Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur."

Transkript

1 Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak için, noktayı bir koordinat düzlemi üzerinde düşünmeliyiz. Kartezyen koordinat düzlemi, birbirine dik orijin adı verilen noktada birleşen eksenlerden oluşur. Bu eksenler bilindiği üzere x,y ve z eksenleridir. Şekil 1 Kartezyen koordinat sistemi Herhangi bir nokta: P(x,y,z) biçiminde tanımlanır.

2 İki Nokta Arası Uzaklık: P1(x1,y1,z1) P2(x2,y2,z2) Doğru, Vektör (Line) Doğruyu tanımlamak için iki nokta gereklidir. P 1 ve P 2 den geçen doğru, doğrusu olarak gösterilir. Doğrunun uzunluğu iki nokta arası mesafe gibidir. Vektörü, başlangıç noktası orijin, bitiş noktası yön olan Şekil 2 Doğru bir doğru parçası olarak düşünebiliriz. v=<d x,d y,d z > Vektör büyüklük ve yön den oluşur. Büyüklüğü ve yönü aynı olan vektörler eşit vektörlerdir. Vektörün uzunluğu, vektörün büyüklüğüdür. Uzunluğu bir olan vektöre birim vektör denir. Vektörün başlangıç Şekil 3 Vektör noktası orijin ve bitiş noktası yön noktası (d) olduğu için: Vektörün yönüne gelince; yönü belirtmek için birim vektörü kullanırız. Vektörün uzunluğunu bir yaparak yönünü bulabiliriz. Bu işleme normalleştirme (normalization) denir.

3 Normalleştirme: Bu durumda bir vektörü şu biçimde yazabiliriz: Örnek: P1 (1,-2,1), P2(3,0,3),P3(-4,2,10) ve P4(-2,4,12) noktalarımız olsun. u=p1p2 ve v=p3p4 vektörlerini yazalım. Çözüm: u=<3-1,0-(-2),3-1>=<2,2,2> v=<-2-(-4),4-2,12-10>=<2,2,2> u = v = =2 Görüldüğü gibi vektörler, eşit vektörler. Doğrunun denklemi: İki boyutlu doğrunun denklemi biçimindedir. Burada m eğimdir ve:

4 dir. a doğrunun y eksenini kestiği noktadır. Üç boyutta doğru parametrik denklemle tanımlanır. Yön vektörü doğrunun yönünü belirtir ve: dır. P1 başlangıç ve P 2 bitiş noktaları olsun, D de doğrultu vektörü olsun. t= 0 için P= P 0 ve t=1 için P=P 1 ; Örnek: P(1,-2) noktasından geçen eğimi 3 olan doğrunun denklemini yazalım. Çözüm: y=mx+a dan; y = 3x+a noktayı denkleme yerleştirelim, -2=3+a a=-5 Denklemimiz: y = 3x - 5

5 Örnek: P(3,-4,7 ) ve Q(2,2,10) noktalarını oluşturan doğrunun orta noktasını bulunuz. Çözüm: Parametrik doğru denklemini oluşturalım. P 0 = (3,-4,7) D=(2-3,2+4,10-7)=(-1,6,3) P=P 0 +td P orta =(3,-4,7) + t(-1,6,3) t=0.5 için orta noktayı elde ederiz. X=X 0 +td x =3+(0.5)(-1)=2.5 Y=Y 0 +td y =-4+(0.5)(6)=-1 Z=Z 0 +td z =7+(0.5)(3)=8.5 P orta =(2.5,-1,8.5) Noktasal çarpım (Dot Product) Vektörler A ve B; Noktasal çarpım: Görüldüğü gibi iki vektörün noktasal çarpımı skaler bir büyüklük meydana getiriyor. Diğer bir tanım şöyle:

6 Θ (teta) vektörlerin aralarındaki açı olmak üzere; Bu tanımdan da görüldüğü gibi, eğer A ve B vektörleri birim vektörler ise, noktasal çarpımları aralarındaki açının kosinüsünü verir. Ters kosinüs alarak aralarındaki açıyı bulabiliriz. Yazmak gerekirse: Eğer iki vektör dikse noktasal çarpımları sıfırdır.(cos 90 = 0) Noktasal çarpımın bir diğer uygulaması bir vektörün diğer vektör üzerindeki izdüşümünün, ya da aynı yöndeki bileşenin büyüklüğünü bulmaktır. nin V2 nin yönü olduğuna dikkat edin. Noktasal çarpımın bir diğer uygulaması ise vektörün diğer bir vektör üzerindeki izdüşüm vektörünü bulmaktır. izdüşüm v2 V1, V1 in V2 üzerindeki İzdüşümünü demektir. Burada önceki formül ile bulduğumuz skaler değeri V2 nin yönüyle çarptığımıza dikkat edin.

7 Çapraz Çarpım (Cross Product): Vektörler A ve B; A ile B nin çapraz çarpımı A ile B nin heriklisine de dik olan yeni bir vektör verir. Eğer vektörler paralelse sonuç sıfır olacaktır.(sin0=sin180=0) Vektör n birim vektördür, yönü belirtir. Şekil 4 Sağ el kuralı Eğer iki vektör birbirine paralelse sonuç sıfırdır. Yeni vektörün yönü sağ el kuralı ile bulunabilir. Vektörlerimiz u ve v olsun: i,j ve k standart birim vektörler, Bu tanımlamalar eşiğinde çapraz çarpımı, vektörleri matris biçiminde yazıp determinantını alarak hesaplayabiliriz. Çapraz çarpımın bazı özellikleri: - v x u = - (v x u) - (u x v)x y eşit olmak zorunda değildir u x(v x y)

8 Geometrik Anlamı: Çapraz çarpımın büyüklüğü: Bundan yola çıkarak, çapraz çarpımın büyüklüğü, vektörlerin oluşturduğu paralelkenarın alanına eşittir diyebiliriz. Üçlü skaler çarpım (Triple scalar product) : a, b ve c vektörlerinin üçlü çarpımları, a,b ve c vektörlerinin belirlediği paralelyüzlü (parallelepiped) nün hacmini verir. = hacim Üçlü çarpım determinant alınarak da hesaplanabilir.

9 Düzlem (Plane): Düzlemi tanımlamak için düzlemin normali (n) ile düzlem üzerindeki bir nokta (P 0 ) yeterlidir. Düzlemin üzerindeki P 0 P doğrusu ile düzlem normalinin Noktasal çarpımının sıfır olması gerekir. İki dik doğrunun Noktasal çarpımlarının sıfır olduğunu hatırlayalım. Düzlemin denklemi: Açarsak: Basitleştirirsek: Son eşitlikte biraz oynama yaparsak: n yerine P 0 yazılarak D bulunabilir. Örnek: P 0 (3,2,1) ve n=3i + 2j -2k için bir düzlem bulalım. Çözüm: D = 3*3 + 2*2 + (-2)*1 = 11 3x + 2y -2z = 11 (Normal doğrusunun, düzlem denklemi üzerindeki etkisine dikkat edin.)

10 İki düzlemin birbirine paralel ya da dik olduğunu anlamak için normallerine bakarız. Normaller paralelse ya da dikse, düzlemler birbirine dik ya da paraleldir. Düzlem denkleminin analizi: Birlikte n.p = D düzlem denklemini inceleyelim. Diğer denklemlerde biraz oynama ile diğerlerine Kolayca dönüştürülebilir. n düzlemimizin yönünü gösteren birim normalimiz olsun ve değeri (0,1,0) olsun. P 0 da düzlem üzerinde seçilen bir nokta olsun. P 0 ı başlangıcı orijin sonu (X 0,Y 0,Z 0 ) olan konum vektörü olarak kabul edelim. Normal vektörü ile konum vektörü arasında kalan açı a açısı olsun. P 0 cos a nın, P 0 noktasının ya da P 0 noktasını taşıyan düzlemin, orijine normal doğrultusunda uzaklığı olduğunu görelim. İzdüşümde incelediğimiz üzere ; n zaten birim vektör olduğundan; = D Yani düzlem denklemindeki D değeri düzlemin normal yönünde orijinden uzaklığını veriyor. Bu ne işimize yarar, görelim.

11 Noktanın düzleme göre konumu: P 1 (X1,Y1,Z1) noktasını düşünelim. Bu noktanın düzleme göre konumunu inceleyelim. P 1 i n.p=d denklemine yerleştirelim. n. P 1 =D 1 D 1, P 1 noktasının orijine normal yönünde uzaklığıdır. Eğer D 1 =D ise P 1 noktası düzlem üzerindedir. Eğer büyükse düzlemin normal yönündeki tarafındadır. Küçükse ters taraftadır. Şimdi ifadeye dökelim. n.p 0 =D düzlemimiz olsun. n.p 1 =D ise P1 düzlem üzerinde, n.p 1 >D ise P1 düzlemin normalin gösterdiği tarafında, n.p 1 =D ise P1 düzlemin diğer tarafında. Nokta ile düzlem arasındaki uzaklık: n.p 0 =D düzlemimiz olsun. n birim vektör. P 1 noktasının düzleme uzaklığı (d) nı inceleyelim. Yukarıdaki analizimiz üzerinden devam edelim. P 1 noktasının aynı normale sahip başka bir düzlem üzerinde olduğunu kabul edelim. Orijine uzaklığı D 1 olsun. Uzaklıkların farkı, bize noktanın düzleme olan uzaklığını verir. d = D 1 -D Eğer d=0 ise bir önceki başlıkta incelediğimiz gibi, nokta düzlem üzerindedir. d<0 ise nokta düzlemin arkasında, d>0 ise düzlemin önünde yani normalin gösterdiği tarafındadır.

12 Üç noktadan düzlem bulma: Noktalarımız P 0, P 1 ve P 2 olsun. Bu üç noktadan iki doğru oluşturalım, P 0 P 1 ve P 0 P 2.Bu iki doğrunun çapraz çarpımı bize her iki doğruya da dik olan yeni bir doğru verir. Bu doğru bizim normalimizdir. Daha sonra noktalardan herhangi birini seçerek düzlem denklemini oluşturabiliriz. Çapraz çarpım alırken P0P1xP0P2 ile P0P2xP0P1 arasında yön farkı olduğunu unutmayın. İki düzlemin kesişim doğrusu: Normallerin çapraz çarpımı, düzlemlerin kesişim doğrusuna paralel bir vektör verir. Doğru üzerindeki bir noktayı parametrik doğru denklemine yerleştirerek doğruyu bulabiliriz. Örnek: Düzlemler 1x-3y+4z=12 ve 2x+y-5z=10 olsun. Çözüm: n1=1x-3y+4z=0; n2=2x+y-5z=0; n1xn2=11x+13y+7z (doğruya paralel bir vektör)

13 Şimdi doğru üzerindeki bir noktayı bulalım. Her iki düzlemde de bulunan bir nokta işimizi görür. Z=0 için; 1x-3y=12 2x+y=10 X=6, y=-2 ve z=0 için P(6,-2,0) Şimdi parametrik denklemde yerine koyalım: X=6+11t Y=-2+13t Z=7t Doğru ile Düzlemin kesişim noktası: Doğru denklemi: P = p 0 + t*d X = x 0 +t*d; y ve z içinde benzer biçimde. Düzlem denklemi: Ax+By+Cz=D X,Y ve Z yi düzlem denkleminde yazarsak ve çözersek, aradığımız noktayı buluruz. Örnek:P0(1,3,2) ve P1(2,2,-1) noktalarının oluşturduğu doğru ile P(1,1,-3) noktasını içeren ve normali 3x+4y-1z=0 olan düzlemin kesişim noktasını bulalım. Çözüm: Doğru denklemini yazalım. P 0 =(1,3,2) d=(1,-1,-3)

14 X=1+t Y=3-t Z=2-3t Düzlem denklemi; D=3+4+3=10 3x+4y-z=10 Şimdi x,y ve z yi düzlem denklemine yerleştirelim: 3(1+t)+4(3-t)-(2-3t)= t=10 t=-3/2 Kesişim noktası P kesişim =(-1/2,-3/2, 13/2) Not: Doğrunun doğrultusunu veren d vektörü ile düzlemin doğrultusunu veren n vektörleri paralelse, yani n x p=0 ise, doğru ile düzlem kesişmez. Üç düzlemin kesişimi: Üç düzlem bir noktada ya da bir doğru üzerinde kesişir. Üç denklemi birlikte çözersek çözüme ulaşırız. Üç denklemi birlikte çözmek için bir matris oluşturalım: Düzlemlerimiz; N 1.P=D 1, N 2.P=D 2 ve N 3.P=D 3 olsun.

15 Sistemi yeniden düzenleyelim: Görüldüğü gibi son sütun kesişim noktasını verecek. Eğer matrisin tersini elde edemezsek düzlemlerin en az ikisinin paralel olduğuna, yani düzlemlerin bir noktada kesişmediğine hükmederiz. 3x3 matris biçiminde yazarak çözmemiz de mümkün: Ayrıca alternatif bir formül de mevcut: nin determinant olduğunu öğrenmiştik. Eğer az ikisi paralel demektir. ise düzlemlerden en

16 Homojen Koordinatlar: İki tane paralel doğru düşünelim. Bu iki paralel doğru asla kesişmez. Ama gözümüze bu doğrular, bizden uzaklaştıkça birbirine yaklaşıyormuş gibi gözükür ve sonsuzda doğruların kesiştiği görürüz. Kartezyen koordinat sistemi ile bu tür hesaplamalar yapmamız mümkün olmadığı için homojen koordinat sistemi geliştirilmiş. Homojen koordinat sistemi, Kartezyen koordinat sistemi ile aynıdır, sadece noktaları tanımlarken dördüncü bir bileşen daha kullanırız. Kartezyen koordinat sistemindeki bir nokta ile homojen koordinat sistemindeki bir nokta arasında şöyle bir ilişki vardır: w =0 olduğu zaman nokta sonsuzdadır deriz. Kartezyen koordinat sistemindeki her noktayı w bileşeni 1 olan homojen bir nokta olarak kabul edebiliriz. KAYNAKÇA: 1. Thomas Calculus ISBN

17

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Öğr. Gör. Volkan ÖĞER MAT 1010 Matematik II 1/ 172 Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

Bir Doğru Parçasının Orta Noktası. x 1. + x 2. Örnek: Çözüm: =5 z=7 dir. O halde C(5,-13,7) olur.

Bir Doğru Parçasının Orta Noktası. x 1. + x 2. Örnek: Çözüm: =5 z=7 dir. O halde C(5,-13,7) olur. UZAY ANALİTİK GEOMETRİ Uzayda Koordinat Sistemi ve Uzayda Vektörler: Tanım: Uzayda (üç boyutlu) birbirine ikişer ikişer dik sayı eksenlerinin oluşturduğu sisteme üç boyutlu uzayda koordinat sistemi denir.bu

Detaylı

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır.

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Uzayda Simetri Hazırlayan Halit Çelik Matematik Öğretmeni Noktaya Göre Simetri: A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Buna göre şeklinde

Detaylı

Görünmeyen Yüzey ve Arkayüz Kaldırma

Görünmeyen Yüzey ve Arkayüz Kaldırma KARADENİZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR GRAFİKLERİ LABORATUARI Görünmeyen Yüzey ve Arkayüz Kaldırma 1. Giriş Bilgisayar grafiklerinin en önemli problemlerinden biri katı

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,

A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ, Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve

Detaylı

1. BÖLÜM VEKTÖRLER 1

1. BÖLÜM VEKTÖRLER 1 1. BÖLÜM VEKTÖRLER 1 Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallarında znlk, alan, hacim, yoğnlk, kütle, elektriksel yük, gibi büyüklükler, cebirsel krallara göre ifade edilirler. B tür

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM (a, b, c) r x = a y = b u a b UD VEKTÖRLER ve DĞRU DÜLEM ÜN TE y y y y y y Uzay Uzayda Dik Koordinat Sistemi Uzayda Vektörler Uzayda İki Vektörün Skaler (İç) Çarpımı Uzayda İki Vektörün Vektörel (Dış)

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız.

Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız. Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız. 2. Bir parçacığın yerdeğiştirmesinin büyüklüğü, alınan yolun uzunluğundan daha büyük

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

H. Turgay Kaptanoğlu. Ç. Dışmerkezlilik ve Doğrultmanlar Dışmerkezlilik kavramı, inceledimiz dört

H. Turgay Kaptanoğlu. Ç. Dışmerkezlilik ve Doğrultmanlar Dışmerkezlilik kavramı, inceledimiz dört KONİNİN KESİTLERİ (II) H. Turgay Kaptanoğlu Ç. Dışmerkezlilik ve Doğrultmanlar Dışmerkezlilik kavramı, inceledimiz dört eğriyi aynı bakış açısı etrafında toplamamızı sağlayacak. Dışmerkezlilik hakkında

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö

LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4) HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

Ders 9: Bézout teoremi

Ders 9: Bézout teoremi Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri 1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

BİLGİ TAMAMLAMA VEKTÖRLER

BİLGİ TAMAMLAMA VEKTÖRLER DİNAMİK BİLGİ TAMAMLAMA VEKTÖRLER Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü VEKTÖRLER Kapsam Büyüklük yanında ayrıca yön

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir oktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJEİ AMACI: Bu projede herhangi bir koniğin üzerindeki veya dışındaki bir noktadan

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

ANALİTİK GEOMETRİ VE ÇÖZÜMLÜ PROBLEMLER. Matrisler - Determinant Lineer Denklem Sistemleri - Vektörler Uzayda Doğru Denklemi - Uzayda Düzlem Denklemi

ANALİTİK GEOMETRİ VE ÇÖZÜMLÜ PROBLEMLER. Matrisler - Determinant Lineer Denklem Sistemleri - Vektörler Uzayda Doğru Denklemi - Uzayda Düzlem Denklemi ANALİTİK GEOMETRİ VE ÇÖZÜMLÜ PROBLEMLER Matrisler - Determinant Lineer Denklem Sistemleri - Vektörler Uzayda Doğru Denklemi - Uzayda Düzlem Denklemi Kutupsal Koordinat Sistemi - Konikler Koordinat Dönüşümleri

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,

Detaylı

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın,

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER

III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER Bölüm 1 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER 1.1 YÜZEYLER:TANIM VE ÖRNEKLER Bu kesimin amacı R 3 de yüzeyler teorisini incelemek ve bunun içinde manifoldlar teorisinin gerekli kısmını aktarmaktır.

Detaylı

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS . Sayı Mayıs 6 A COMMTATIVE MLTIPLICATION OF DAL NMBER TRIPLETS L.KLA * & Y.YAYLI * *Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü 6 Tandoğan-Ankara, Türkiye ABSTRACT Pfaff [] using quaternion product

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

Içindekiler B IR INC I BÖLÜM Matrisler IK INC I BÖLÜM Determinant ÜÇÜNCÜ BÖLÜM Lineer Denklem Sistemleri DÖRDÜNCÜ BÖLÜM Vektörler

Içindekiler B IR INC I BÖLÜM Matrisler IK INC I BÖLÜM Determinant ÜÇÜNCÜ BÖLÜM Lineer Denklem Sistemleri DÖRDÜNCÜ BÖLÜM Vektörler İçindekiler BİRİNCİBÖLÜM Matrisler Martislerde İşlemler 1 Bir Matrisin Transpozesi 18 Bir Matrisin Tersi 1 Elemanter Satır Operasyonları 7 Bir Matrisin Tersinin Bulunması 31 Bölüm Sonu Tekrar Testi (Matrisler)

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES

ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES ANAL T K GEOMETR ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES 1. ANAL T K UZAY. ANAL T K UZAY D A D K KOORD NAT EKSENLER VE ANAL T K UZAY I. Analitik uzayda koordinat sistemi II. Analitik

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

H. Turgay Kaptanoğlu. Bu yazüda çember, elips, parabol ve hiperbolden. çemberin denklemi olan

H. Turgay Kaptanoğlu. Bu yazüda çember, elips, parabol ve hiperbolden. çemberin denklemi olan KONİNİN KESİTLERİ (I) H. Turgay Kaptanoğlu Bu yazüda çember, elips, parabol ve hiperbolden söz edeceğiz. Bu düzlem eğrilerinin denklemlerini elde ettikten sonra birkaç değişik konuyu açacağüz. Bunlar,

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

DENKLEM DÜZENEKLERI 1

DENKLEM DÜZENEKLERI 1 DENKLEM DÜZENEKLERI 1 Dizey kuramının önemli bir kullanım alanı doğrusal denklem düzeneklerinin çözümüdür. 2.1. Doğrusal düzenekler Doğrusal denklem düzeneği (n denklem n bilinmeyen) a 11 x 1 + a 12 x

Detaylı

2009 Ceb ır Soruları

2009 Ceb ır Soruları Genç Balkan Matemat ık Ol ımp ıyatı 2009 Ceb ır Soruları c www.sbelian.wordpress.com sbelianwordpress@gmail.com 2009 yılında Bosna Hersek te yapılan JBMO sınavında ki shortlist sorularının cebir kısmının

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Tüm Matematik Lise Konu Anlatımlı Referans Kitabı. Ağustos c FET IYE OZLEM ONBAS IO GLU

Tüm Matematik Lise Konu Anlatımlı Referans Kitabı. Ağustos c FET IYE OZLEM ONBAS IO GLU Tüm Matematik Lise 1--3 Konu Anlatımlı Referans Kitabı Fetiye Özlem Onbaşıoğlu Ağustos 015 Kitabın Kapsamı Ve Amacı Bu kitap Lise 1, ve 3 Matematik müfredatının konu anlatımı yolu ile öğrencinin kendi

Detaylı

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz. Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

KÜTLE VE AĞIRLIK MERKEZİ

KÜTLE VE AĞIRLIK MERKEZİ VEKTÖRLER KUVVET KAVRAMI MOMENT KÜTLE VE AĞIRLIK MERKEZİ BASİT MAKİNELER -1- VEKTÖRLER -2- Fizik te büyüklükleri ifade ederken sadece sayı ile ifade etmek yetmeye bilir örneğin aşağıdaki büyüklükleri ifade

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

VEKTÖRLER. 1. Skaler Büyüklükler

VEKTÖRLER. 1. Skaler Büyüklükler VEKTÖRLER Fizikte bazı büyüklükler sayılarla ifade edilebildiği halde, bazılarının ifade edilebilmesinde sayılar yeterli olmamaktadır. Sayılarla birlikte yönün de belirtilmesi gerekir. Bu nedenle fizikte

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması

Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması Projenin Adı: Trigonometrik Oranlar için Pratik Yöntemler Projenin Amacı: Çok kullanılan trigonometrik oranların farklı ve pratik yöntemlerle bulunması GİRİŞ: Matematiksel işlemlerde, lazım olduğunda,

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı