BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler"

Transkript

1 BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda k ya da daha yüksek boyutlu rasgele değşkenler ele alınır. Örneğn, br fabrkada üretlen br çelk parçasının sertlğ ve dayanıklılığı le lglenlp, br tek deneysel netce olarak (sertlk, dayanıklılık) kls göz önüne alınablr. Tanım 5... E br deney ve S de bu deneyle lgl örnek uzay olsun. X X () s ve Y Y() s se, her br her br s S netcesne br gerçek sayı karşılık getren k fonksyon olsun. Bu durumda ( XY, ) klsne k boyutlu br rasgele değşken denr. Tanım 5... Eğer ( XY, ) nn mümkün değerler sonlu ya da sayılablr sonsuz se ( XY, ) ye k boyutlu keskl rasgele değşken denr. Eğer ( XY, ) Ökld düzlemnn sayılamaz br alt kümesndek tüm değerler alıyorsa ( XY, ) ye k boyutlu sürekl rasgele değşken denr. Örneğn, eğer ( XY, ) kls {( x, y) : x y } çember veya {( x, y) : a x b, c y d} dkdörtgen çndek tüm değerler alıyorsa ( XY, ) k boyutlu sürekl rasgele değşken Tanım (Ortak Olasılık Fonksyonu) a) ( XY, ) k boyutlu keskl rasgele değşken olsun. Her br ( x, y ) mümkün netces le aşağıdak koşulları sağlayan ve f ( x, y ) f ( x, y ) P( X x, Y y ) le xy gösterlen fonksyona X ve Y rasgele değşkennn ortak olasılık fonksyonu denr. ( x, y, f ( x, y )) üçlüsüne se ( XY, ) nn olasılık dağılımı denr. () f ( x, y ) 0, ( x, y ) () f ( x, y )

2 b) ( XY, ) düzlemn br R bölgesnde (sayılablr olmayan) tüm değerler alan k boyutlu sürekl rasgele değşken olsun. Aşağıdak koşulları sağlayan br f fonksyonuna ( XY, ) nn ortak olasılık yoğunluk fonksyonu denr. () f ( x, y) 0, xy, () f ( x, y) dxdy Tanım (Ortak Dağılım Fonksyonu) ( XY, ) k boyutlu rasgele değşken olsun. ( XY, ) nn ortak dağılım fonksyonu F( x, y) P( X x, Y y) le tanımlanır. Tanım (Marnal Olasılık Fonksyonu) ( XY, ) k boyutlu rasgele değşken olsun. Breysel olarak X ve Y nn olasılık dağılımları ele alınablr. a) ( XY, ) keskl rasgele değşken se, X n marnal olasılık fonksyonu Y nn marnal olasılık fonksyonu f ( x ) f ( x ) f ( x, y ),,,... x f ( y ) f ( y ) f ( x, y ),,,... y (b) ( XY, ) sürekl rasgele değşken se, X ve Y nn marnal olasılık yoğunluk fonksyonları sırasıyla şeklnde tanımlanır. g( x) f ( x, y) dy, h( y) f ( x, y) dx

3 Tanım (Koşullu Olasılık Fonksyonu) (a) ( XY, ) ortak olasılık yoğunluk fonksyonu f olan k boyutlu sürekl br rasgele değşken ve g ve h sırasıyla X ve Y nn marnal olasılık yoğunluk fonksyonları olsun. Bu durumda verlen br Y y çn X n koşullu olasılık yoğunluk fonksyonu f ( x, y) g( x y), h( y) 0 hy ( ) ve verlen br X x çn Y nn koşullu olasılık yoğunluk fonksyonu f ( x, y) h( y x), g( x) 0 gx ( ) olarak tanımlanır. (b) ( XY, ) k boyutlu keskl rasgele değşken se, koşullu olasılık fonksyonları P( x, y ) p( x y ) P( X x, Y y ), q( y ) 0 qy ( ) ve P( x, y ) q( y x ) P( Y y X x ), p( x ) 0 px ( ) Olarak tanımlanır. Burada P( x, y ), ( XY, ) ortak olasılık fonksyonu ve p( x ) ve q( y ) sırasıyla X ve Y nn marnal olasılık fonksyonlarıdır. Örnek 5... ( XY, ) sürekl rasgele değşkenn ortak olasılık yoğunluk fonksyonu olsun. xy x, 0 x, 0 y f ( x, y) 3 0, dğer 3

4 a) () x [0,] ve y [0,] çn f ( x, y) 0 dır. () 3 xy xy x x x dydx x y dx ( ) b) xy x g( x) ( x ) dy x ve xy ( ) ( ) y h y x dx c) xy x f ( x, y) 3 6x xy g( x y), 0 x, 0 y h( y) y y 6 3 xy x f ( x, y) 3 3x xy 3x y h( y x), 0 x, 0 y g( x) x x 6x x 6x Bağımsız Rasgele Değşkenler Tanım 5... (a) ( XY, ) k boyutlu keskl rasgele değşken ve ( x, y ), ( XY, ) nn olanaklı sonuçları,,,..., m, y,,..., n olsun. X ve Y nn bağımsız olmaları çn gerek ve yeter koşul ( x, y ) çn P( X x, Y y ) P( X x ) P( Y y ) (b) ( XY, ) k boyutlu sürekl rasgele değşken olsun. X ve Y nn bağımsız olmaları çn gerekl ve yeterl koşul br S örnek uzayındak ( xy, ) çn f ( x, y) g( x) h( y) Burada gx ( ) ve hy ( ) sırasıyla X ve Y nn marnal olasılık yoğunluk fonksyonudur. Örnek 5... X ve Y rasgele değşkenlernn ortak olasılık yoğunluk fonksyonu 4

5 olsun. f x y e x y ( xy) (, ), 0, 0 ( x y) x y x x ( ) ( ), 0 g x e dy e e dy e e x 0 0 ( x y) y x y y ( ) ( ), 0 h y e dx e e dx e e y 0 0 x y f ( x, y) e e g( x) h( y) olduğundan X ve Y bağımsız rasgele değşkenler BÖLÜM 6 RASGELE DEĞİŞKENLERİN DİĞER KARAKTERİSTİKLERİ 6.. Beklenen Değer Tanım 6... (Beklenen değer) X rasgele değşken x, x,..., x n,... değerlern f ( x) P( X x) p( x),,..., n,... olasılıklarıyla alan keskl rasgele değşken olsun. X n EX ( ) le gösterlen beklenen değer (matematksel beklents) E( X ) x f ( x ) x f ( x ) x f ( x ) x f ( x ) n n (Bu değere X n ortalaması veya ktle ortalaması denr). X br boyutlu sürekl rasgele değşken olsun. f ( x), X rasgele değşkennn olasılık yoğunluk fonksyonu olmak üzere, X rasgele değşkennn beklenen değer EX ( ) 5

6 olarak tanımlanır. E( X ) xf ( x) dx, x Örnek 6... Br zar br kez atılsın. X üstte görülen noktaların sayısı olsun. Bu durumda 7 EX ( ) olur. Örnek 6... X sürekl rasgele değşkennn olasılık yoğunluk fonksyonu, 0 x f( x) olsun. EX ( ) bulunuz: 0, dğer E( X ) xf ( x) dx Beklenen Değern Özellkler Teorem 6... c br sabt ve X rasgele değşken olmak üzere X=c se E( X ) c Teorem 6... c br sabt ve X rasgele değşken olmak üzere E( cx ) ce( X ) Teorem c ve d brer sabt ve X rasgele değşken olmak üzere E( cx d) ce( X ) d Sonuç 6... X rasgele değşken olmak üzere E( X E( X )) 0 dır. 6

7 Tanım 6... (Br rasgele değşkennn fonksyonunun beklenen değer) X rasgele değşken olsun. Y g( X ), X rasgele değşkennn br fonksyonu olarak tanımlansın. () X keskl rasgele değşken se, E( g( X )) g( x) f ( x) () X sürekl rasgele değşken se, E( g( X )) g( x) f ( x) dx Örnek 6... X rasgele değşkennn olasılık dağılımı X x f ( x) P( X x) olarak verlyor. Buna göre; EX ( ) (a) E( X ) E( X ) (b) E(3X ) (c) (d) 6 3 EX ( ) E(X ) E( X ) Varyans Tanım (Varyans) Br X rasgele değşkennn V( X ) veya X olarak gösterlen varyansı aşağıdak gb tanımlanır. 7

8 V ( X ) X E X E( X ) (a) X keskl rasgele değşken se, n X x E X f x ( ( )) ( ) (b) X sürekl rasgele değşken se, X ( x E( X )) f ( x) dx. Tanım (Standart sapma) X, μ ortalamalı keskl veya sürekl rasgele değşken olsun. X n standart sapması, X, varyansın kareköküdür, yan X var( X ) E X. olarak tanımlanır. Teorem X, EX ( ) ortalamalı ve V( X) varyanslı br rasgele değşken se, E( X ) E( X ) E( X ) 6.4. Varyansın Özellkler Teorem a br sabt ve X rasgele değşken olsun. V ax ( ) a V( X ). Teorem b br sabt ve X rasgele değşken olsun. V( X b) V( X ). 8

9 Sonuç a ve b sabtler ve X rasgele değşken olsun. V ax b a V X ( ) ( ) BÖLÜM 7 BAZI KESİKLİ OLASILIK DAĞILIMLARI 7.. Bernoull Dağılımı Uygulamaların çoğunda br deneme çn genellkle başarılı ya da başarısız olarak ntelendrlen k sonuçla lglenlr. Böyle denemelere Bernoull denemeler denr. Tanım 7... Br X rasgele değşken çn yalnız k sonuç varsa, X e Bernoull rasgele değşken denr. Tanım 7... X rasgele değşken 0 ve değerlern alsın. X n olasılık fonksyonu P( X ) p P( X 0) p q veya f x P X x p q x x x ( ) ( ). 0, Bu dağılıma Bernoull dağılımı denr. Teorem 7... X, Bernoull dağılımına sahp rasgele değşken olsun. Bu durumda dır. E( X ) p ve E( X ) E( X ) p. q Örnek 7... Ardışık üç Bernoull denemesnde P(üçüde başarılı)=0,008 se, üç denemenn üçünün de başarısız olma olasılığı nedr? p 0,008 p 0, q 0, 0,8 q (0,8) 0,5 9

10 7.. Bnom Dağılımı(İk Terml Dağılım) Bernoull denemelernn br dzsnden oluşan deneye Bnom deney denr. Tanım 7... Brbrnden bağımsız n özdeş Bernoull denemesnden başarılı olanların toplam sayısı X rasgele değşken olsun. Br tek deneme çn başarılı olma olasılığı p, başarısız olma olasılığı -p=q se aşağıdak koşulları sağlayan X rasgele değşkenne Bnom rasgele değşken denr. () Deney n özdeş denemeden oluşmaktadır. () Her br deneme çn yalnız sonuç vardır.(başarılı-başarısız) ()Başarı olasılığı p her deneme çn aynıdır ve q=-p (v) Denemeler brbrnden bağımsızdır. Tanım 7... Brbrnden bağımsız n özdeş Bernoull denemes çn X, her br denemede başarı olasılığı p, başarısızlık olasılığı q olan bnom rasgele değşken se, X n olasılık fonksyonu n x nx f ( x). p. q, x=0,,...n x Bu dağılıma Bnom dağılımı denr. Teorem 7... X, Bnom dağılımına sahp rasgele değşken olsun. Bu durumda E( X ) np V ( X ) E( X ) E( X ) npq Örnek çocuklu br alede erkek çocuk olma olasılığı nedr? n p, q P( x ) f ().. 3 x 0

11 7.3. Posson Dağılımı Tanım Bell br zaman veya hacmde gözlenen başarıların sayısı X olsun. Eğer aşağıdak koşullar sağlanıyorsa X e Posson rasgele değşken denr: () X keskl br rasgele değşken () Tekrarlar rasgele () Tekrarlar bağımsızdır. Tanım X, 0,, değerlern alablen br Posson rasgele değşken olsun. X n olasılık fonksyonu aşağıdak gbdr: x e. f ( x) P( X x), x=0,,..., 0 x! Teorem X rasgele değşken Posson dağılımına sahp olsun. E( X ) ve V( X ) Örnek Saat 9:00 dan 9:05 e kadar operatörün aldığı telefon konuşmalarının sayısı olan Posson dağılımına sahptr. Br sonrak gün aynı zaman aralığında operatörün telefon konuşması almaması olasılığı nedr? 0 e. X 0 f(0)= 0, ! e 7.4. Düzgün Dağılımı Tanım7.4.. X rasgele değşkennn alableceğ değerler x, x,..., x N ve X n olasılık fonksyonu f ( x) P( X x),,..., N N

12 olsun. Bu durumda X rasgele değşkenne keskl düzgün rasgele değşken ve dağılımına da keskl düzgün dağılım denr. Teorem X keskl düzgün rasgele değşken olsun. Bu durumda aşağıdakler doğrudur. N E( X ) ve V ( X ) N Örnek Br para kez atılıyor. Turaların sayısının dağılımı nedr? N f ( x) x=0, 3 E(X)= 3 V( X) 4 BÖLÜM 8 BAZI SÜREKLİ OLASILIK DAĞILIMLARI 8.. Normal Dağılım Tanım 8... Sürekl rasgele değşken X n olasılık yoğunluk fonksyonu X x f ( x) e 0 se X rasgele değşkenne normal dağılıma sahptr denr. Burada μ dağılımın ortalaması ve σ dağılımın standart sapmasıdır. Bu fade X N(, ) le gösterlr; Ortalama (Beklenen) Değer: EX ( ), Varyans: V( X). Tanım 8... X N(, ) se, X n a ve b değerler arasında bulunma olasılığı

13 b x ( ) P( a X b) e dx a f( x) eğrs altında, x eksennn yukarısında ve x a, x b doğruları arasında kalan alandır. Teorem 8... X N(, ) se Y ax b X N a b a (, ) Örnek 8... X N(4,) Y 5X 4 ün dağılımını bulunuz. Y N N (54 4,5 ) (4,50) 8.. Standart Normal Dağılım Tanım 8... Br X normal rasgele değşken çn 0 yoğunluk fonksyonu x f ( x) e, x ve se, X n olasılık Bu durumda X rasgele değşkenne standart normal dağılıma sahp rasgele değşken ve dağılıma da standart normal dağılım (Brm Normal Dağılım) denr ve X N (0,) olarak yazılır. Burada f ( x) 0 ve f ( x) dx Yan, x e dx olduğuna dkkat edlmel Teorem 8... dağılıma sahptr. X N(, ) Z X rasgele değşken N (0,) standart normal 3

14 Örnek 8... Br sınıftak öğrenclern boy uzunlukları E( X ) 65 ve V( X ) 9 olan br normal dağılıma sahptr. PX ( 6)? X 65 X N(65,9) ve Z Z P( Z ) 3 P( Z ) 0,5 P( Z ) 0,5 0,343 0,587. (Burada z çn tablo değer 0,343 tür.) 8.3. Düzgün Dağılım Tanım X rasgele değşkennn olasılık yoğunluk fonksyonu f ( x) a x b b a se, X rasgele değşkenne sürekl düzgün dağılıma sahp rasgele değşken ve dağılımına da sürekl düzgün dağılım denr. Teorem X düzgün dağılıma sahp rasgele değşken se ( ) ( ) a b ve ( ) b E X V X a 8.4. Üstel Dağılım Tanım X 0 rasgele değşkennn olasılık yoğunluk fonksyonu x e, x0, 0 f( X) 0, dğer se, bu durumda X sürekl rasgele değşkenne üstel dağılıma sahp br rasgele değşken ve dağılıma da üstel dağılım denr. Teorem X üstel dağılıma sahp rasgele değşken olsun. Bu durumda E( X ) ve V( X ) 4

15 Örnek Br öğrenc sınavda saatte ortalama 0 soru cevaplamaktadır. Br soruyu cevaplandırmak çn gereken sürenn üstel dağılıma sahp olduğunu varsayalım. Öğrencnn lk soruyu 5 dakka veya daha uzun sürede çözmes olasılığı nedr? X: soruyu çözmek çn gereken süre olsun. Bu öğrenc saatte 0 soru çözüyorsa soruyu yaklaşık 3 dakkada çözüyor demektr. EX ( ) 3 3 tür. x x x P( X 5) e dx e dx e e dır. 5

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?

A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır? . Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesr Ünverstes İnşaat Mühendslğ Bölüü uutokkan@balkesr.edu.tr İSTATİSTİK DERS OTLARI Yrd. Doç. Dr. Uut OKKA Hdrolk Anabl Dalı Balıkesr Ünverstes Balıkesr Ünverstes İnşaat Mühendslğ Bölüü İnşaat Mühendslğ

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi

GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL. Frekans Dağılımı Oluşturma Adımları VERİLERİN SUNUMU. Verilerin Özetlenmesi ve Grafikle Gösterilmesi VERİLERİN SUNUMU GM-0 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Br çalışadan elde edlen verler ha ver ntelğndedr. Ha verlerden blg ednek zor ve zaan alıcıdır. Ha verler çok karaşık durudadır. Verlern düzenlenes

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları Birden Fazla RDnin Bileşik Olasılık Fonksiyonları Birden fazla x 1, x 2,..., x n gibi RDlerimiz olsun. Bunların bileşik olasılık fonksiyonları kesikli ve rastgele RDler için sırasıyla şu şekilde tanımlanır

Detaylı

Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır.

Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır. Kümülatif Dağılım Fonksiyonları Herhangi bir rastgele değişken için kümülatif dağılım fonksiyonu/cumulative distribution function (KDF/CDF) şu şekilde tanımlanır. F X (x) = P (X x) = x f X(x ) dx Sürekli

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık

OLASILIK. Bölüm 4. Temel Tanımlar ve Kavramlar-I. Olasılık ölüm 4 Olasılık OLSILIK opulasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp heps mutlaka br hata payı taşımaktadır. u hata payının ortaya çıkmasının sebeb

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri Mehmet YILMAZ mehmetyilmaz@ankara.edu.tr 10 KASIM 2017 14. HAFTA 8 Tek kanallı, Sonsuz Kapasiteli, Servis Süreleri Keyfi Dağılımlı Kuyruk Sistemi M/G/1/

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

Communication Theory

Communication Theory Communcaton Theory ENFORMASYON TEORİSİ KODLAMA Doç. Dr. Hakan Doğan ENFORMASYON DEYİMİ NEDEN KULLANILMIŞ? Kaynaklarn, kanalların,alıcıların blg karakterstklern ncelemek. Blgnn letmn optmze etmek çn İletmn

Detaylı

UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT UYGULAMALI MATEMATİK KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü

DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değişkenli doğrusal olmayan karar modelinin çözümü DOĞRUSAL OLMAYAN PROGRAMLAMA -III- Çok değşkenl doğrusal olmayan karar modelnn çözümü Hazırlayan Doç. Dr. Nl ARAS Anadolu Ünverstes, Endüstr Mühendslğ Bölümü İST8 Yöneylem Araştırması Ders - Öğretm Yılı

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2

Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)

SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011) İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

OLİGOPOLİ. Oligopolic piyasa yapısını incelemek için ortaya atılmış belli başlı modeller şunlardır.

OLİGOPOLİ. Oligopolic piyasa yapısını incelemek için ortaya atılmış belli başlı modeller şunlardır. OLİGOOLİ Olgopolc pyasa yapısını ncelemek çn ortaya atılmış bell başlı modeller şunlardır.. Drsekl Talep Eğrs Model Swezzy Model: Olgopolstc pyasalardak fyat katılığını açıklamak çn gelştrlmştr. Olgopolcü

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)

SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011) SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 = 5 3. kişi için iki durum

Detaylı

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI

TESADÜFİ DEĞİŞKENLERLE İLGİLİ BAZI YAKINSAKLIK ÇEŞİTLERİNİN KARŞILAŞTIRILMASI ISSN:1306-3111 e-journal of New Worl Scences Acaemy 2008, Volume: 3, Number: 4 Artcle Number: A0108 NATURAL AND APPLIED SCIENCES MATHEMATICS APPLIED MATHEMATICS Receve: March 2008 Accepte: September 2008

Detaylı

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 5 3. kişi için iki durum

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK

OLASILIK KURAMI. Temel Tanımlar ve Kavramlar-III. Temel Tanımlar ve Kavramlar-II. Temel Tanımlar ve Kavramlar-I OLASILIK Dr. Mehmet KSRYLI OLSILIK OLSILIK KURMI Dokuz Eylül Ünverstes Ekonometr Böl. www.mehmetaksarayl.com Populasyon hakkında blg sahb olmak amacı le alınan örneklerden elde edlen blgler bre br doğru olmayıp

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ DENEY TASARIMI VE ANALİZİ Bundan öncek bölümlerde bell br araşırma sonucu elde edlen verlere dayanılarak populasyonu anıma ve paramere ahmnlerne yönelk yönemlerden söz edld. Burada se sözü edlecek olan,

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatstkler Tanımlayıcı İstatstkler Br ver setn tanımak veya brden fazla ver setn karşılaştırmak çn kullanılan ve ayrıca örnek verlernden hareket le frekans dağılışlarını sayısal olarak

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet

ALGILANAN HİZMET KALİTESİ VE LOJİSTİK REGRESYON ANALİZİ İLE HİZMET TERCİHİNE ETKİSİNİN BELİRLENMESİ. Özet Dokuz Eylül Ünverstes Sosyal Blmler Ensttüsü Dergs Yayın Gelş Tarh: 18.02.2011 Clt: 13, Sayı: 1, Yıl: 2011, Sayfa: 21-37 Yayına Kabul Tarh: 17.03.2011 ISSN: 1302-3284 ALGILANAN HİZMET KALİTESİ VE LOJİSTİK

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

YÖNEYLEM ARAŞTIRMASI-II Hafta 14

YÖNEYLEM ARAŞTIRMASI-II Hafta 14 9.0.07 YÖNEYLEM ARAŞTIRMASI-II Hafta ERT ANALİZİ Olasılıksal roje Değerlendirme ve Gözden Geçirme Tekniği ERT (robabilistic Evaluation and Review Technique) Eğer projenin faaliyetlerinin tamamlanma süresi

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

DENEY TASARIMI VE ANALİZİ

DENEY TASARIMI VE ANALİZİ 1 DENEY TASARIMI VE ANALİZİ 1.1. Varyans Analz 1.. Tek Yönlü Varyans Analz Model 1.3. İk Yönlü Varyans Analz Model Prof Dr. Leven ŞENYAY XII-1 İsask II Bundan öncek bölümlerde bell br araşırma sonucu elde

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI

Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI SAKARYA UNIVERSITESI Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI Prof. Dr. Mustafa AKAL 1 İÇİNDEKİLER 1. BERNOULLİ DAĞILIMI 2. BİNOM DAĞILIMI 3. POİSSON DAĞILIMI 4. PASCAL DAĞILIMI 5. GEOMETRİK DAĞILIM 6. HİPERGEOMETRİK

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi Anlamlı Basamaklar Konusu ve Olasılık Ekonometri 1 Konu 1 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial

Detaylı

SÜREKLİ( CONTINUOUS) OLASILIK

SÜREKLİ( CONTINUOUS) OLASILIK SÜREKLİ( CONTINUOUS) OLASILIK DAĞILIMLARI Sürekli bir random değişken (a,b) aralığındaki her değeri alabiliyorsa bu değişkene ait olasılık dağılım fonksiyonunun grafiğinde eğri altında kalan alan bize

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

Dağılımın parametreleri λ ve ζ, sırasıyla, lnx in ortalama değerini ve standart sapmasını belirtir; λ=e(lnx) ve ζ=[var(lnx)] 1/2.

Dağılımın parametreleri λ ve ζ, sırasıyla, lnx in ortalama değerini ve standart sapmasını belirtir; λ=e(lnx) ve ζ=[var(lnx)] 1/2. Bölüm 5 Logaritmik Normal Dağılım / Lognormal Dağılım Bir X rasgele değişkenine ilişkin lnx olasılık dağılımı normal ise, X in olasılık dağılımı logaritmik normal dağılım ya da kısaca lognormal dağılım

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN

PORTFÖY OPTİMİZASYONU. Doç.Dr.Aydın ULUCAN PORTFÖY OPTİMİZASYOU Doç.Dr.Aydın ULUCA KARAR VERME Karar verme, ş dünyasının çalışmasını sağlayan temel unsurlardandır. Tüm yönetcler, bulundukları faalyet alanı ve kademelernden bağımsız olarak stratejk

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

Sansürlenmiş ve Kesikli Regresyon Modelleri

Sansürlenmiş ve Kesikli Regresyon Modelleri TOBİT MODEL 1 Sansürlenmş ve Keskl Regresyon Modeller Sınırlı bağımlı değşkenler: sansürlenmş (censored) ve keskl (truncated) regresyon modeller şeklnde k gruba ayrılır. 2 Sansürlenmş ve Keskl Regresyon

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı