elde ederiz. Bu son ifade yeniden düzenlenirse,

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "elde ederiz. Bu son ifade yeniden düzenlenirse,"

Transkript

1 Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük olduğunu deneysel olarak göstermektir. Teorik Bilgi : Mekanik Enerjinin Korunumu Enerji skaler bir büyüklük olup kinetik enerji ve potansiyel enerji olarak ikiye ayrılır. Aşağıda, U ile potansiyel, K ile kinetik enerji gösterilmektedir. Etkileşmeden önceki durumlar ilk, sonrakiler ise son alt indisi ile gösterilmiştir. İş enerji teoremine göre, bir cismin kinetik enerjisindeki değişiklik, cismin üzerindeki net kuvvetin yaptığı işe eşittir. 3.1 Cismin üzerinde yalnız korunumlu kuvvetlerin iş yaptığın düşünelim. Korunumlu bir kuvvetin yaptığı iş, yoldan bağımsız olup, potansiyel enerjideki değişikliğin zıt işaretlisine eşittir. Bu sonuçları birleştirirsek, 3.2 elde ederiz. Bu son ifade yeniden düzenlenirse, 3.3 elde edilir. Burada, sol taraftaki terim, çarpışmadan sonraki toplam enerji, sağ taraftaki terim ise çarpışmadan önceki toplam enerjidir. Yani; olmak üzere; 3.4 elde edilir. Eğer yalnız korunumlu kuvvetler iş yapmakta ise, sistemin mekanik enerjisi korunur, yâni zamanla değişmez. 3.4 denklemi 1,2 ya da 3 boyuttaki bir sistemin mekanik enerjisinin korunumunu ifade etmektedir. Bu bağıntı, cismin hızı ile konumunu bağlamaktadır. Cismin hareketi boyunca hem kinetik hem de potansiyel enerji değişir ama toplamları değişmez. Enerjinin korunumu yasası, yalıtılmış bir sistemde toplam enerjinin korunduğunu söyler. Bu ifâdeyi şeklinde yazmak mümkündür. Momentumun Korunumu Kütlesi m ve hızı olan bir parçacığın momentumu, kütle ile hız vektörünün çarpımı olarak tanımlanır. 3.5 Momentum, vektörel bir niceliktir. Newton un ikinci yasası, aşağıdaki şekilde yazılabilir. 3.6 Üstüne etkiyen dış kuvvet sıfır olan bir sistem düşünelim. O zaman, aşağıdaki eşitlik elde edilir. 3.7 Bu, momentumun zamanla değişimi sıfırdır veya momentum zamanla değişmiyordur demektir. Yani, bu sistem için herhangi bir başlangıç anındaki momentum ile herhangi bir bitiş anındaki momentum aynıdır. Diğer bir deyişle sistemin momentumu korunur. Eğer kuvvet özdeş olarak 0 değil de yalnızca bileşenlerden biri, meselâ F y, sıfır olsun. Newton yasasını bileşenlerine açarak yazalım: 3.8

2 ; ; Görüldüğü üzere bu denklemlerden birinci ve üçüncüsünün çözümü aşikâr değildir; kuvvet bileşenlerine açık şekline bağlıdır. Fakat ikinci denklemin çözümü kolaydır: P y = sabit. Yâni kuvvet bileşenine tekabül eden momentum korunur. Bundan başka, kapalı bir parçacıklar sisteminde, yâni dışarıdan bir kuvvetin etki etmediği, sâdece parçacıklararası etkileşimin vârolduğu bir sistemde sistemin toplam momentumu korunur. (Bkz. Proble) Burada sistemin toplam momentumu ile momentumların vektörel toplamı anlaşılmalıdır.,,... m N kütlenin oluşturduğu N parçacıklı bir sistem yukarıdaki sonuca dayanarak genelleştirilebilir. Parçacıkların oluşturduğu böyle bir sistemin herhangi bir andaki toplam momentumu şöyle yazılabilir: Burada,,... ve benzeri olur. Denklem (3.9) deki toplama vektörel bir toplama işlemidir. Bu durumda denklem (3.6) genelleştirilirse; 3.9 olur. Burada, parçacıkların oluşturduğu sistemdeki net dış kuvvet anlamına gelir. Yani parçacıkların oluşturduğu sistemde birbirleri üzerindeki kuvvet (parçacıkların kuvvetleri), etkilerinden farklı bir kuvvettir. Bu dış kuvvetler sürtünme ve yerçekimi olabilir. Bu yüzden parçacıkların oluşturduğu sisteme hiçbir net dış kuvvet etki etmiyorsa, sistemin toplam momentumu korunacaktır. Yani; Yine yukarıdaki toplama vektörel bir işlemdir. Hiçbir net kuvvetin etki etmediği parçacıkların oluşturduğu bir sistemin ya da izole edilmiş bir sistemin toplam momentumu zamanın herhangi bir anında aynı olacaktır. Belli şartlar altında zamanla değişmeyen enerji, momentum gibi niceliklere hareket sâbitleri denir. Bu sâbitler hareket denklemlerinin çözülmesini kolaylaştırırlar. İki kütlenin bir düzlemde esnek çarpışma yapması sonucu, dikey ve yatay eksenlerdeki momentum ve enerji korunum ifadeleri aşağıdaki şekilde ifade edilir. Momentum yatay ; 3.10 Momentum - düşey ; 3.11

3 3.12 Kinetik enerji; Bu deneyde karşılaşılacak ve araştırılacak bir başka kavram da kütle merkezidir (KM). Kütle merkezinin, türdeş küp, silindir, küre veya bunlar gibi simetrik nesnelerin geometrik merkezlerinde olabileceğini tahmin edebilirsiniz. Aynı kütleye sahip simetrik cisimlerin kütle merkezi, merkezlerini birleştiren bir doğrunun tam orta noktası olacaktır. Ama cisimlerden biri daha ağır ise; o zaman kütle merkezi ağır olan cisim tarafına doğru kayacaktır. Farklı şekillerdeki kütle dağılımları için kütle yeniden tanımlanmalıdır. Konum vektörleri olan,,...,m N kütlelerine sahip N parçacıklı bir sistemin kütle merkezinin konum vektörü eşitlik 3.12 de olduğu şekilde tanımlanır; Burada vektörleri herbir parçacık için koordinat merkezine göre konum vektörü ise sistemin kütle merkezinin konum vektörünü ifade etmektedir. Zamanla parçalar pozisyonunu değiştirirse, KM nin de pozisyonu değişir ve KM nin vektörel değişim oranı KM nin hızı olarak düşünülebilir Sabit kütleli parçalar için, denklem (3.13) eşitliğinin her iki tarafının türevini aldığımızda; denklem (3.16) yı elde ederiz. Denklem (3.15) teki noktalar zaman göre türev anlamına gelir ki bunlar kütlelerin sahip oldukları hızlardır. Yukarıdaki oluşan denklemler deneyimizdeki iki diskli sistemimize uygulandığında; 3.16 ve disklerin kütleleri eşit olduğudan = = m kütleleri sadeleştirdiğimizde denklem (3.17) elde edilir. O halde denklem (3.17) de konum vektörlerinin zamana göre türevleri alınırsa, KM nin hızı; olur

4 Yukarıdaki denklemin önemli sonuçları vardır. Momentum korunurken, KM nin hızınında bu koşullarda sabit (sabit hız, büyüklük ve yönde değişmezlik) olduğu anlamına gelir. Böylece toplam momentumun korunduğu izole edilmiş bir sistem için sistemin KM si daima sabit hızla doğrusal hareket eder. Bu nedenle çarpışmadan önce ve sonra iki diskli sistemimiz için şöyle olmalıdır. Deneyin Yapılışı : Şekil 3.1 Deney yapacağımız düzenekte, sürtünmeyi mümkün olduğunca en az hale getirmek için bir adet hava masası kullanmaktadır. Masanın üzerinde bir adet karbon kâğıdı ve onun üzerinde parçacıkların yörüngelerini kıvılcım üreteci sayesinde işaretleyebileceğimiz bir beyaz kâğıt serilidir. 1. Hava masası üzerinde hava pompası ve kıvılcım üretecine bağlı olan hortumlara iki adet kızak takılıdır. Kızaklardan bir tanesini masanın merkezinde mümkün olduğu kadar sabitleyiniz. Bu pratik olarak biraz zordur. Diğer kızağa da istediğimiz herhangi bir açıdan, ıstaka ile vurarak iki kızağın esnek çarpışma yapmasını sağlayın. Çarpışma için bir diğer seçenek ise kütleleri el yardımıyla hafifçe sürükleyip bırakarak masanın ortasında çarpışmasını sağlamak olabilir. Uygun bir çarpışma açısı ve veri elde edebilmeniz için birkaç deneme yapınız, bu denemeler süresince kıvılcım üretecinin pedalına basmayınız! Yaptığınız denemelerden sonra deney için artık hazırız. Burada dikkat edeceğiniz bir nokta, hareketi başlattığınız an kıvılcım üretecinin pedalına basmak ve kızaklar kenarlara çarpana kadar pedalı basılı tutmaktır. Bu şekilde kâğıdın arka yüzünene hareketlerin yörüngeleri iz bırakacaktır. Eğer pedalı uzun süre basılı tutarsanız kağıdınızdaki noktalar birbirine karışabilir. Bir diğer nokta ise kızakların kafa kafaya çarpışmamalarını sağlamaktır. Böylece açılarda belirgin değişiklikler olacaktır. Bu açı ölçümündeki hatâları azaltacaktır. 2. Veri kâğıdını kaldırınız ve oluşan noktaları dikkatle gözden geçiriniz. Her iki disk için noktaları 0, 1, 2,... ve benzeri şekilde numaralandırınız. Çarpışmaya yakın bölgede çarpışma

5 öncesi ve sonrası için her bir kütle için aynı zaman aralığına denk gelen 4 veya 5 ardışık nokta belirleyiniz. Şekil Lineer momentumun korunumunu gözlemleyebilmemiz için kızakların çarpışmadan önceki ve sonraki hızlarını dolayısıyla momentumlarını belirleyebilmemiz gerekir. Bunun için ilk olarak çarpışmadan önceki yörüngelerin izlerine göre koordinat merkezlerini belirleyin. Yörüngelerin izlerine göre belirlediğiniz koordinat merkezlerini kullanarak çarpışmadan önce ve sonrası için kızakların hareket doğrultusundaki yer değiştirmeleri ile yatay (x) ve düşey (y) eksenlere olan izdüşümlerini belirleyiniz ve mesâfeleri cetvel ile ölçüp aşağıdaki tablolara kaydediniz. Kütle merkezinin hareketi; Çarpışmadan önce ve sonra zamanın aynı anında oluşan noktaları tanımlayınız ve bunları birleştirerek her noktalar çiftini birleştiren çizgi boyunca KM nin konumunu belirleyiniz. Bunu yaparken, çarpışma süresince KM nin konumunu belirleyen kaydı elde edeceksiniz Yukarıda KM için elde ettiğiniz kaydı kullanarak çarpışmadan önceki ve sonraki hızı ve momentumu bulunuz. Çarpışmadan önce; Çarpışmadan önce ΔS (m) Δx (m) Δy (m) ΔS KM (m)

6 Çarpışmadan sonra; Çarpışmadan sonra ΔS (m) Δx (m) Δy (m) ΔS KM (m) 4. Momentum ve kinetik enerji bağıntıları için kütle ve hız değerlerine ihtiyacınız olacaktır. Kızakların kütlelerini digital terazi yardımıyla ölçünüz. =... kg =... kg 5. Kıvılcım üretecinin frekans değerini kaydediniz, periyot değerini bulunuz. Frekans =... ( ) periyot =... ( )

7 Hesaplamalar 1. Kızakların hız değerlerini elde etmek için o doğrultudaki yerdeğiştirme değerleri ve zamanı ölçmeniz gerekecektir. Zamanları, ölçtüğünüz mesafedeki iz sayılarını ve kıvılcım üreteci üzerindeki frekans değerini kullanarak bulabilirsiniz. Elde ettiğiniz yerdeğiştirme ve zaman değerlerini kullanarak hız değerlerini hesaplayınız ve değerleri aşağıdaki tablolara kaydediniz. Çarpışmadan önce; v 1 =... ( ) v 2 =... ( ) v x1 =... ( ) v x2 =... ( ) v y1 =... ( ) v y2 =... ( ) v KM =... ( ) Çarpışmadan önce t (s) v (m/s) v x (m/s) v y (m/s) v KM (m/s) Çarpışmadan sonra; v 1 =... ( ) v 2 =... ( ) v x1 =... ( ) v x2 =... ( ) v y1 =... ( ) v y2 =... ( ) v KM =... ( )

8 Çarpışmadan sonra t (s) v (m/s) v x (m/s) v y (m/s) v KM (m/s) 2. Deney sırasında ölçtüğünüz kütle ve yukarıda elde ettiğiniz hız değerlerini kullanarak momentum ve enerji değerlerini hesaplayarak aşağıdaki tablolara kaydediniz. Çarpışmadan önce; P 1 =... P 2 =... P x1 = P x2 = P y1 =... P y2 =... P KM =... E 1 =... E 2 =... Çarpışmadan önce P (kg/s) P x P y P KM E (kg /s 2 ) Çarpışmadan sonra; P 1 =... P 2 =... P x1 = P x2 = P y1 =... P y2 =...

9 P KM =... E 1 =... E 2 =... Çarpışmadan sonra P (kg/s) P x P y P KM E (kg /s 2 ) 3. İki kütlenin bir düzlemde esnek çarpışma yapması sonucu, düşey ve yatay eksenlerdeki momentum ve enerji korunum ifadeleri eşitlik 'de verilmiştir. Yukarıdaki enerji ve momentum korunum bağıntılarını deneysel olarak sağlayınız. Momentum yatay ; Momentum Düşey ; Kinetik Enerji ; Yukarıdaki enerji korunum bağıntılarında neden potansiyel enerji ifadesi yer almamaktadır? Açıklayınız.

10 Eğer değerlerinizde herhangi bir hata varsa bu hatanın deneyde nereden kaynaklanmış olabileceğini tartışınız. Proble Kapalı bir parçacıklar sisteminde sistemin toplam momentumu korunur. Gösteriniz.

4 ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR

4 ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR 4 ESNEK VE ESNEK OLMAYAN ÇARPIŞMALAR Bu deneyin amacı, esnek ve esnek olmayan çarpışmalarda momentumun ve kinetik enerjinin korunumunun deneysel olarak incelenmesidir. Temel Bilgiler: Bir cismin lineer

Detaylı

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: Bir nesnenin sabit hızda, net gücün etkisi altında olmadan düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplanmaktır. GENEL BİLGİLER:

Detaylı

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: DENEY 1 - SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET Bir nesnenin sabit hızda, net kuvvetin etkisi altında olmadan, düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplamaktır. GENEL BİLGİLER:

Detaylı

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise;

4.1 denklemine yakından bakalım. Tanımdan α = dω/dt olduğu bilinmektedir (ω açısal hız). O hâlde eğer cisme etki eden tork sıfır ise; Deney No : M3 Deneyin Adı : EYLEMSİZLİK MOMENTİ VE AÇISAL İVMELENME Deneyin Amacı : Dönme hareketinde eylemsizlik momentinin ne demek olduğunu ve nelere bağlı olduğunu deneysel olarak gözlemlemek. Teorik

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cismin hareketi ve hareketi doğuran sebepler arasındaki ilişkiyi inceler. Bu deneyde eğik hava masası üzerine kurulmuş Atwood makinesini kullanarak Newton un ikinci

Detaylı

Fizik 203. Ders 5 İş-Enerji- Momentum Ali Övgün. Ofis: AS242 Fen ve Edebiyat Fakültesi Tel:

Fizik 203. Ders 5 İş-Enerji- Momentum Ali Övgün. Ofis: AS242 Fen ve Edebiyat Fakültesi Tel: Fizik 203 Ders 5 İş-Enerji- Momentum Ali Övgün Ofis: AS242 Fen ve Edebiyat Fakültesi Tel: 0392-630-1379 ali.ovgun@emu.edu.tr www.aovgun.com İşinTanımı Güç KinetikEnerji NetKuvvetiçinİş-EnerjiTeoremi EnerjininKorunumuYasası

Detaylı

Bölüm 9: Doğrusal momentum ve çarpışmalar

Bölüm 9: Doğrusal momentum ve çarpışmalar Bölüm 9: Doğrusal momentum ve çarpışmalar v hızıyla hareket eden m kütleli bir parçacığın doğrusal momentumu kütle ve hızın çarpımına eşittir; p = mv Momentum vektörel bir niceliktir, yönü hız vektörü

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

2 SABİT HIZLI DOĞRUSAL HAREKET

2 SABİT HIZLI DOĞRUSAL HAREKET 2 SABİT HIZLI DOĞRUSAL HAREKET Bu deneyin amacı, hava masası deney düzeneği kullanarak, hiç bir net kuvvetin etkisi altında olmaksızın hareket eden bir cismin düz bir çizgi üzerinde ve sabit hızla hareket

Detaylı

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA

4. İKİ BOYUTLU UZAYDA ÇARPIŞMA 4. İKİ BOYUTLU UZAYDA ÇARPIŞMA AMAÇ. İki cismin çarpışması olayında momentumun korunumu ilkesinin incelenmesi,. Çarpışmada mekanik enerjinin korunumu ilkesinin incelenmesi, 3.Ölçü sonuçlarından yararlanarak

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

T.C. CELAL BAYAR ÜNİVERSİTESİ GENEL FİZİK I LABORATUVAR FÖYÜ

T.C. CELAL BAYAR ÜNİVERSİTESİ GENEL FİZİK I LABORATUVAR FÖYÜ T.C. CELAL BAYAR ÜNİVERSİTESİ GENEL FİZİK I LABORATUVAR FÖYÜ 2016 DENEY 1: BİR BOYUTTA HAREKET DENEYİN AMACI: Bir boyutta düzgün doğrusal ve ivmeli hareketin incelenmesi. 1.1. SABİT İVMELİ HAREKET TEORİK

Detaylı

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI Mekanik Deneyleri I Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; hareket, kuvvet ve kuvvetlerin bileşkesi, sürtünme kuvveti, Newton'un II. hareket yasası, serbest

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET

DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET DENEY 2 SABİT İVME İLE DÜZGÜN DOĞRUSAL HAREKET VE DÜZLEMDE HAREKET AMAÇ: Sabit ivme ile düzgün doğrusal hareket çalışılıp analiz edilecek ve eğik durumda bulunan hava masasındaki diskin hareketi incelenecek

Detaylı

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUARI DENEY RAPORU. Deneyin yapılış amacının ne olabileceğini kendi cümlelerinizle yazınız.

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUARI DENEY RAPORU. Deneyin yapılış amacının ne olabileceğini kendi cümlelerinizle yazınız. T.C. SAKARYA ÜNİVERSİTESİ FİZİK- LABORATUARI DENEY RAPORU Ad Soyad Numara Bölüm Grup Deney No Deneyin Adı Deneyin Amacı Teorik Bilgi Deneyin yapılış amacının ne olabileceğini kendi cümlelerinizle yazınız.

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 15 Parçacık Kinetiği: İmpuls ve Momentum Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 15 Parçacık

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU

T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU Adı-Soyadı : ÖĞRENCİNİN Numarası : İmza :. Bölümü : Deney No Deney Adı Bir Boyutta Hareket: Konum, Hız ve İvme Deneyin Amacı Deneyin Teorisi (Kendi cümleleriniz ile yazınız) (0 P) T.C. SAKARYA ÜNİVERSİTESİ

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Dinamik. Fatih ALİBEYOĞLU -8-

Dinamik. Fatih ALİBEYOĞLU -8- 1 Dinamik Fatih ALİBEYOĞLU -8- Giriş 2 Önceki bölümlerde F=m.a nın maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini kullandık. Hız değişimlerinin yapılan

Detaylı

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ

İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ İÇİNDEKİLER xiii İÇİNDEKİLER LİSTESİ BÖLÜM 1 ÖLÇME VE BİRİM SİSTEMLERİ 1.1. FİZİKTE ÖLÇME VE BİRİMLERİN ÖNEMİ... 2 1.2. BİRİMLER VE BİRİM SİSTEMLERİ... 2 1.3. TEMEL BİRİMLERİN TANIMLARI... 3 1.3.1. Uzunluğun

Detaylı

4.DENEY: ĠKĠ BOYUTLU UZAYDA ÇARPIġMA

4.DENEY: ĠKĠ BOYUTLU UZAYDA ÇARPIġMA 4.DENEY: ĠKĠ BOYUTLU UZAYDA ÇARPIġMA AMAÇ 1. Ġki cismin çarpıģması olayında momentumun korunumu ilkesinin incelenmesi, 2. ÇarpıĢmada mekanik enerjinin korunumu ilkesinin incelenmesi, 3. Ölçü sonuçlarından

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

MEKATRONİĞİN TEMELLERİ HAREKET

MEKATRONİĞİN TEMELLERİ HAREKET MEKATRONİĞİN TEMELLERİ HAREKET Bir Doğru Boyunca Hareket Konum ve Yer-değiştirme Ortalama Hız Ortalama Sürat Anlık Hız Ortalama ve Anlık İvme Bir Doğru Boyunca Hareket Kinematik, cisimlerin hareketini

Detaylı

Şekil 8.1: Cismin yatay ve dikey ivmesi

Şekil 8.1: Cismin yatay ve dikey ivmesi Deney No : M7 Deneyin Adı : EĞİK ATIŞ Deneyin Amacı : 1. Topun ilk hızını belirlemek 2. Ölçülen menzille hesaplanan menzili karşılaştırmak 3. Bir düzlem üzerinde uygulanan eğik atışta açıyla menzil ve

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Doğrusal Momentum ve Çarpışmalar

Doğrusal Momentum ve Çarpışmalar Doğrusal Momentum ve Çarpışmalar 1. Kütlesi m 1 = 0.5 kg olan bir blok Şekil 1 de görüldüğü gibi, eğri yüzeyli m 2 = 3 kg kütleli bir cismin tepesinden sürtünmesiz olarak kayıyor ve sürtünmesiz yatay zemine

Detaylı

elde ederiz

elde ederiz Deney No : M1 Deney Adı : NEWTON YASASI Deneyin Amacı : Sabit kuvvet altında hareketin incelenmesi, konum-zaman, hız-zaman grafiklerinin çizilmesi. Newton un ikinci hareket kanununun gözlemlenmesi, kuvvet-ivme

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir.

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir. HAREKET Bir cismin zamanla çevresindeki diğer cisimlere göre yer değiştirmesine hareket denir. Hareket konumuzu daha iyi anlamamız için öğrenmemiz gereken diğer kavramlar: 1. Yörünge 2. Konum 3. Yer değiştirme

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Şekil 6.1 Basit sarkaç

Şekil 6.1 Basit sarkaç Deney No : M5 Deney Adı : BASİT SARKAÇ Deneyin Amacı yer çekimi ivmesinin belirlenmesi Teorik Bilgi : Sabit bir noktadan iple sarkıtılan bir cisim basit sarkaç olarak isimlendirilir. : Basit sarkaçta uzunluk

Detaylı

Bağıl hız ve bağıl ivme..

Bağıl hız ve bağıl ivme.. Bağıl hız ve bağıl ivme.. Bağıl hareket, farklı referans sistemlerindeki farklı gözlemciler tarafından hareketlerin nasıl gözlemlendiğini ifade eder. Aynı hızla giden iki otomobilden birisinde bulunan

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi Kuvvet izik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi 2 Kuvvet Kuvvet ivmelenme kazandırır. Kuvvet vektörel bir niceliktir. Kuvvetler çift halinde bulunur. Kuvvet

Detaylı

: MAXWELL TEKERLEĞİ. Deneyin Adı Deneyin Amacı

: MAXWELL TEKERLEĞİ. Deneyin Adı Deneyin Amacı Deney No Deneyin Adı Deneyin Amacı : M4 : MAXWELL TEKERLEĞİ : İzole sistemlerde enerjinin korunumu ilkesini ve potansiyel ile kinetik enerji arası dönüşümlerini gözlemlemek/türetmek Teorik Bilgi : Maxwell

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik

Fizik 101-Fizik I Hareket Kanunları. Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik Fizik 101-Fizik I 2013-2014 Hareket Kanunları Nurdan Demirci Sankır Ofis: 325, Tel:4331 Enerji Araştırmalrı Laboratuarı (YDB- Bodrum Kat) İçerik Kuvvet Kavramı Newton nun Birinci Yasası ve Eylemsizlik

Detaylı

Video Mekanik Enerji

Video Mekanik Enerji Video 06 05.Mekanik Enerji Sürtünmenin olmadığı bir sistemde toplam enerji kinetik ve potansiyel toplamıdır. Herhangibir anda sistemin toplam enerjisi sabittir. Örnek: 2 Kg lık bir kütleye sahip bir cismin

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

Şekil 5.1 Uçları dışa doğru açılmış, paralel plakalar sistemi

Şekil 5.1 Uçları dışa doğru açılmış, paralel plakalar sistemi 5. Paralel Plakalar Amaç Bu deneyde yüklü bir parçacığı elektrik alan içinde hızlandırmak için kullanılan paralel plakalı elektrot düzeneğinin bir eşdeğeri iki boyutlu olarak teledeltos kağıdına çizilerek,

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

Fizik 101: Ders 11 Ajanda

Fizik 101: Ders 11 Ajanda Fizik 101: Ders 11 Ajanda Korunumlu kuvvetler & potansiyel enerji toplam mekanik enerjinin korunumu Örnek: sarkaç Korunumsuz kuvvetler sürtünme Genel İş/enerji teoremi Örnek problemler Korunumlu Kuvvetler:

Detaylı

Hava Masası Deney Seti

Hava Masası Deney Seti Hava Masası Deney Seti Öğrenci Deney Föyü Ankara-04 Paketleme Listesi. Hava Masası.. Düz Tabla.. Ark Kronometresi ve Ayak Pedalı.3. Hava Kompresörü (Hava Pompası) ve Ayak Pedalı.3. Metal Diskler ve Disk

Detaylı

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN

3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Grv. M. ERYÜREK Arş. Grv. H. TAŞKIN 3. EĞĐK DÜZLEMDE HAREKET Hazırlayanlar Arş. Gr. M. ERYÜREK Arş. Gr. H. TAŞKIN AMAÇ Eğik düzlemdeki imeli hareketi gözlemek e bu hareket için yol-zaman, hız-zaman ilişkilerini incelemek, yerçekimi imesini

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

TEKNOLOJĐNĐN BĐLĐMSEL ĐLKELERĐ DERS NOTLARI

TEKNOLOJĐNĐN BĐLĐMSEL ĐLKELERĐ DERS NOTLARI TEKNOLOJĐNĐN BĐLĐMSEL ĐLKELERĐ DERS NOTLARI BĐLEŞKE VE BĐLEŞENLER Zaman, kuvvet, kütle. vs. gibi büyüklükleri skaler büyüklükler yada vektörel büyüklükler olarak ifade ederiz. Eğer sadece sayısal değeri

Detaylı

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar

Kısa İçindekiler. Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: Bölümleri kapsar Kısa İçindekiler Fizik: İlkeler ve Pratik Cilt 1: 1-21 Bölümleri, Cilt 2: 22-34 Bölümleri kapsar Bölüm 1 Temeller 1 Bölüm 2 Bir Boyutta Hareket 28 Bölüm 3 İvme 53 Bölüm 4 Momentum 75 Bölüm 5 Enerji 101

Detaylı

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 3. Rijit cisimlerin dengesi, Denge denklemleri, Serbest cisim diyagramı Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları

Detaylı

YAPI STATİĞİ MESNETLER

YAPI STATİĞİ MESNETLER YAPI STATİĞİ MESNETLER Öğr.Gör. Gültekin BÜYÜKŞENGÜR STATİK Kirişler Yük Ve Mesnet Çeşitleri Mesnetler Ve Mesnet Reaksiyonları 1. Kayıcı Mesnetler 2. Sabit Mesnetler 3. Ankastre (Konsol) Mesnetler 4. Üç

Detaylı

VEKTÖRLER. 1. Skaler Büyüklükler

VEKTÖRLER. 1. Skaler Büyüklükler VEKTÖRLER Fizikte bazı büyüklükler sayılarla ifade edilebildiği halde, bazılarının ifade edilebilmesinde sayılar yeterli olmamaktadır. Sayılarla birlikte yönün de belirtilmesi gerekir. Bu nedenle fizikte

Detaylı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı

Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı Mimar Sinan Güzel Sanatlar Üniversitesi, Fizik Bölümü Fizik I Dersi Final Sınavı 17 Ocak 2013 Hazırlayan: Yamaç Pehlivan Başlama saati: 11:00 Bitiş Saati: 12:40 Toplam Süre: 100 Dakika Lütfen adınızı ve

Detaylı

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Akışkanlar Mekaniği Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Doç. Dr. İ. Gökhan AKSOY Denizanasının (Aurelia aurita) düzenli yüzme hareketi. Denizanası gövdesini kasıp akışkanı ittikten sonra süzülerek

Detaylı

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 3- Rijit Gövdeli Mekanik Sistemlerin Modellenmesi Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Görev çubuğu. Ana ölçek. Verniye çene. Hareketli ağız. Şekil 1.1: Verniyeli kumpas

Görev çubuğu. Ana ölçek. Verniye çene. Hareketli ağız. Şekil 1.1: Verniyeli kumpas AL KAYA: M Deney No Deney Adı : ÖLÇME VE HATA HESABI Deneyin Amacı : Bazı uzunluk ölçü aletlerini tanımak ve ölçme hataları hakkında ön bilgiler elde etmektir. Teorik Bilgi : VERNİYELİ KUMPAS Uzunluk ölçümü

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

9. MANYETİK ALAN AMAÇLAR

9. MANYETİK ALAN AMAÇLAR 9. MAYETİK ALA AMAÇLAR 1. arklı mıknatıslar tarafından oluşturulan manyetik alan çizgilerini gözlemek. 2. Manyetik alanın pusula iğnesi üzerindeki etkisini incelemek. 3. ir selenoidden geçen akıma uygulanan

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi 1 Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu 9 Eylül 00 Resmi Sınavı (Prof Dr Ventsislav Dimitrov) Konu: Termodinamik ve Enerji koruma yasası Soru Kütlesi m=0g olan suyu 00 0 C dereceden 0 0 C dereceye kadar soğuturken çıkan ısıyı tamamen işe çevirirsek,

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

DENEY 3 ATWOOD MAKİNASI

DENEY 3 ATWOOD MAKİNASI DENEY 3 ATWOOD MAKİNASI AMAÇ Bu deney bir cisin hareketi ve hareketi doğuran sebepleri arasındaki ilişkiyi inceler. Bu deneyde, eğik hava asası üzerine kuruluş Atwood akinesini kullanarak, Newton un ikinci

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

Deneyin Amacı. Teorik Bilgi : Yerçekimi ivmesi ve serbest düşme

Deneyin Amacı. Teorik Bilgi : Yerçekimi ivmesi ve serbest düşme Deney No Deney Adı Deneyin Amacı : M8 : SERBEST DÜŞME ve ATWOOD DÜZENEĞİ : Yeçekimi ivmesinin serbest düşen bir cisim ve Atwood düzeneği kullanılarak tespiti. Bu iki sistem için konum-zaman, hız-zaman

Detaylı

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y Fiz102L Deney 1 Eş potansiyel ve elektrik alan çizgileri P r o f. D r. T u r g u t B A Ş T U Ğ P r o f. D r. S a l e h S U L T A N S O Y Y r d. D o ç. D r. N u r d a n D. S A N K I R D r. A h m e t N u

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

Kütlesi 10 kg olan bir taş yerden 5 m yüksekte duruyor. Bu taşın sahip olduğu potansiyel enerji kaç Joule dür? (g=10n/s2)

Kütlesi 10 kg olan bir taş yerden 5 m yüksekte duruyor. Bu taşın sahip olduğu potansiyel enerji kaç Joule dür? (g=10n/s2) Soru 1 Kütlesi 10 kg olan bir taş yerden 5 m yüksekte duruyor. Bu taşın sahip olduğu potansiyel enerji kaç Joule dür? (g=10n/s2) Soru 2 Kütlesi 20 kg olan bir cisim 10 m/s hızla hareket ederken kinetik

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI T.C. MİLLÎ EĞİTİM BAKANLIĞI 05-06. SINIF DEĞERLENDİRME SINAVI - 4 05-06.SINIF FEN BİLİMLERİ TESTİ (LS ) DEĞERLENDİRME SINAVI - 4 Adı ve Soyadı :... Sınıfı :... Öğrenci Numarası :... SORU SAISI : 80 SINAV

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ 1 BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ ROTORLARDA STATİK VE DİNAMİKDENGE (BALANS) DENEYİ 1. AMAÇ... 2 2. GİRİŞ... 2 3. TEORİ... 3 4. DENEY TESİSATI... 4 5. DENEYİN YAPILIŞI... 7 6.

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

Mekanik, Statik Denge

Mekanik, Statik Denge Mekanik, Statik Denge Mardin Artuklu Üniversitesi 2. Hafta-01.03.2012 İdris Bedirhanoğlu url : www.dicle.edu.tr/a/idrisb e-mail : idrisbed@gmail.com 0532 657 14 31 Statik **Statik; uzayda kuvvetler etkisi

Detaylı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1 Kinetik Gaz Kuramının Varsayımları Boyle, Gay-Lussac ve Avagadro deneyleri tüm ideal gazların aynı davrandığını göstermektedir ve bunları açıklamak üzere kinetik gaz kuramı ortaya atılmıştır. 1. Gazlar

Detaylı

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 7. Konu İTME VE ÇİZGİSEL MOMENTUM TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 1. ÜNİTE: KUVVET VE HAREKET 7. Konu İTME VE ÇİZGİSEL MOMENTUM TEST ÇÖZÜMLERİ . SINIF SORU BANKASI. ÜNİTE: KUVVET VE HAREKET 7. Konu İTME VE ÇİZGİSEL MOMENTUM TEST ÇÖZÜMLERİ 7 İtme e Çizgisel Momentum Test in Çözümleri. Patlamadan önceki momentum +x yönünde; P 5 4 0 kg.m/s. Cismin

Detaylı