ton ve renk, objelerin bağıl parlaklık ve spektral yansıtım farklılıklarını ifade eder. Cisimlerin mekânsal özellikleri ne kadar farklı olursa olsun, renk veya ton farklılıkları olmazsa birbirlerinden ayırt edilemezler. Doku, görüntüdeki ton değişiminin frekansıdır. Bu özellik, fark edilemeyecek kadar küçük olabilen bireysel objelerin bir araya gelmesiyle oluşur. Dokusuna göre objeler ince veya kaba olabilirler. Doku ölçeğe çok bağlı olup ölçek küçüldükçe doku özelliği kaybolur. Gölge, üstten elde edilen görüntülerde objelerin dış görünüşleri hakkında ipucu verir. Bu avantajına rağmen gölgede kalan diğer objeler fark edilemeyebilir. Konum, objelerin coğrafi konumlarını belirtir. Belirli bitki çeşitlerinin belirli coğrafi bölgelerde yetişmesi durumundan dolayı, bitki örtüsü tiplerinin belirlenmesinde önemli bir özelliktir.

107 Sayısal Görüntü İşleme Görsel Analiz Bağlamsal ilişki, objelerin belirli özelliklerinin ilişkilendirilmesi anlamına gelir. Bu özelliklerin yanı sıra görüntünün mekânsal çözünürlüğü, görüntünün görsel kalitesi (örn. kontrast dengesi), görüntünün spektral bölgesi, görüntü zamanı ve görüntülerin zamansal dağılımı görsel yorumlama başarısını doğrudan etkileyen diğer faktörlerdir. Daha doğruluklu bilimsel görüntü yorumlama ve bilgi çıkartımı için; farklı-ölçekte, çok-spektrumlu ve çok-zamanlı veri alımı sağlanarak, bu görüntülerin çoklu-disipliner yorumlama entegrasyonu ile analizi yapılmalıdır.

108 Sayısal Görüntü İşleme Ön İşleme Bir görüntü elde edilirken geometrisinde ve piksel gri değerlerinde bazı sistematik karakterli geometrik ve/veya radyometrik hatalar oluşabilir. Algılayıcı, uydu platformu ve yeryüzü karakteristiklerine bağlı olarak oluşan hatalar geometrik hatalardır. Algılayıcı, ışımanın dalga boyu, atmosfer ve topoğrafik etkiler sonucu gri değerlerinde oluşan hatalar radyometrik hatalar olarak adlandırılır. Sayısal görüntünün yorumlanmasında veya bilgisayarla analizinde istenen seviyede doğru sonuçlar elde edebilmek için geometrik ve radyometrik hataların olabildiğince düzeltilmeleri gerekir. Ön işleme olarak adlandırılan bu aşamada görüntü verisinden sözü edilen sistematik hatalar uygun fiziksel ve matematiksel yaklaşımlarla giderilmeye çalışılır ve iki aşamada gerçekleştirilir: 1. Radyometrik düzeltme: Ölçülen sinyalin kalibrasyonu. 2. Geometrik düzeltme: Görüntünün ait olduğu gerçek yüzey konumundan dolayı oluşan hataların düzeltilmesi.

109 Sayısal Görüntü İşleme Ön İşleme-Radyometrik Düzeltme Herhangi bir algılayıcı sistem tarafından ölçülen ışınırlık, aydınlanma geometrisindeki, atmosferik koşullardaki, bakış geometrisindeki ve algılayıcı karakteristiklerindeki değişimlerden etkilenir Genellikle bu etkilerin düzeltilmesi algılayıcı sisteme ve uygulama çeşidine bağlı olarak farklılık gösterir. Örneğin bakış geometrisi gibi etkiler uçak-bazlı sistemlerde uydu sistemlerine göre çok daha önemli bir etkiye sahiptir.

110 Sayısal Görüntü İşleme Ön İşleme-Radyometrik Düzeltme

111 Sayısal Görüntü İşleme Ön İşleme-Radyometrik Düzeltme Spektrumun görünür ve kızıl ötesi bölgelerinde kullanılan pasif algılama sistemlerinde belirgin radyometrik düzeltme aşamaları dört adımda incelenebilir; algılayıcı kalibrasyonu, atmosferik düzeltme, topoğrafik düzeltme ve Güneş in açısal yüksekliği ve yeryüzüne olan uzaklığına bağlı düzeltme olarak

112 Sayısal Görüntü İşleme Ön İşleme-Radyometrik Düzeltme

113 kullanıcılara işletmeci firma tarafından sağlanır. Ön İşleme-Radyometrik Düzeltme Algılayıcı Kalibrasyonu Uydu görüntüsündeki piksel yansıtım değerleri algılayıcıya gelen ışınırlık değerlerine dönüştürülür. Bu dönüşüm özellikle farklı zamanlarda farklı algılayıcılar tarafından ölçülen objelerin yansıtımlarındaki değişimlerin analizinde ve parlaklık değerlerinin yeryüzünde yapılan sayısal ölçümlerle ilişkilendirilmesi (örneğin su kalitesi ile ilgili ölçümler) için gerekli olan matematiksel modellerin geliştirilmesinde kullanılır. Algılayıcılardaki her bir bant için gelen ışınırlık değerini piksel parlaklık/gri değerine dönüştüren farklı bir çıkış fonksiyonu (kalibrasyon parametreleri) vardır. Bu fonksiyonların özellikleri, algılayıcı platformundaki kalibrasyon lambalarıyla veya Güneş e yapılan periyodik gözlemlerle sürekli kontrol edilir. Bu şekilde platform üzerindeki ölçmelerle sürekli kontrol edilen ve güncellenen kalibrasyon verileri

114 Ön İşleme-Radyometrik Düzeltme Algılayıcı Kalibrasyonu Genellikle algılayıcılar gelen enerjiye lineer bir tepki verecek şekilde tasarlanırlar. Algılayıcıya gelen ışınırlıkla piksellere atanan gri değerleri (DN) arasındaki ilişki, platformdaki iç kalibrasyon standartlarının spektral ışınırlık değerlerinden lineer regresyon analiziyle bulunur, örn.; Landsat TM için; R ölçülen = A i * DN + B i SPOT HRV için; R ölçülen = DN / A i R ölçülen = ölçülen ışınırlık A i = i bantı için kalibrasyon kazancı B i = i bantı için kalibrasyon ötelemesi A ve B değerleri literatürden veya görüntü destek dosyalarından bulunabilir.

115 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosfer, Güneş ışınırlığı ve algılayıcının ölçtüğü ışınırlık arasında karmaşık bir ilişki oluşturur. Temel olarak atmosfer gelen enerjiyi yutar ve/veya saçar. Optik bölgede uzaktan algılama sistemleri ile elde edilen enerji yeryüzünden yansıyan ve/veya yayılan enerjiyle atmosferin yaydığı ve/veya saçtığı enerjinin karışımıdır Diğer bir ifade ile algılayıcının birim zamanda birim alandan birim katı içinden algıladığı enerji (ışınırlık), birim zamanda birim alana gelen enerjinin (birim ışınırlık), hedef yansıtımının, atmosferin saçtığı enerjinin ve atmosferik yutulmanın bir fonksiyonudur.

116 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Görüntüdeki her bir piksel değerinin fonksiyonu olan algılayıcı ışınırlığı matematiksel olarak; Burada; R ölçülen = algılayıcının ölçtüğü toplam spektral ışınırlık, = algılanan yer yüzeyinin yansıtımı, E = birim zamanda yer yüzeyinin birim alanına gelen enerji (birim ışınırlık), T = atmosferin geçirimi (gelen enerji miktarının atmosfer olmaması durumunda yeryüzüne gelecek olan enerji miktarına oranı), Lp = atmosferik yol ışınırlığı matematiksel olarak

117 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme

118 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik düzeltme üç farklı şekilde yapılmaktadır: 1. Uydu algılayıcısı, atmosfer ve hedef arasındaki ilişkiyi ve etkileşimleri modelleyen fiziksel metotlar kullanılır. Atmosferik düzeltmelerin fiziksel olarak modellendiği bu yaklaşım en sağlam ve tutarlı ancak en zor yaklaşımdır. En yaygın kullanılan modeller 5S, 6S, LOWTRAN, MODTRAN, şaash, ATCOR2 ve ATCOR3 modelleridir. Bu simülasyonlar meteorolojik, mevsimsel ve coğ- rafik değişkenleri girdi olarak alırlar. Pratikte bu değişkenler için yeterli zamansal ve mekânsal çözünürlükte değerler elde edilemez ve özellikle atmosferik aerosollerin dağılımının tahmini zordur. Bu yaklaşımlarda Güneş birim ışınırlığı, Güneş ile Dünya arasındaki uzaklığın değişimine bağlı olarak normalize edilir. 2. Atmosferik düzeltmeler, yansıtımı bilinen doğal veya yapay yeryüzü hedeşerine dayalı olarak yapılır. Yansıtım özellikleri çok iyi bilinen, yeterli çözünürlüğe sahip ve görüntü alanına iyi dağılmış hedef objeleri atmosferik koşulların konumdan konuma olan değişimlerinin belirlenmesinde etkin olarak kullanılabilir

119 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme 3. En kolay ve en yaygın kullanılan atmosferik düzeltme yöntemi koyu piksel çıkartımı yöntemidir. Bu yöntemde herhangi bir spektral bant için bir minimum parlaklık de ğeri (DN) belirlenir ve bu değere göre görüntü histogramıötelenir. Yani belirlenen değer görüntüdeki bütün piksellerin yansıtım değerlerinden çıkartılır. Bu yöntemde ilgili spektral bant için bazı piksellerin sıfır yansıtım değerine sahip olması gerekliliği kabul edilir. Böylece bu pikseller için ölçülen ışınırlığın (Lp) atmosferik saçılma sonucu oluştuğu ve konumdan konuma değişmediği kabulü yapılır. Genellikle optik veriler için gölge alanlar ve kızıl ötesi bantlar için temiz derin su kütleleri hedef olarak seçilir. Ancak bu yöntem oldukça kaba bir yaklaşımdır ve daha çok pratik amaçlar için kolay ve uygulanabilir bir yöntemdir.

120 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Genellikle optik veriler için gölge alanlar ve kızıl ötesi bantlar için temiz derin su kütleleri hedef olarak seçilir. Şekilde İstanbul, Büyükçekmece bölgesine ait Landsat TM uydu verisinde kızıl ötesi bantta su cismi hedef olarak seçilerek görüntü histogramı incelenmiş ve su cismine ait piksellerin sıfır yansıtım değerine sahip olması gerekliliğinden yola çıkılarak atmosferin etkisi belirlenmiştir. Ancak bu yöntem oldukça kaba bir yaklaşımdır ve daha çok pratik amaçlar için kolay ve uygulanabilir bir yöntemdir

121 Ön İşleme-Radyometrik Düzeltme Topoğrafik düzeltme Topoğrafik düzeltme adımında, topoğrafik değişimlere bağlı olarak oluşan sinyal farklılıkları normalize edilir. Bu amaçla en yaygın kullanılan yöntem bant oranlaması dır. Örneğin, Landsat TM için 5. bandın 4. banda oranı gibi. Yansıtım, topoğrafyaya bağlı olarak aynı cisim için farklılık gösterse de iki bandın birbirine olan oranı aynı olacaktır. Oldukça basit olan bu yöntem topoğrafik etkiyi kısmen gidermektedir.

122 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Diğer bir yaklaşım, yüzeyin Lambert yüzeyi olduğu kabulüyle, dalga boyunun sabit olduğu ve atmosferik etkileşimlerin olmadığı kabul edilerek, yansıtımdaki değişimin lokal geliş açısından kaynaklanması durumudur. Bu durumda algılayıcıya gelen ışınırlık aşağıdaki eşitlik ile normalize edilir: R ölçülen R 0 i algılayıcıya gelen ışınırlık topoğrafik farklılıklar için normalize edilmiş ışınırlık değeridir. lokal geliş açısı, Güneş ışınırlık yolu ile lokal yüzey normali arasındaki açıdır. Yüzeyin Lambert olmaması durumunda düzeltme işlemi oldukça karmaşıklaşır Yapılan uygulamalara göre, eğer yüzey eğim açısı 25 den küçükse ve etkin aydınlanma açısı yaklaşık 45 ise, yüzeyin Lambert yüzeyi olarak kabul edilmesi daha uygun bir yaklaşım olacaktır.

123 Ön İşleme-Radyometrik Düzeltme Güneş in Açısal Yüksekliğine ve Yeryüzüne Olan Uzaklığına BağlıDüzeltme Bazı durumlarda farklı optik görüntülerin karşılaştırılabilmeleri için aydınlanma geometrilerindeki farklılıkların standartlaştırılması (normalize edilmesi) gerekir. Yüzeyin Lambert yüzeyi, dalga boyunun sabit olduğu ve atmosferik etkileşimlerin olmadığı kabul edilerek yansıtımdaki değişimin Güneş in açısal yüksekliğine bağlı olduğu durumda algılayıcıya gelen ışınırlık aşağıdaki eşitlik ile normalize edilir: R ölçülen algılayıcıya gelen ışınırlık R 0 aydınlanma geometrilerindeki farklılıklar için normalize edilmiş ışınırlık değeridir. Güneş in açısal yüksekliği olup görüntününkarşılık geldiği coğrafi konuma, mevsime ve zamana bağlıdır.

124 Ön İşleme-Radyometrik Düzeltme Güneş in Açısal Yüksekliğine ve Yeryüzüne Olan Uzaklığına BağlıDüzeltme Diğer bir deyişle, bu açı Güneş ışınlarının atmosferde kat ettiği uzaklık ile ilişkilidir, örn., dik Güneş açısı daha kısa atmosferik yolu belirtir. Bu bağlamda, yukarıda belirtilen basit normalize işleminde Güneş ışınlarının yeryüzüne olan farklı uzaklıkları da dikkate alınarak ortak bir düzeltme yapılır. Güneş in birim ışınırlığı, Dünya Güneş uzaklığının karesiyle ters orantılı olarak azalır. Bu mesafe genellikle astronomik birimle ifade edilir. Astronomik birim, Dünya nın Güneş etrafındaki eliptik yörüngesinin büyük ekseninin yarısı olan x 1011 metredir. Yüzeyin bir Lambert yüzeyi olduğu kabul edilirse yüzeydeki algılayıcıya doğru olan ışınırlık değeri aşağıdaki eşitlikle ifade edilebilir:

125 Ön İşleme-Radyometrik Düzeltme Güneş in Açısal Yüksekliğine ve Yeryüzüne Olan Uzaklığına BağlıDüzeltme E 0 1 astronomik birim uzaklığındaki Güneş in atmosfer dışındaki birim ışınırlığı. Güneş ile algılanan cisim arasındaki gerçek astronomik uzaklık yer yüzeyinin etkin yansıtımı Bu düzeltme işleminde, algılayıcının nadir doğrultusunun görüntülenen yatay yüzeyin normal doğrultusuyla çakışık olduğu ve Güneş in bu yüzeyi d mesafeden zenit açısıyla aydınlattığı kabul edilir. Buna göre farklı aydınlanma koşulları altında elde edilen görüntü verisi Güneş in zenitte olduğu varsayımıyla normalize edilir. Aslında daha gerçekçi bir yaklaşım, ölçülen ışınırlığın Güneş in lokal geliş açısıyla (Güneş in lokal zenit açısı) normalize edildiği durumdur.

126 Ön İşleme-Radyometrik Düzeltme Güneş in Açısal Yüksekliğine ve Yeryüzüne Olan Uzaklığına BağlıDüzeltme

127 Lambert yüzeyi, gelen enerjiyi her doğrultuda uniform yansıtan bir yüzeydir. Daha teknik bir ifade ile yüzeyden olan ışınırlık difüz yansıtıma bağlı olarak izotropik (eş yönlü) tir. Örneğin, cilasız bir ahşap yüzey yaklaşık Lambert yüzeyi iken cilalandıktan sonra değişik noktalarda oluşan speküler yansımaya bağlı olarak Lambert yüzeyi değildir. Tüm kaba dokulu yüzeyler ideal Lambert yüzeyi olmamasına rağmen bu kabul, yüzey özelliklerinin bilinmediği durumlar için geçerli bir yaklaşımdır.

128 Geometrik Dönüşüm-Rektifikasyon Haritalar, belirli matematiksel kartografik ve jeodezik projeksiyon kurallarına göre düzlem bir altlık üzerine izdüşürülen ve her noktasında uniform ölçeğe sahip olan yeryüzünün gösterimidirler. Dijital görüntüler, değişik sebeplerden kaynaklanan geometrik distorsiyonlardan dolayı doğrudan harita gibi kullanılamazlar. Diğer bir ifade ile görüntüyü oluşturan piksellerin temsil ettikleri coğrafi alanların arasındaki uzaklıklar, görüntüde uniform olmayan bir şekilde hatalı olarak gösterilir. Bunun sonucu cisimlerin şekil, büyüklük ve konum gibi özellikleri görüntü düzleminde bozulur. Uydu görüntü verilerinin bu distorsiyonlar için düzeltilerek bir harita projeksiyon sistemiyle tutarlı hale getirilmesi işlemine rektifikasyon adı verilir.

129 Geometrik Dönüşüm-Rektifikasyon Rektifikasyon işlemi sonrasında piksellerin geometrik konumlarının yanı sıra radyometrik (parlaklık) değerleri de değişmektedir. Geometrik distorsiyonlar genel olarak aşağıda belirtilen faktörlerden kaynaklanmaktadır: Bazı algılayıcıların geniş bakış alanı Görüntü elde edilirken Dünya nın dönüşü Yeryüzü eğriselliği Uydu platformunun konum, durum ve hızındaki değişimler Görüntüleme geometrisiyle ilişkili panoramik etkiler Topoğrafik rölyef etkisi

130 Geometrik Dönüşüm-Rektifikasyon Geometrik distorsiyonların görüntünün bütününde aynı anda giderilmesinde kullanılan genel olarak iki yaklaşım söz konusudur: 1. yaklaşım: Görüntünün piksel piksel topoğrafik distorsiyonları düzeltilerek, harita gibi ortografik izdüşüm özelliğine sahip bir duruma getirilmesi işlemin olan ortorektifikasyon dur sistematik bir yaklaşım distorsiyon düzeltmeleri distorsiyonuntürü ve büyüklüğünün modellenmesiyle hesaplanır. Bu yaklaşım distorsiyonun tipi (örn. uydu konumu, durumu, tarama açısı, Dünya nın dönüşü,bakış oranı, panoramik etki, vb.) iyi karakterize edilebildiğinde çok etkili olmaktadır. Topoğrafik rölyefe bağlı geometrik distorsiyonların düzeltilmesiiçin yeryüzünün Dijital Yükseklik Modeli gereklidir.

131 Geometrik Dönüşüm-Rektifikasyon 2. yaklaşım: İkinci yaklaşımda distorsiyonlu görüntüdeki piksellerin koordinatları ile bunların karşılık geldiği arazideki koordinatları arasında (harita yardımıyla) matematiksel bağlantı kurulur. distorsiyonun tipi ve kaynağı hakkıbnda herhangi bir bilgiye gerek olmaksızın görüntü geometrisi düzeltilir. platformdan bağımsız ve ilk etapta en çok tercih edilen bir yaklaşımdır. Bu matematiksel ilişkilendirme yaklaşımı distorsiyonların fiziksel modellendiği birinci yaklaşımla birlikte hibrit (melez) olarak da kullanılabilir. Birinci yaklaşımla algılayıcı, uydu platformu ve yeryüzü kaynaklı distorsiyonlar düzeltildikten sonra geriye kalan artık distorsiyonlar ikinci yaklaşmla düzeltilebilir.

132 Geometrik Dönüşüm-Rektifikasyon Hangi yaklaşım kullanılırsa kullanılsın görüntülerin geometrik düzeltilmesinde genel olarak 3 aşıamalı bir süreç uygulanır: 1. Uygun matematiksel hata düzeltme modelinin seçimi 2. Koordinat dönüşıümü veya belirlenen modelin kullanımı 3. Parlaklık değerlerinin yeniden örneklenmesi Distorsiyon tipinin modellenmediği ikinci yaklaşıımda, koordinat dönüşıüm modelleri iki eksen için ayrı ayrı elde edilir: u = f (x,y) v = g (x,y)

133 Geometrik Dönüşüm-Rektifikasyon En çok kullanılan dönüşıüm modelleri polinom fonksiyonlardır. 1. dereceden tek değişıkenli polinom: f(x) = a 0 + a 1 x 2. dereceden tek değişıkenli polinom: (x) = a 0 + a 1 x + a 2 x 2 Görüntü iki boyutlu olduğu için dönüşıüm modelleri de iki boyutlu olmak zorundadır. Dönüşıüm modeli olarak kullanılacak iki değişıkenli polinomun genel matematiksel eşıitliği; dir, burada; N; polinomun derecesi a ve b katsayıları; model parametreleri

134 Geometrik Dönüşüm-Rektifikasyon

135 Geometrik Dönüşüm-Rektifikasyon Hangi polinom derecesinin kullanılacağına dair fiziksel bir gerekçe yoktur. Uçak platformlarına kıyasla daha stabil bir platformdan alınan uydu görüntüleri için bakışı alanının büyük ve topoğrafik rölyef etkisinin küçük olması durumunda genellikle 1. veya 2. dereceden polinomların kullanımı yeterlidir. Özellikle sistem parametrelerine göre sistematik modellerle düzeltilmişı görüntülerin rektifikasyonunda1. dereceden polinomlar uygundur.

136 Geometrik Dönüşüm-Rektifikasyon Polinomun derecesi ölçülmesi gereken en az YKN sayısını belirler. 1. dereceden polinom plam 6 bilinmeyen (a0, a1, a2, b0, b1, b2) 2. dereceden dönüşıüm için toplam 12 bilinmeyen model parametresi vardır. Bunlara göre her bir YKN nin u ve v görüntü koordinatları için iki ayrı eşıitlik yazılabildiğinden 1. derece dö az 3 tane ve 2. derece dönüşıüm için en az 6 tane YKN ölçülmelidir. Eğer bilinmeyen(model parametresi) sayısından daha fazla sayıda ölçü (YKN) varsa En Küçük Kareler yöntemi kullanılarak bilinmeyenlerin en olasılıklı değerleri hesaplanmalıdır. Dönüşıümün doğruluğu; YKN sayısına, YKN dağılımına, Dönüşıtürülecek noktaların ağırlık merkezine olan uzaklıklarına bağlıdır.

137 Geometrik Dönüşüm-Rektifikasyon YKN ler iyi tanımlanmışı, mekânsal olarak küçük, olabildiğince aynı yükseklikte, zamanla değişmeyen yapay veya doğal yeryüzü noktalarıdır. Yol kesişıimleri, tarımsal alanların köşıeleri, dalgakıran ve limanlar örnek olarak verilebilir. Polinomun derecesi ölçülmesi gereken en az YKN sayısını belirler.

138 Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme Dönüşümün YKN ler aracılığıyla belirlenmesinden sonra, geometrik hataları düzeltilmiş distorsiyonsuz gridi oluşturan piksellere ait parlaklık değerlerinin belirlenmesi gerekir. Bu durumda orijinal distorsiyonlu görüntüden hangi parlaklık değerlerinin alı-nacağına karar verilmesi işlemi, diğer bir ifade ile parlaklık enterpolasyonu adımı uygulanır.

139 Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme Genel olarak 3 farklı yaklaşım kullanılmaktadır: tam piksel konum değerleriyle çakışmazlar. 1. En Yakın Komşuluk Örneklemesi Basit bir yöntem olup dönüşüm koordinatlarının en yakın olduğu pikselin parlaklık değeri distorsiyonsuz grid pikseline atanır. 2. Bilineer Enterpolasyon Bu yöntem, pikseli çevreleyen 4 komşu pikselin kullanıldığı iki boyutlu lineer bir enterpolasyondur. Şekil de görüldüğü gibi siyah dolgulu hedef gride atanacak parlaklık değeri, orijinal distorsiyonlu görüntüdeki (mavi çizgili) en yakın 4 pikselin iki boyutlu lineer enterpolasyonuyla belirlenir.

140 Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme 3. Kübik Enterpolasyon:İki boyutlu 3. dereceden polinom enterpolasyonu olup pikseli çevreleyen 16 piksel (4*4 piksel komşuluk) kullanılır. Şekilde görüldüğü gibi siyah dolgulu hedef gride atanacak parlaklık değeri, orijinal distorsiyonlu görüntüdeki (mavi çizgili) en yakın 16 pikselin iki boyutlu kübik enterpolasyonuyla belirlenir.

141 Geometrik Dönüşüm-Rektifikasyon Yeniden Örnekleme

142 Görüntü Zenginleştirme Görüntü zenginleştirmede amaç; Görsel analiz için görüntülerin algılanabilirliğini veya yorumlanabilirliğini arttırmak veya diğer otomatik görüntü işleme tekniklerine daha iyi girdi görüntüsü sağlamaktır. Bu amaca yönelik olarak Spektral Mekânsal dönüşümler kullanılmaktadır.

143 Görüntü Zenginleştirme Spektral Dönüşümler Spektral dönüşümler, görüntünün spektral bilgi içeriğini değiştirirler. Ancak, Bu değişimin anlamı görüntüye yeni bir bilgi eklenmesi değil sadece mevcut bilginin daha yararlı olacak şekilde farklı bir yapıda sunulmasıdır. Bu bağlamda her bir spektral dönüşüm farklı bir özellik uzayı oluşturur.

144 Özellik uzayı, sınıflandırma gibi üst seviye dijital görüntü analizlerinin etkin bir şekilde yapılabilmesi için kullanılan görüntüye ait her türlü bilgidir. Buna göre, orijinal piksel parlaklık değerleri de, dönüşümle elde edilen farklı nicelikler de hepsi birer özelliktir. Spektral dönüşümler aşağıdaki 3 temel katagoride incelenebilir Kontrast zenginleştirme Aritmetik bant işlemleri Ana bileşen dönüşümü Görüntü Zenginleştirme Spektral Dönüşümler

145 Spektral Dönüşümler Kontrast Artırımı Detaylı bilgi için HİSTOGRAM konusuna bakınız! İnsan beyni objelerin mekânsal özelliklerini yorumlamada ve detayları tespit etmede mükemmel performans gösterir. Mekânsal birçok detay spektral karakteristiklerin niceliksel karşılıgı olan radyometrik özelliklerine göre fark edilir. Radyometrik verideki çok küçük farklar bile anlamlı detaylara karşılık gelebilir.

146 Spektral Dönüşümler Kontrast Artırımı Ancak, İnsan gözü radyometrik anlamda farklı gri tonu ve yaklaşık 100 farklı rengi birbirinden ayırt edebilir. Kontrast zenginleştirme yöntemleri, görüntüdeki değişik özellikler arasındaki parlaklık degerlerine dayalı ayırt edilebilirligi arttırmak için kullanılır. Kontrast zenginleştirme, temelde görüntü histogramının değiştirilmesi işlemidir. Bu yaklaşımla görüntünün mevcut yansıtım değer aralıgı olası bütün dinamik aralığa yayılır.

147 Spektral Dönüşümler Görüntünün kontrastını geliştirmek için kullanılan en yaygın teknikler; Lineer kontrast artırımı ve Histogram eşitlemedir Ayrıca Kontrast Artırımı Normal (Gauss) yayma metodu da kontrast zenginleştirmesinde tercih edilen diger yöntemlerden biridir.

148 Lineer Kontrast Artırımı: Spektral Dönüşümler Kontrast Artırımı En basit kontrast zenginleştirme yöntemidir. Histogramdan orijinal görüntünün minimum ve maksimum degerleri belirlenir ve bu aralık dinamik aralıgın tamamına yayılacak şekilde aşğıdski eşitlik kullanılarak dönüştürülür.

149 Spektral Dönüşümler Kontrast Artırımı Lineer Kontrast Artırımı

150 Histogram Eşitleme: Spektral Dönüşümler Kontrast Artırımı Bu yöntemde amaç, çıktı görüntü histogramının uniform bir dağılımda olmasını yani her bir parlaklık seviyesi için yaklaşık aynı sayıda piksel bulunmasını amaçlar. Böylece görüntünün bilgi içeriği olan entropisi artar. Görüntü parlaklık değerleri ayrık değerler olduğu için eşitleme işlemi sırasında herhangi bir parlaklık seviyesine çok fazla sayıda piksel girebilir. Ancak histogram, yansıtım değerlerinin mekânsal konumuyla ilgili bilgi içermediğinden, bu seviyedeki pikselleri birbirinden ayırt etmek imkânsızdır. Diğer bir deyişle birçok piksel birkaç parlaklık seviyesinde toplanabilir. Genelde çok nadiren tamamen uniform bir sonuç histogramı elde edilir.

151 Entropi, verinin rastlantısallık ölçüsüdür. Dijital verinin depolanması ve/veya iletilmesi için ortalama kaç bit e ihtiyaç duyulacağını ifade eder. Dijital bir görüntüye uygulandığında, görüntüdeki dokuyu (parlaklık değeri değişim karakteristiği) karakterize etmek için kullanılabilecek bir istatistikse rastlantısallık ölçüsüdür.

152 Spektral Dönüşümler Kontrast Artırımı Normal (Gauss) Yayma: Bu yöntemin histogram eşitleme yönteminde uygulanan işlemlerden tek farkı hedef histogramının uniform olması yerine Normal (Gauss) dağılım eğrisine benzer şekilde oluşturulmasıdır. Dolayısıyla her bir parlaklık değeri için hedef frekans değerleri Gauss (Normal) Olasılık Yoğunluk fonksiyonuna göre hesaplanacak yüzde değerleri kullanılarak elde edilir. Olasılıklar, 0 ortalamalı ve 1 standart sapmalı Standart Normal dağılıma göre hesaplanır.

153 Spektral Dönüşümler Kontrast Artırımı =2.5 =5.0 =50 =150 Normalizasyon Z= x- X=x 1, x 2, x n =1 Normalizasyon Z= y- y=y 1, y 2, n n =0

154 Spektral Dönüşümler Kontrast Artırımı

155 Spektral Dönüşümler Aritmetik Bant İşlemleri Tek veya farklı kaynaklardan gelen görüntü bantlarının, uygun matematiksel yöntemlerle yeni bir özellik uzayına dönüştürülmesi işlemidir. En temel dönüşüm yöntemleri basit aritmetik işlemleri ve bant oranlamasıdır

156 Spektral Dönüşümler Aritmetik Bant İşlemleri DN Görüntü 1 DN Görüntü 2 DN Değişim Örneğin 2 farklı görüntüdeki piksellerin birbirinden çıkartma işlemi değişim özelliklerinin vurgulanması için sıklıkla kullanılan birbasit aritmetik işlem yöntemdir.

157 Spektral Dönüşümler Aritmetik Bant İşlemleri Diğer bir basit yaklaşım bant oranlamasıdır. Bu yaklaşımla spektral yansıtım eğrisinin eğimlerindeki değişkenlik vurgulanır. Normalde bu değişimler bantlar bağımsız ele alındığında görülemezler. Oranlama yaklaşımı ayrıca topoğrafik etkenlere bağlı olarak oluşan aydınlanma farklılıklarını da azaltır. Birçok oran uygulaması içinde en yaygın kullanılan bant oranlaması, bitki örtüsü indeksidir (VI);

158 Spektral Dönüşümler Aritmetik Bant İşlemleri Bu oranın hesaplanabilmesi, algılayıcıdan bağımsız olarak ilgili spektral bölgelerde algılamanın (ölçmenin) yapılmasına bağlıdır. Paydanın sıfır olması problemine karşı geliştirilen Normalize Edilmiş Bitki Örtüsü indeksi (NDVI) uygulamada daha yaygın olarak kullanılmaktadır: Bu yaklaşım matematiksel olarak daha tutarlıdır. Normalize edilmiş oran değerleri [-1, +1] aralığındadır.

159 Spektral Dönüşümler Ana Bileşen Dönüşümü Çok spektrumlu görüntülemede ölçülen toplam spektral bilgi, bantlar arasında paylaştırılmıştır. Genellikle toplam spektral bilginin bir kısmı değişik oranlarda bantlar arasında tekrarlanır. Matematiksel ifadeyle, bantlar birbirleriyle korelasyonludur ve bundan dolayı benzer bilgiler içerirler.. Şekil de, bir görüntünün mavi ve kırmızı bantları arasındaki saçılım diyagramı ve aralarındaki lineer ilişki verilmiştir. Bantlar arasındaki korelasyon katsayısı 0.96 olarak hesaplanmıştır. Bu değer, saçılım grafiğiyle tutarlı bir şekilde pozitif oldukça güçlü bir doırusal ilişkiyi göstermektedir

160 Spektral Dönüşümler Ana Bileşen Dönüşümü Ana bileşen dönüşümünde amaç, bilgi tekrarı olmayan korelasyonsuz (birbirine ortogonal) bileşenler elde etmektir. Elde edilen bileşenlerin bağımsız olmaları, orijinal verinin çok boyutlu Normal (Gauss) dağılımına uygun olmasına bağlıdır. Dönüşüm sonucu, orijinal bantların lineer bir kombinasyonudur:

161 N bantlı bir görüntüde; Ki ler orijinal bantları ve i ler ana bileşenleri göstermektedir. aij ler ise dönüşüm katsayılarıdır. Bu katsayılar, birbirine ortogonal ve normalize edilmiş x özvektörlerinden oluşur. Bu nedenle dönüşüm ortogonaldir. Temel matematiksel prensip, sıfırdan farklı bir x vektörünün herhangi bir C kare matrisiyle (özel olarak simetrik matris) çarpımının bu x vektörüyle orantısal olmasıdır. Yani Cx çarpım vektörüyle x vektörü aynı doğrultuda ancak farklı büyüklüğe (norma) sahiptirler. Bu iki vektör arasındaki oran değeri a skaleriyle gösterilir. Bu durum şu eşitlik ile ifade edilir: Spektral Dönüşümler Ana Bileşen Dönüşümü

162 Spektral Dönüşümler Ana Bileşen Dönüşümü Çok spektrumlu uydu görüntüleri için C matrisi, merkeze ötelenmiş çok bantlı görüntü verisinin simetrik varyanskovaryans matrisidir. skalerine özdeğer ve x vektörüne bu özdeğerlere karşılık gelen özvektör denir. Görüntü bant sayısı kadar ve x vektörü elde edilir. değerleri her bir ana bileşenin taşıdığı bilgi içeriğinin yani varyansının bir ölçüsüdür. Ana bileşenler, büyük varyans değerine sahip bileşenden küçük varyanslı bileşene doğru sıralanır. Böylece en büyük varyans (veri değişkenliği) 1. ana bileşende ve daha sonra 2. ana bileşende olacak şekilde devam eder. Genellikle bu işlem sonucunda tüm ana bileşenler yerine toplamda veri değişkenliğinin yaklaşık %90-95 lik kısmını içeren ana bileşenler dikkate alınarak veri boyutunda etkin indirgeme sağlanır.

163 Spektral Dönüşümler Ana Bileşen Dönüşümü Orijinal 3 bantlı görüntünün kırmızı ve mavi bantlarına uygulanan ana bileşen dönüşümü sonuçları verilmektedir. Birinci ana bileşen tüm verinin yaklaşık %98 ini içermektedir.

164 Görüntü Zenginleştirme Mekânsal Dönüşümler Mekânsal dönüşümler, uzaktan algılama görüntülerindeki bilgiyi çıkartmak veya değiştirmek için uygulanırlar. En yaygın dönüşüm uygulaması mekânsal filtrelemedir. Mekânsal filtreleme yöntemleri görüntü içindeki bazı özellikleri bu özelliklerin mekânsal frekanslarına dayanarak vurgulamak veya yok etmek için kullanılır. Mekânsal frekans, görüntünün belirli bir alanına ait yansıtım deıerlerindeki değişim oranına karşılık gelen doku bilgisiyle belirlenir. Değişim oranı fazla olan bir bölge kaba dokulu özellik göstermekte olup yüksek mekânsal frekansa sahiptir.

165 Görüntü Zenginleştirme Mekânsal Dönüşümler

166 En yaygın kullanılan mekânsal filtreleme yöntemi, belirli bir genişliğe sahip hareketli pencere (kernel) kullanımıdır. örneğin 3 x 3, 5 x 5, 7 x 7,..., vb. Görüntü Zenginleştirme Mekânsal Dönüşümler Her bir piksel için gezdirilen bu pencerenin ağırlık değerleriyle eşleştirildiği lokal görüntü parlaklık değerleri karşılıklı çarpılır ve bu çarpımlar toplanır. Elde edilen sonuç pencere merkezindeki piksele yeni değer olarak atanır. Daha sonra bu pencere satır veya sütün yönünde 1 piksel ötelenir. Bu öteleme ve aritmetik işlemlerin bütününe konvolüsyon denir.

167 Görüntü Zenginleştirme Mekânsal Dönüşümler Pencerenin ağırlık değerleri değiştirilerek görüntüdeki mekânsal özellikleri vurgulayan veya azaltan filtreler oluşturulur. Yansıtım değeri değişiminin az olduğu düşük mekânsal frekansların vurgulanıp yüksek frekanslı detayların zayıflatılmak istendiği uygulamalarda Alçak Geçirgenli filtrelerin kullanımı uygundur. Tam tersi durumda ise Yüksek Geçirgenli filtre kullanılır.

168 Görüntü Zenginleştirme Mekânsal Dönüşümler Alçak geçirgenli filtreler görüntüyü yumuşatırken (ortalama bilgi muhafaza edilir), yüksek geçirgenli filtreler görüntünün ortalama bilgisini zayıflatan bir etkiye sahiptir. Yaygın kullanımda alçak geçirgenli filtrenin ağırlıklarının toplamı 1, yüksek geçirgenli filtrenin ağırlıklarının toplamı ise 0 olacak şekilde ağırlıklandırma yapılır. Ancak yüksek geçirgenli filtrelemede bu genellemenin dışında kalan farklı kernel çeşitleri de kullanılmaktadır.

169 Görüntü Zenginleştirme Mekânsal Dönüşümler Alçak ve yüksek geçirgenli filtreleme için kullanılan 3 x 3 kernel örnekleri;

170 Görüntü Zenginleştirme Örnek/ Alçak geçirgenli filtre Mekânsal Dönüşümler şeklinde verilen 8bit lik bir görüntü parçasının tam merkezindeki 50 parlaklık değerinin alçak geçirgenli bir filtreyle filtrelenmiş değeri; Bu sonuç 14 sayısına yuvarlanarak merkezdeki pikselin yeni parlaklık değeri bulunur. Filtreleme sonucunda orjinal piksel değeri (50) azalarak yeni elde edilen değer (14) ile görüntü yumuşatılır. Diğer bir ifade ile sonuç görüntüsü daha düşük mekânsal frekansa (penceredeki diğer piksel değerlerine benzer) sahip olur.

171 Görüntü Zenginleştirme Mekânsal Dönüşümler Örnek/ Yüksek geçirgenli filtre Aynı görüntü parçasının tam merkezindeki 50 parlaklık değerinin yukarıda solda verilen yüksek geçirgenli kenar saptayıcı filtre ile filtrelenmiş değeri; (10 x x x x x x x x x 0)= 160 Filtreleme sonucunda orjinal piksel değerinin (50) penceredeki diğer piksel değerlerine göre mekânsal frekansı arttırılarak yeni elde edilen değer (160) ile görüntüdeki yüksek frekans zenginleştirilir.

172 Görüntü Zenginleştirme Mekânsal Dönüşümler Landsat TM kırmızı bantın 5 x 5 boyutlu alçak ve yüksek geçirgenli filtreme ile elde edilen konvolüsyon sonuçları verilmektedir (a) Kırmızı bant görüntsü (b) Alçak geçirgenli filtreme (c) yüksek geçirgenli filtreme

173 Bu filtrelerden başka Istatistiksel Morfolojik Gradyen ölçek-mekan Görüntü Zenginleştirme Mekânsal Dönüşümler Filtreleri gibi daha bir çok farklı filtre çeşidi vardır.

174 Filtreleme görüntü üzerinde bir filtre varmış gibi düşünüp her piksel değerinin yeniden hesaplanmasıdır. Filtreleme sayesinde görüntü üzerinde netleştirme belirli ayrıntıları ortaya çıkarma görüntüyü yumuşatma kenar keskinleştirme veya Görüntü Zenginleştirme Mekânsal Dönüşümler kenar bulma gibi işlemler gerçekleştirilir.

175 Kenar Çıkartma Filtreleri Kenarlar, piksellerin parlaklık fonksiyonlarının aniden değiştiği yerlerdir. En yaygın kullanılan kenar belirleme algoritmaları: Roberts Prewitt Sobel Canny

176 Roberts Filtresi Dört element kullanılır Bu filtre iki köşegen yönünde kenar tarar. Kernel matrisi şöyledir: [1,1,0;1,0,-1;0,-1,-1] veya [2,1,0;1,0,-1;0,-1,-2]

177 Sobel Filtresi Sobel operatörü yatay ve düşey yönde keskinlikleri yakalar. 3x3 lük pencere alanına uygulanır Eksenler üzerindeki piksellere daha çok ağırlık verir. Kernel matrisi dizilimi şöyledir: [1,2,1;0,0,0;-1,-1,-1] veya [1,0,-1;2,0,-2;-1,-2,-1].

178 Prewitt Filtresi Bu filtrede sobel filtresi gibi düşey ve yatay keskinlik yakalar. Sabit sayı 2 yerine 1 kullanılır 3x3 lük pencere alanına uygulanır Dikey ve yatay yönlerde ayrı eğimleri hesaplar Kernel matrisi sobelden farklıdır. Matrsin dizimi şöyledir: [1,0,-1;1,0,-1;1,0,-1] veya [1,1,1;0,0,0;- 1,-1,-1].

179 Canny Kenar Belirleme Algoritması Kenar bulmada son derece etkin bir algoritmadır. Önce görüntüdeki gürültü bir sigma değerine göre üretilen Gaussian çekirdekle konvolusyonu alınarak azaltılır. Daha sonra, gradyent operatörü uygulanarak, kenar gradyent büyüklüğü ve yönü hesaplanır. Kenarlar, non maxima baskılama uygulanarak inceltilir. Son olarak görüntü, ikili eşikleme uygulanarak istenmeyen ayrıntılardan arındırılır.

180 Log ve Laplace Filtresi Log Filtresi :Bu filtreye Marr-Hildreth (Laplacian of Gaussian LoG) algoritması denir. Gaussion filtresine Laplası alınarak işlem yapar. Laplace Filtresi Laplace operatörü her yöndeki keskinleştirme yapmaya yarar.

181 Sayısal örnekler Aşağıda siyah beyaz bir sayısal hava fotoğrafına ait bir parça verilmiştir

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 A- Enerji Kaynağı / Aydınlatma B- Işıma ve atmosfer C- Hedef nesneyle etkileşim D- Nesneden yansıyan /

Detaylı

DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri

DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri DİJİTAL UYDU GÖRÜNTÜSÜ Görüntü boyutu Dijital bir görüntü, elemanları, uzaydaki x,y konumlarına karşılık gelen noktaları n f(x,y) parlaklık değerlerini içeren bir matristir.

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Yüksek ve düşük spektral çözünürlüğe sahip dijital görüntülerdeki temel avantaj ve dezavantajlar aşağıda

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Geçen ders Mekansal/Konumsal/Geometrik(Spatial resolution) Radyometrik Spektral Zamansal 2 Dijital /Sayısal

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Dijital görüntü işlemede temel kavramlar Sayısal Görüntü İşleme; bilgisayar yardımı ile raster verilerin

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik

Detaylı

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING Asst. Prof. Dr. Uzay KARAHALİL Week IV NEDEN UYDU GÖRÜNTÜLERİ KULLANIRIZ? Sayısaldır (Dijital), - taramaya gerek yoktur Hızlıdır Uçuş planı,

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Çözünürlük kavramı Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 YANSIMA Doğada her nesne farklı yansıma özelliklerine sahiptir 2 Sağlıklı bitki örtüsünün

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI UZAKTAN ALGILAMA Sayısal Görüntü ve Özellikleri GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Hiperspektral ve termal bantlı uydular Ön-işlem adımları Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 Termal (Isıl) Uzaktan Algılama Termal ışımanın

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

UZAKTAN ALGILAMA- UYGULAMA ALANLARI

UZAKTAN ALGILAMA- UYGULAMA ALANLARI UZAKTAN ALGILAMA- UYGULAMA ALANLARI Doç. Dr. Nebiye Musaoğlu nmusaoglu@ins.itu.edu.tr İTÜ İnşaat Fakültesi Jeodezi ve Fotogrametri Mühendisliği Bölümü Uzaktan Algılama Anabilim Dalı UZAKTAN ALGILAMA-TANIM

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOĞRAF/GÖRÜNTÜ KAVRAMI VE ÖZELLİKLERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK

Detaylı

Elektromanyetik Radyasyon (Enerji) Nedir?

Elektromanyetik Radyasyon (Enerji) Nedir? Elektromanyetik Radyasyon (Enerji) Nedir? Atomlardan çeşitli şekillerde ortaya çıkan enerji türleri ve bunların yayılma şekilleri "elektromagnetik radyasyon" olarak adlandırılır. İçinde X ve γ ışınlarının

Detaylı

Ormancılıkta Uzaktan Algılama. 4.Hafta (02-06 Mart 2015)

Ormancılıkta Uzaktan Algılama. 4.Hafta (02-06 Mart 2015) Ormancılıkta Uzaktan Algılama 4.Hafta (02-06 Mart 2015) Hava fotoğrafı; yeryüzü özelliklerinin kuşbakışı görüntüsüdür. Hava fotoğrafları, yersel fotoğraf çekim tekniğinde olduğu gibi ait oldukları objeleri

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Hiperspektral ve termal bantlı uydular Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 3 4 5 SPOT 6 6 Geçen ders: Mikrodalga algılama sistemleri Gündüz

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 4 Pasif - Aktif Alıcılar, Çözünürlük ve Spektral İmza Kavramları Alp Ertürk alp.erturk@kocaeli.edu.tr Pasif Aktif Alıcılar Pasif alıcılar fiziksel ortamdaki bilgileri

Detaylı

Bilgisayarla Fotogrametrik Görme

Bilgisayarla Fotogrametrik Görme Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum

Detaylı

ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon ULUSAL COĞRAFİ BILGİ SISTEMLERİ KONGRESİ 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Uydu Verilerinin Farklı Yöntemlerle Karılması ve Sonuçların Karşılaştırılması Öğr. Gör. Bora UĞURLU Prof. Dr. Hülya YILDIRIM

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 4 Pasif - Aktif Alıcılar, Çözünürlük ve Spektral İmza Alp Ertürk alp.erturk@kocaeli.edu.tr Pasif Aktif Alıcılar Pasif alıcılar fiziksel ortamdaki bilgileri pasif olarak

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk alp.erturk@kocaeli.edu.tr Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Grafik Programlama Bilgisayar kullanılırken monitörlerde iki tür ekran moduyla karşılaşılır. Bu ekran modları Text modu ve Grafik modu dur. Text modunda ekran 25 satır ve 80 sütundan

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin

Detaylı

Dijital Fotogrametri

Dijital Fotogrametri Dijital Fotogrametri 2016-2017, Bahar YY Fevzi Karslı (Prof. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 20 Mart 2017 Pazartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

UZAKTAN ALGILAMA YÖNTEMİ MADEN ARAŞTIRMA RAPORU

UZAKTAN ALGILAMA YÖNTEMİ MADEN ARAŞTIRMA RAPORU 2014 UZAKTAN ALGILAMA YÖNTEMİ MADEN ARAŞTIRMA RAPORU, İhsanullah YILDIZ Jeofizik Mühendisi UZAKTAN ALGILAMA MADEN UYGULAMASI ÖZET İnceleme alanı Ağrı ili sınırları içerisinde bulunmaktadır.çalışmanın amacı

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi İsmail ÇÖLKESEN 501102602 Doktora Tez Önerisi Tez Danışmanı : Prof.Dr. Tahsin YOMRALIOĞLU İTÜ Geoma*k Mühendisliği İçerik Giriş Tez Çalışmasının Amacı Zaman Çizelgesi 1 of 25 Giriş Yeryüzü ile ilgili yapılan

Detaylı

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA 1 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama İçindekiler

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-8

Görüntü İyileştirme Teknikleri. Hafta-8 Görüntü İyileştirme Teknikleri Hafta-8 1 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den

Detaylı

Dijital Kameralar (Airborne Digital Cameras)

Dijital Kameralar (Airborne Digital Cameras) Dijital Kameralar (Airborne Digital Cameras) Klasik fotogrametrik görüntü alımındaki değişim, dijital kameraların gelişimi ile sağlanmaktadır. Dijital görüntü, analog görüntü ile kıyaslandığında önemli

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Gama ışını görüntüleme: X ışını görüntüleme:

Gama ışını görüntüleme: X ışını görüntüleme: Elektronik ve Hab. Müh. Giriş Dersi Görüntü İşleme Yrd. Doç. Dr. M. Kemal GÜLLÜ Uygulama Alanları Gama ışını görüntüleme: X ışını görüntüleme: Uygulama Alanları Mor ötesi bandı görüntüleme: Görünür ve

Detaylı

Uzaktan Algılamanın. Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA

Uzaktan Algılamanın. Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA Uzaktan Algılamanın Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA 1 Uzaktan Algılama Nedir? Arada fiziksel bir temas olmaksızın cisimler hakkında bilgi toplanmasıdır.

Detaylı

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu

Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 1302120002 1302130068 1302150039 1302150049 Emrah Kurtoğlu Gamze Dinçar Liva Gizem Göze Ali Kadir Ulu 17.10.2016 SPEKTRAL İMGELER Bir malzeme için yansıyan, yutulan veya iletilen ışınım miktarları dalga

Detaylı

MOD419 Görüntü İşleme

MOD419 Görüntü İşleme MOD419 Görüntü İşleme Ders Kitabı: Digital Image Processing by Gonzalez and Woods Puanlama: %30 Lab. %20 Vize %10 Quizes %40 Final %60 devam mecburiyeti Görüntü İşleme ye Giriş Görüntü İşleme Nedir? Özellikle

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme 2010-2011 Bahar Yarıyılı Ar. Gör. Dr. Ersoy Erişir 1 Konvansiyonel Görüntüleme (Fotografi) 2 Görüntü Tasarımı 3 Digital Görüntüleme 3.1 Renkler 3.2.1

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

FOTOYORUMLAMA UZAKTAN ALGILAMA

FOTOYORUMLAMA UZAKTAN ALGILAMA FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 Görüntü özellikleri Uzaktan algılamada platformlar Uydu yörüngeleri Şerit genişliği, yeniden ziyaret periyodu 2 Görüntünün özellikleri:

Detaylı

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon

TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon TMMOB Harita ve Kadastro Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi 30 Ekim 02 Kasım 2007, KTÜ, Trabzon Lazer Tarama Verilerinden Bina Detaylarının Çıkarılması ve CBS İle Entegrasyonu

Detaylı

1. Değişik yeryüzü kabuk tiplerinin spektral yansıtma eğrilerinin durumu oranlama ile ortaya çıkarılabilmektedir.

1. Değişik yeryüzü kabuk tiplerinin spektral yansıtma eğrilerinin durumu oranlama ile ortaya çıkarılabilmektedir. ORAN GÖRÜNTÜLERİ Oran Görüntüsü Oran görüntülerini değişik şekillerde tanımlamak mümkündür; Bir görüntünün belirli bandındaki piksel parlaklık değerleri ile bunlara karşılık gelen ikinci bir banddaki piksel

Detaylı

Ders 8: Verilerin Düzenlenmesi ve Analizi

Ders 8: Verilerin Düzenlenmesi ve Analizi Ders 8: Verilerin Düzenlenmesi ve Analizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlenin tamamını, ya da kitleden alınan bir örneklemi özetlemekle (betimlemekle)

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI

JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI JDF821 UZAKTAN ALGILAMA GÖRÜNTÜLERİNDEN DETAY ÇIKARIMI Sunu1 Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ ANABİLİM DALI SUNULARI http://jeodezi.beun.edu.tr/marangoz 2012-2013 Öğretim Yılı Bahar Dönemi

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ. Haftalık Ders Planı

BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ. Haftalık Ders Planı Düzey : Lisans Ders Kodu : BLG325.1 Ders Adı : SINYAL ISLEME BLG325.1 SINYAL ISLEME DERSİ BİLGİ PAKETİ lık Ders Planı 1 : İşaret ve sistem tanımı, ayrık zamanlı ve sürekli zamanlı sistemler, ayrık değerli

Detaylı

DİJİTAL GÖRÜNTÜ TEKNOLOJİLERİ

DİJİTAL GÖRÜNTÜ TEKNOLOJİLERİ DİJİTAL GÖRÜNTÜ TEKNOLOJİLERİ Utku Duyar-Elektronik Mühendisi www.utkuduyar.com Dijital elektroniğin gelişmesiyle beraber analog görüntüyü dijital olarak ifade edebilmek için çözünürlük kavramına ihtiyaç

Detaylı

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ Naci YASTIKLI a, Hüseyin BAYRAKTAR b a Yıldız Teknik Üniversitesi,

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

UZAKTAN ALGILAMA* Doç.Dr.Hulusi KARGI Pamukkale Üniversitesi, Jeoloji Müh. Bölümü - Denizli

UZAKTAN ALGILAMA* Doç.Dr.Hulusi KARGI Pamukkale Üniversitesi, Jeoloji Müh. Bölümü - Denizli UZAKTAN ALGILAMA* Doç.Dr.Hulusi KARGI Pamukkale Üniversitesi, Jeoloji Müh. Bölümü - Denizli *Bu sunudaki görüntülerin bir kõsmõ Rob Wright ve MTA dan alõnmõştõr. Giriş! Maden aramalarõnda ve jeolojik yapõlarõn

Detaylı

Uzaktan Algılama ve Teknolojik Gelişmeler

Uzaktan Algılama ve Teknolojik Gelişmeler Uzaktan Algılama ve Teknolojik Gelişmeler 1 Uzaktan Algılama Nedir? Uzaktan Algılama Prensipleri Uydu Görüntülerinin Özellikleri ERDAS IMAGINE yazılımının sağladığı imkanlar 2 Uzaktan Algılama Fiziksel

Detaylı

ORM 7420 ORMAN KAYNAKLARININ PLANLANMASINDA UYGU GÖRÜNTÜLERİNİN KULLANILMASI

ORM 7420 ORMAN KAYNAKLARININ PLANLANMASINDA UYGU GÖRÜNTÜLERİNİN KULLANILMASI ORM 7420 ORMAN KAYNAKLARININ PLANLANMASINDA UYGU GÖRÜNTÜLERİNİN KULLANILMASI Yrd. Doç. Dr. Uzay KARAHALİL III. Hafta (Uyduların Detay Tanıtımı Sunum Akışı Doğal Kaynak İzleyen Uygular Hangileri Uyduların

Detaylı

TEMEL HARİTACILIK BİLGİLERİ. Erkan GÜLER Haziran 2018

TEMEL HARİTACILIK BİLGİLERİ. Erkan GÜLER Haziran 2018 TEMEL HARİTACILIK BİLGİLERİ Erkan GÜLER Haziran 2018 1 HARİTA Yeryüzündeki bir noktanın ya da tamamının çeşitli özelliklere göre bir ölçeğe ve amaca göre çizilerek, düzlem üzerine aktarılmasına harita

Detaylı

İçerik Fotogrametrik Üretim 2 Fotogrametri 2 Hava Fotogrametrisi...2 Fotogrametrik Nirengi 3 Ortofoto 4 Fotogrametrik İş Akışı 5 Sayısal Hava

İçerik Fotogrametrik Üretim 2 Fotogrametri 2 Hava Fotogrametrisi...2 Fotogrametrik Nirengi 3 Ortofoto 4 Fotogrametrik İş Akışı 5 Sayısal Hava İçerik Fotogrametrik Üretim 2 Fotogrametri 2 Hava Fotogrametrisi...2 Fotogrametrik Nirengi 3 Ortofoto 4 Fotogrametrik İş Akışı 5 Sayısal Hava Kameralarının Sağlayacağı Faydalar.7 Pramit Oluşturma.10 Kolon

Detaylı

Kameralar, sensörler ve sistemler

Kameralar, sensörler ve sistemler Dijital Fotogrametri Kameralar, sensörler ve sistemler Prof. Dr. Fevzi Karslı Harita Mühendisliği Bölümü, KTÜ fkarsli@ktu.edu.tr Analog Hava Kameraları Ana firmalar Zeiss, Wild ve Leica. Kullanılan bütün

Detaylı

Bölüm 7 Renkli Görüntü İşleme

Bölüm 7 Renkli Görüntü İşleme BLM429 Görüntü İşlemeye Giriş Bölüm 7 Renkli Görüntü İşleme Dr. Öğr. Üyesi Caner ÖZCAN Genç sanatçının, rengin sadece tanımlayıcı değil aynı zamanda kişisel ifade anlamına geldiğini anlaması renge dokunmasından

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 3 Uzaktan Algılama Temelleri Alp Ertürk alp.erturk@kocaeli.edu.tr Elektromanyetik Spektrum Elektromanyetik Spektrum Görünür Işık (Visible Light) Mavi: (400 500 nm) Yeşil:

Detaylı

Veri toplama- Yersel Yöntemler Donanım

Veri toplama- Yersel Yöntemler Donanım Veri toplama- Yersel Yöntemler Donanım Data Doç. Dr. Saffet ERDOĞAN 1 Veri toplama -Yersel Yöntemler Optik kamera ve lazer tarayıcılı ölçme robotu Kameradan gerçek zamanlı veri Doç. Dr. Saffet ERDOĞAN

Detaylı

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI Fotg.D.Bşk.lığı, yurt içi ve yurt dışı harita üretimi için uydu görüntüsü ve hava fotoğraflarından fotogrametrik yöntemlerle topoğrafya ve insan yapısı detayları

Detaylı

Tarımsal Meteorolojik Simülasyon Yöntemleri ve Uzaktan Algılama ile Ürün Verim Tahminleri ve Rekolte İzleme

Tarımsal Meteorolojik Simülasyon Yöntemleri ve Uzaktan Algılama ile Ürün Verim Tahminleri ve Rekolte İzleme Tarımsal Meteorolojik Simülasyon Yöntemleri ve Uzaktan Algılama ile Ürün Verim Tahminleri ve Rekolte İzleme Twente Universitesi ITC Fakultesi, Enschede, Hollanda - 2013 Dr. Ediz ÜNAL Tarla Bitkileri Merkez

Detaylı

Uzaktan Algılama Verisi

Uzaktan Algılama Verisi Uzaktan Algılama (2) Yrd. Doç. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Uzaktan Algılama Verisi Raster Veri Formatı 1 Uzaktan Algılama Verisi http://www.tankonyvtar.hu/hu/tartalom/tamop425/0027_dai6/ch01s03.html

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

Uzaktan Algılama Teknolojisi. Doç. Dr. Taşkın Kavzoğlu Gebze Yüksek Teknoloji Enstitüsü Gebze, Kocaeli

Uzaktan Algılama Teknolojisi. Doç. Dr. Taşkın Kavzoğlu Gebze Yüksek Teknoloji Enstitüsü Gebze, Kocaeli Uzaktan Algılama Teknolojisi Doç. Dr. Taşkın Kavzoğlu Gebze Yüksek Teknoloji Enstitüsü Gebze, Kocaeli SPOT görüntüsü (Roma) 16-Aralık-2005 Source: earth.eas.int Uzaktan Algılama Dünya yüzeyinin gözlenmesi

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Uydu Görüntüleri ve Kullanım Alanları

Uydu Görüntüleri ve Kullanım Alanları Uydu Görüntüleri ve Kullanım Alanları Tanım, Tarihçe ve Kullanım Alanları Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF 904 Uydu Görüntüleri ve Kullanım

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* Determination the Variation of The Vegetation in Turkey by Using NOAA Satellite Data* Songül GÜNDEŞ Fizik Anabilim Dalı Vedat PEŞTEMALCI

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ GİRİŞ, TANIM ve KAVRAMLAR

TEMEL GÖRÜNTÜ BİLGİSİ GİRİŞ, TANIM ve KAVRAMLAR TEMEL GÖRÜNTÜ BİLGİSİ GİRİŞ, TANIM ve KAVRAMLAR Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

MİKROYAPISAL GÖRÜNTÜLEME & TANI

MİKROYAPISAL GÖRÜNTÜLEME & TANI MİKROYAPISAL GÖRÜNTÜLEME & TANI III-Hafta KOÜ METALURJİ & MALZEME MÜHENDİSLİĞİ Fotografik Emulsiyon & Renk Duyarlılığı Şekil 1.9. Göz eğrisi ile değişik film malzemelerinin karşılaştırılması. Fotografik

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I FOTOGRAMETRİDE KULLANILAN HAVA KAMERALARI Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI 2014-2015 Öğretim Yılı

Detaylı

Meteorolojik ölçüm sistemleri Doç. Dr. İbrahim SÖNMEZ

Meteorolojik ölçüm sistemleri Doç. Dr. İbrahim SÖNMEZ Meteorolojik ölçüm sistemleri Doç. Dr. İbrahim SÖNMEZ Ondokuz Mayıs Üniversitesi Havacılık ve Uzay Bilimleri Fakültesi Meteoroloji Mühendisliği Bölümü İçerik Gözlem ve ölçüm tanımları Ölçüm sistemi tanımı

Detaylı

TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE

TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE Öğr. Gör. Ruhsar KAVASOĞLU 23.10.2014 1 Işık-Gölge Işığın nesneler, objeler ve cisimler üzerinde yayılırken oluşturduğu açık orta-koyu ton (degrade) değerlerine

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

FOTOGRAMETRİ ANABİLİM DALI. Prof. Dr. Ferruh YILDIZ

FOTOGRAMETRİ ANABİLİM DALI. Prof. Dr. Ferruh YILDIZ FOTOGRAMETRİ ANABİLİM DALI Prof. Dr. Ferruh YILDIZ LİDAR TEKNİKLERİ LIGHT Detection And Ranging RADAR a benzer ancak elektromanyetik dalganın kızıl ötesi boyunu kullanır. LIDAR: Konumlama ( GPS ) Inersiyal

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme)

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) FOTOGRAMETRİ FOTOGRAMETRİ Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) Buna göre ışık yardımı ile ölçme (çizim yapabilme)

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı