Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.
|
|
- Kelebek Özker
- 4 yıl önce
- İzleme sayısı:
Transkript
1 Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak için, noktayı bir koordinat düzlemi üzerinde düşünmeliyiz. Kartezyen koordinat düzlemi, birbirine dik orijin adı verilen noktada birleşen eksenlerden oluşur. Bu eksenler bilindiği üzere x,y ve z eksenleridir. Şekil 1 Kartezyen koordinat sistemi Herhangi bir nokta: P(x,y,z) biçiminde tanımlanır.
2 İki Nokta Arası Uzaklık: P1(x1,y1,z1) P2(x2,y2,z2) Doğru, Vektör (Line) Doğruyu tanımlamak için iki nokta gereklidir. P 1 ve P 2 den geçen doğru, doğrusu olarak gösterilir. Doğrunun uzunluğu iki nokta arası mesafe gibidir. Vektörü, başlangıç noktası orijin, bitiş noktası yön olan Şekil 2 Doğru bir doğru parçası olarak düşünebiliriz. v=<d x,d y,d z > Vektör büyüklük ve yön den oluşur. Büyüklüğü ve yönü aynı olan vektörler eşit vektörlerdir. Vektörün uzunluğu, vektörün büyüklüğüdür. Uzunluğu bir olan vektöre birim vektör denir. Vektörün başlangıç Şekil 3 Vektör noktası orijin ve bitiş noktası yön noktası (d) olduğu için: Vektörün yönüne gelince; yönü belirtmek için birim vektörü kullanırız. Vektörün uzunluğunu bir yaparak yönünü bulabiliriz. Bu işleme normalleştirme (normalization) denir.
3 Normalleştirme: Bu durumda bir vektörü şu biçimde yazabiliriz: Örnek: P1 (1,-2,1), P2(3,0,3),P3(-4,2,10) ve P4(-2,4,12) noktalarımız olsun. u=p1p2 ve v=p3p4 vektörlerini yazalım. Çözüm: u=<3-1,0-(-2),3-1>=<2,2,2> v=<-2-(-4),4-2,12-10>=<2,2,2> u = v = =2 Görüldüğü gibi vektörler, eşit vektörler. Doğrunun denklemi: İki boyutlu doğrunun denklemi biçimindedir. Burada m eğimdir ve:
4 dir. a doğrunun y eksenini kestiği noktadır. Üç boyutta doğru parametrik denklemle tanımlanır. Yön vektörü doğrunun yönünü belirtir ve: dır. P1 başlangıç ve P 2 bitiş noktaları olsun, D de doğrultu vektörü olsun. t= 0 için P= P 0 ve t=1 için P=P 1 ; Örnek: P(1,-2) noktasından geçen eğimi 3 olan doğrunun denklemini yazalım. Çözüm: y=mx+a dan; y = 3x+a noktayı denkleme yerleştirelim, -2=3+a a=-5 Denklemimiz: y = 3x - 5
5 Örnek: P(3,-4,7 ) ve Q(2,2,10) noktalarını oluşturan doğrunun orta noktasını bulunuz. Çözüm: Parametrik doğru denklemini oluşturalım. P 0 = (3,-4,7) D=(2-3,2+4,10-7)=(-1,6,3) P=P 0 +td P orta =(3,-4,7) + t(-1,6,3) t=0.5 için orta noktayı elde ederiz. X=X 0 +td x =3+(0.5)(-1)=2.5 Y=Y 0 +td y =-4+(0.5)(6)=-1 Z=Z 0 +td z =7+(0.5)(3)=8.5 P orta =(2.5,-1,8.5) Noktasal çarpım (Dot Product) Vektörler A ve B; Noktasal çarpım: Görüldüğü gibi iki vektörün noktasal çarpımı skaler bir büyüklük meydana getiriyor. Diğer bir tanım şöyle:
6 Θ (teta) vektörlerin aralarındaki açı olmak üzere; Bu tanımdan da görüldüğü gibi, eğer A ve B vektörleri birim vektörler ise, noktasal çarpımları aralarındaki açının kosinüsünü verir. Ters kosinüs alarak aralarındaki açıyı bulabiliriz. Yazmak gerekirse: Eğer iki vektör dikse noktasal çarpımları sıfırdır.(cos 90 = 0) Noktasal çarpımın bir diğer uygulaması bir vektörün diğer vektör üzerindeki izdüşümünün, ya da aynı yöndeki bileşenin büyüklüğünü bulmaktır. nin V2 nin yönü olduğuna dikkat edin. Noktasal çarpımın bir diğer uygulaması ise vektörün diğer bir vektör üzerindeki izdüşüm vektörünü bulmaktır. izdüşüm v2 V1, V1 in V2 üzerindeki İzdüşümünü demektir. Burada önceki formül ile bulduğumuz skaler değeri V2 nin yönüyle çarptığımıza dikkat edin.
7 Çapraz Çarpım (Cross Product): Vektörler A ve B; A ile B nin çapraz çarpımı A ile B nin heriklisine de dik olan yeni bir vektör verir. Eğer vektörler paralelse sonuç sıfır olacaktır.(sin0=sin180=0) Vektör n birim vektördür, yönü belirtir. Şekil 4 Sağ el kuralı Eğer iki vektör birbirine paralelse sonuç sıfırdır. Yeni vektörün yönü sağ el kuralı ile bulunabilir. Vektörlerimiz u ve v olsun: i,j ve k standart birim vektörler, Bu tanımlamalar eşiğinde çapraz çarpımı, vektörleri matris biçiminde yazıp determinantını alarak hesaplayabiliriz. Çapraz çarpımın bazı özellikleri: - v x u = - (v x u) - (u x v)x y eşit olmak zorunda değildir u x(v x y)
8 Geometrik Anlamı: Çapraz çarpımın büyüklüğü: Bundan yola çıkarak, çapraz çarpımın büyüklüğü, vektörlerin oluşturduğu paralelkenarın alanına eşittir diyebiliriz. Üçlü skaler çarpım (Triple scalar product) : a, b ve c vektörlerinin üçlü çarpımları, a,b ve c vektörlerinin belirlediği paralelyüzlü (parallelepiped) nün hacmini verir. = hacim Üçlü çarpım determinant alınarak da hesaplanabilir.
9 Düzlem (Plane): Düzlemi tanımlamak için düzlemin normali (n) ile düzlem üzerindeki bir nokta (P 0 ) yeterlidir. Düzlemin üzerindeki P 0 P doğrusu ile düzlem normalinin Noktasal çarpımının sıfır olması gerekir. İki dik doğrunun Noktasal çarpımlarının sıfır olduğunu hatırlayalım. Düzlemin denklemi: Açarsak: Basitleştirirsek: Son eşitlikte biraz oynama yaparsak: n yerine P 0 yazılarak D bulunabilir. Örnek: P 0 (3,2,1) ve n=3i + 2j -2k için bir düzlem bulalım. Çözüm: D = 3*3 + 2*2 + (-2)*1 = 11 3x + 2y -2z = 11 (Normal doğrusunun, düzlem denklemi üzerindeki etkisine dikkat edin.)
10 İki düzlemin birbirine paralel ya da dik olduğunu anlamak için normallerine bakarız. Normaller paralelse ya da dikse, düzlemler birbirine dik ya da paraleldir. Düzlem denkleminin analizi: Birlikte n.p = D düzlem denklemini inceleyelim. Diğer denklemlerde biraz oynama ile diğerlerine Kolayca dönüştürülebilir. n düzlemimizin yönünü gösteren birim normalimiz olsun ve değeri (0,1,0) olsun. P 0 da düzlem üzerinde seçilen bir nokta olsun. P 0 ı başlangıcı orijin sonu (X 0,Y 0,Z 0 ) olan konum vektörü olarak kabul edelim. Normal vektörü ile konum vektörü arasında kalan açı a açısı olsun. P 0 cos a nın, P 0 noktasının ya da P 0 noktasını taşıyan düzlemin, orijine normal doğrultusunda uzaklığı olduğunu görelim. İzdüşümde incelediğimiz üzere ; n zaten birim vektör olduğundan; = D Yani düzlem denklemindeki D değeri düzlemin normal yönünde orijinden uzaklığını veriyor. Bu ne işimize yarar, görelim.
11 Noktanın düzleme göre konumu: P 1 (X1,Y1,Z1) noktasını düşünelim. Bu noktanın düzleme göre konumunu inceleyelim. P 1 i n.p=d denklemine yerleştirelim. n. P 1 =D 1 D 1, P 1 noktasının orijine normal yönünde uzaklığıdır. Eğer D 1 =D ise P 1 noktası düzlem üzerindedir. Eğer büyükse düzlemin normal yönündeki tarafındadır. Küçükse ters taraftadır. Şimdi ifadeye dökelim. n.p 0 =D düzlemimiz olsun. n.p 1 =D ise P1 düzlem üzerinde, n.p 1 >D ise P1 düzlemin normalin gösterdiği tarafında, n.p 1 =D ise P1 düzlemin diğer tarafında. Nokta ile düzlem arasındaki uzaklık: n.p 0 =D düzlemimiz olsun. n birim vektör. P 1 noktasının düzleme uzaklığı (d) nı inceleyelim. Yukarıdaki analizimiz üzerinden devam edelim. P 1 noktasının aynı normale sahip başka bir düzlem üzerinde olduğunu kabul edelim. Orijine uzaklığı D 1 olsun. Uzaklıkların farkı, bize noktanın düzleme olan uzaklığını verir. d = D 1 -D Eğer d=0 ise bir önceki başlıkta incelediğimiz gibi, nokta düzlem üzerindedir. d<0 ise nokta düzlemin arkasında, d>0 ise düzlemin önünde yani normalin gösterdiği tarafındadır.
12 Üç noktadan düzlem bulma: Noktalarımız P 0, P 1 ve P 2 olsun. Bu üç noktadan iki doğru oluşturalım, P 0 P 1 ve P 0 P 2.Bu iki doğrunun çapraz çarpımı bize her iki doğruya da dik olan yeni bir doğru verir. Bu doğru bizim normalimizdir. Daha sonra noktalardan herhangi birini seçerek düzlem denklemini oluşturabiliriz. Çapraz çarpım alırken P0P1xP0P2 ile P0P2xP0P1 arasında yön farkı olduğunu unutmayın. İki düzlemin kesişim doğrusu: Normallerin çapraz çarpımı, düzlemlerin kesişim doğrusuna paralel bir vektör verir. Doğru üzerindeki bir noktayı parametrik doğru denklemine yerleştirerek doğruyu bulabiliriz. Örnek: Düzlemler 1x-3y+4z=12 ve 2x+y-5z=10 olsun. Çözüm: n1=1x-3y+4z=0; n2=2x+y-5z=0; n1xn2=11x+13y+7z (doğruya paralel bir vektör)
13 Şimdi doğru üzerindeki bir noktayı bulalım. Her iki düzlemde de bulunan bir nokta işimizi görür. Z=0 için; 1x-3y=12 2x+y=10 X=6, y=-2 ve z=0 için P(6,-2,0) Şimdi parametrik denklemde yerine koyalım: X=6+11t Y=-2+13t Z=7t Doğru ile Düzlemin kesişim noktası: Doğru denklemi: P = p 0 + t*d X = x 0 +t*d; y ve z içinde benzer biçimde. Düzlem denklemi: Ax+By+Cz=D X,Y ve Z yi düzlem denkleminde yazarsak ve çözersek, aradığımız noktayı buluruz. Örnek:P0(1,3,2) ve P1(2,2,-1) noktalarının oluşturduğu doğru ile P(1,1,-3) noktasını içeren ve normali 3x+4y-1z=0 olan düzlemin kesişim noktasını bulalım. Çözüm: Doğru denklemini yazalım. P 0 =(1,3,2) d=(1,-1,-3)
14 X=1+t Y=3-t Z=2-3t Düzlem denklemi; D=3+4+3=10 3x+4y-z=10 Şimdi x,y ve z yi düzlem denklemine yerleştirelim: 3(1+t)+4(3-t)-(2-3t)= t=10 t=-3/2 Kesişim noktası P kesişim =(-1/2,-3/2, 13/2) Not: Doğrunun doğrultusunu veren d vektörü ile düzlemin doğrultusunu veren n vektörleri paralelse, yani n x p=0 ise, doğru ile düzlem kesişmez. Üç düzlemin kesişimi: Üç düzlem bir noktada ya da bir doğru üzerinde kesişir. Üç denklemi birlikte çözersek çözüme ulaşırız. Üç denklemi birlikte çözmek için bir matris oluşturalım: Düzlemlerimiz; N 1.P=D 1, N 2.P=D 2 ve N 3.P=D 3 olsun.
15 Sistemi yeniden düzenleyelim: Görüldüğü gibi son sütun kesişim noktasını verecek. Eğer matrisin tersini elde edemezsek düzlemlerin en az ikisinin paralel olduğuna, yani düzlemlerin bir noktada kesişmediğine hükmederiz. 3x3 matris biçiminde yazarak çözmemiz de mümkün: Ayrıca alternatif bir formül de mevcut: nin determinant olduğunu öğrenmiştik. Eğer az ikisi paralel demektir. ise düzlemlerden en
16 Homojen Koordinatlar: İki tane paralel doğru düşünelim. Bu iki paralel doğru asla kesişmez. Ama gözümüze bu doğrular, bizden uzaklaştıkça birbirine yaklaşıyormuş gibi gözükür ve sonsuzda doğruların kesiştiği görürüz. Kartezyen koordinat sistemi ile bu tür hesaplamalar yapmamız mümkün olmadığı için homojen koordinat sistemi geliştirilmiş. Homojen koordinat sistemi, Kartezyen koordinat sistemi ile aynıdır, sadece noktaları tanımlarken dördüncü bir bileşen daha kullanırız. Kartezyen koordinat sistemindeki bir nokta ile homojen koordinat sistemindeki bir nokta arasında şöyle bir ilişki vardır: w =0 olduğu zaman nokta sonsuzdadır deriz. Kartezyen koordinat sistemindeki her noktayı w bileşeni 1 olan homojen bir nokta olarak kabul edebiliriz. KAYNAKÇA: 1. Thomas Calculus ISBN
17
Parametrik doğru denklemleri 1
Parametrik doğru denklemleri 1 A noktasından geçen, doğrultman (doğrultu) vektörü w olan d doğrusunun, k parametresine göre parametrik denklemi: AP k w P A k w P A k w P A k W (P değişken nokta) A w P
1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77
UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir
Uzayda iki doğrunun ortak dikme doğrusunun denklemi
Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse
UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM
UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki
MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI
MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin
Üç Boyutlu Uzayda Koordinat sistemi
Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,
3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.
Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte
Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu
FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):
Jeodezi
1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey
7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;
İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit
Lineer Denklem Sistemleri
Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin
Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri
ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik
Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır.
Uzayda Simetri Hazırlayan Halit Çelik Matematik Öğretmeni Noktaya Göre Simetri: A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Buna göre şeklinde
Bir Doğru Parçasının Orta Noktası. x 1. + x 2. Örnek: Çözüm: =5 z=7 dir. O halde C(5,-13,7) olur.
UZAY ANALİTİK GEOMETRİ Uzayda Koordinat Sistemi ve Uzayda Vektörler: Tanım: Uzayda (üç boyutlu) birbirine ikişer ikişer dik sayı eksenlerinin oluşturduğu sisteme üç boyutlu uzayda koordinat sistemi denir.bu
KUTUPSAL KOORDİNATLAR
KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.
8.Konu Vektör uzayları, Alt Uzaylar
8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye
Üç Boyutlu Uzayda Koordinat sistemi
Üç Boyutlu Uzayda Koordinat sistemi Öğr. Gör. Volkan ÖĞER MAT 1010 Matematik II 1/ 172 Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)
Görünmeyen Yüzey ve Arkayüz Kaldırma
KARADENİZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR GRAFİKLERİ LABORATUARI Görünmeyen Yüzey ve Arkayüz Kaldırma 1. Giriş Bilgisayar grafiklerinin en önemli problemlerinden biri katı
Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N
Ödev 1 Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N 1 600 N 600 N 600 N u sin120 600 N sin 30 u 1039N v sin 30 600 N sin 30 v 600N 2 Ödev 2 Ödev2: 2 kuvvetinin şiddetini, yönünü
4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ
4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x a x a x b 11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n
18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu
MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve
1. BÖLÜM VEKTÖRLER 1
1. BÖLÜM VEKTÖRLER 1 Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallarında znlk, alan, hacim, yoğnlk, kütle, elektriksel yük, gibi büyüklükler, cebirsel krallara göre ifade edilirler. B tür
İleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
Üç Boyutlu Uzayda Koordinat sistemi
Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.
İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN
İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.
A A = A 2 x + A 2 y + A 2 z (1) A A. Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate alalım: A = Axˆx + A y ŷ + A z ẑ,
Vektör Analizi(Özet) Bir vektörün büyüklüğü(boyu) Birim vektör A A = A 2 + A 2 y + A 2 z (1) A â A (2) İki vektörün skaler(nokta) çarpımı Üç-boyutlu uzayda, iki tane vektörü kartezyen koordinatlarda dikkate
Konik Kesitler ve Formülleri
Konik Kesitler ve Formülleri Konik Kesitler ve Formülleri B 1 (0, b) P (x, y) A 2 ( a, 0) F 2 ( c, 0) F 1 (c, 0) A 1 (a, 0) B 2 (0, b) Şekil 1: Elips x2 a 2 + y2 b 2 = 1. Konik Kesitler ve Formülleri B
ELEKTRİKSEL POTANSİYEL
ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile
JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur.
JFM 301 SİSMOLOJİ ELASTİSİTE TEORİSİ Elastisite teorisi yer içinde dalga yayılımını incelerken çok yararlı olmuştur. Prof. Dr. Gündüz Horasan Deprem dalgalarını incelerken, yeryuvarının esnek, homojen
1. Analitik düzlemde P(-4,3) noktasının eksenlerden ve O başlangıç noktasından uzaklığı kaç birimdir?
HAZİNE- HAZİNE-2 O başlangıç noktasında dik kesişen iki sayı ekseninin oluşturduğu sisteme koordinat sistemi denir. Bir noktanın x-eksenindeki dik izdüşümüne karşılık gelen x sayısına noktanın apsis i
Bölüm-4. İki Boyutta Hareket
Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme
Fizik Dr. Murat Aydemir
Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr
Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri
Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi
( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+
ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. a+ = b 4. a = b 0+ a b a b = b a+ b = 0. A ( a + 4, a) noktası y ekseni üzerinde ise, ( + ) a + 4 = 0 A 0, 5 a = 4 B b, b 0 noktası x ekseni
UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM
(a, b, c) r x = a y = b u a b UD VEKTÖRLER ve DĞRU DÜLEM ÜN TE y y y y y y Uzay Uzayda Dik Koordinat Sistemi Uzayda Vektörler Uzayda İki Vektörün Skaler (İç) Çarpımı Uzayda İki Vektörün Vektörel (Dış)
İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25
İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70
STATİK. Ders_2. Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü. Ders notları için: GÜZ
STATİK Ders_2 Doç.Dr. İbrahim Serkan MISIR DEÜ İnşaat Mühendisliği Bölümü Ders notları için: http://kisi.deu.edu.tr/serkan.misir/ 2017-2018 GÜZ KUVVET VEKTÖRLERİ, VEKTÖR İŞLEMLERİ VE AYNI DÜZLEMDEKİ KUVVETLERİN
PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR
2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve
eğim Örnek: Koordinat sisteminde bulunan AB doğru parçasının
eğim Doğrunun eğimi Eğim konusunu koordinat sistemine ve doğrunun eğimine taşımadan önce kareli zemindeki doğru parçalarının eğimini bulmaya çalışalım. Koordinat sisteminde bulunan AB doğru parçasının
PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu
PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği
Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.
ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da
d) x - y = 0 e) 5x -3y = 0 f) 4x -2y = 0 g) 2x +5y = 0
Koordinat sistemi Orijinden geçen doğrular Aşağıda koordinat sisteminde orijinden geçen doğruyu inceleyelim. Tanım: Orijinden geçen doğrular eksenlere dokunmaz. Orijin bir nokta olduğu için sonsuz doğru
Şekil 23.1: Düzlemsel bölgenin alanı
Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada
2. KUVVET SİSTEMLERİ 2.1 Giriş
2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden
1. HAFTA. Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler.
1. HAFTA Statik, uzayda kuvvetler etkisi altındaki cisimlerin denge koşullarını inceler. Statikte üç temel büyüklük vardır. Uzay: Fiziksel olayların meydana geldiği geometrik bir bölgedir. İncelenen problemin
Math 103 Lineer Cebir Dersi Final Sınavı
Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı
1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)
HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.
VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU
VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif
x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;
4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri
Özdeğer ve Özvektörler
Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin
Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş
Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,
Elektromanyetik Dalga Teorisi
Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin
EMAT ÇALIŞMA SORULARI
EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)
Ders 9: Bézout teoremi
Ders 9: Bézout teoremi Konikler doğrularla en fazla iki noktada kesişir. Şimdi iki koniğin kaç noktada kesiştiğini saptayalım. Bunu, çok kolay gözlemlerle başlayıp temel ve ünlü Bézout teoremini kanıtlayarak
Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak
10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.
GÖRÜNTÜ İŞLEME - (4.Hafta)
PERSPEKTİF DÜZELTME GÖRÜNTÜ İŞLEME - (4.Hafta) Perspektif nesnenin bulunduğu konuma bağlı olarak, gözlemcinin gözünde bıraktığı etkiyi (görüntüyü) iki boyutlu bir düzlemde canlandırmak için geliştirilmiş
TEMEL MEKANİK 5. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü
TEMEL MEKANİK 5 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü Ders Kitapları: Mühendisler İçin Vektör Mekaniği, Statik, Yazarlar:
Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız.
Vektörler Bölüm Soruları 1. İki vektör eşit olmayan büyüklüklere sahiptir. Toplamları sıfır olabilir mi? Açıklayınız. 2. Bir parçacığın yerdeğiştirmesinin büyüklüğü, alınan yolun uzunluğundan daha büyük
Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.
1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya
H. Turgay Kaptanoğlu. Ç. Dışmerkezlilik ve Doğrultmanlar Dışmerkezlilik kavramı, inceledimiz dört
KONİNİN KESİTLERİ (II) H. Turgay Kaptanoğlu Ç. Dışmerkezlilik ve Doğrultmanlar Dışmerkezlilik kavramı, inceledimiz dört eğriyi aynı bakış açısı etrafında toplamamızı sağlayacak. Dışmerkezlilik hakkında
ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER
HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI
LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH111) Dersi Final Sınavı 1.Ö
LİNEER CEBİR ve MÜHENDİSLİK UYGULAMALARI (MEH) Dersi Final Sınavı.Ö. 02.0.207 Ad Soyad : (25p) 2(25p) 3(25p) 4(25p) Toplam Numara : İmza : Kitap ve notlar kapalıdır. Yalnızca kalem, silgi, sınav kağıdı
Math 103 Lineer Cebir Dersi Final Sınavı
Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math Lineer Cebir Dersi Final Sınavı 8 Ocak 8 Hazırlayan: Yamaç Pehlivan Başlama saati: 4: Bitiş Saati: 5:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı
A A A A A A A A A A A
LYS 1 GOMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. [ [ [ [] []
Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?
İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :
Fotogrametrinin Optik ve Matematik Temelleri
Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :
PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma
PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir oktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJEİ AMACI: Bu projede herhangi bir koniğin üzerindeki veya dışındaki bir noktadan
İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR
İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da
Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok
Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği
Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.
Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak
1. Hafta Uygulama Soruları
. Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında
MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri
1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner
Yönlü doğru parçası: Zıt yönlü doğru parçaları: Eş yönlü doğru parçaları: Örnek-1. Paralel yönlü doğru parçaları:
Yönlü doğru parçası: Zıt yönlü doğru parçaları: Eş yönlü doğru parçaları: Örnek-1 Paralel yönlü doğru parçaları: 1 Örnek-2 Vektör: Örnek-3 Sıfır vektörü: Eşit vektörler: Örnek-4 Bir vektörü bir reel sayı
Cebirsel Fonksiyonlar
Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş
AYT 2018 MATEMATİK ÇÖZÜMLERİ. ai i İçler dışlar çarpımı yapalım. 1 ai i a i 1 ai ai i. 1 ai ai 1 ai ai 0 2ai a 0 olmalıdır.
AYT 08 MATEMATİK ÇÖZÜMLERİ ai i İçler dışlar çarpımı yapalım. ai ai i ai ai aii ai ai ai ai 0 ai a 0 olmalıdır. Cevap : E 8 in asal çarpanları ve 3 tür. 8.3 3 40 ın asal çarpanları ve 5 tir. 40.5 İkisinde
Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira
2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte
28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31
SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.
BİLGİ TAMAMLAMA VEKTÖRLER
DİNAMİK BİLGİ TAMAMLAMA VEKTÖRLER Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü VEKTÖRLER Kapsam Büyüklük yanında ayrıca yön
NOKTANIN ANALİTİK İNCELEMESİ NOKTANIN ANALİTİK İNCELEMESİ
NKTANIN ANALİTİK İNCELEMESİ NKTANIN ANALİTİK İNCELEMESİ Başlangıç noktasında birbirine dik olan iki saı doğrusunun oluşturduğu sisteme "Dik Koordinat Sistemi" denir. Dik Koordinat Sisteminin belirttiği
ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI
ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın,
Noktasal Cismin Dengesi
Noktasal Cismin Dengesi Bu bölümde; Kuvvetleri bieşenlerine ayırma ve kartezyen vektör şeklinde ifade etme yöntemleri noktasal cismin dengesini içeren problemleri çözmede kullanılacaktır. Bölüm 3 DOÇ.DR.
ELEKTROMANYETIK ALAN TEORISI
ELEKTROMANYETIK ALAN TEORISI kaynaklar: 1) Electromagnetic Field Theory Fundamentals Guru&Hiziroglu 2) A Student s Guide to Maxwell s Equations Daniel Fleisch 3) Mühendislik Elektromanyetiğinin Temelleri
Math 322 Diferensiyel Denklemler Ders Notları 2012
1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler
ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV
- 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını
25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?
. f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )
18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu
MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr
2009 Ceb ır Soruları
Genç Balkan Matemat ık Ol ımp ıyatı 2009 Ceb ır Soruları c www.sbelian.wordpress.com sbelianwordpress@gmail.com 2009 yılında Bosna Hersek te yapılan JBMO sınavında ki shortlist sorularının cebir kısmının
ANALİTİK GEOMETRİ VE ÇÖZÜMLÜ PROBLEMLER. Matrisler - Determinant Lineer Denklem Sistemleri - Vektörler Uzayda Doğru Denklemi - Uzayda Düzlem Denklemi
ANALİTİK GEOMETRİ VE ÇÖZÜMLÜ PROBLEMLER Matrisler - Determinant Lineer Denklem Sistemleri - Vektörler Uzayda Doğru Denklemi - Uzayda Düzlem Denklemi Kutupsal Koordinat Sistemi - Konikler Koordinat Dönüşümleri
Gök Mekaniği: Eğrisel Hareket in Kinematiği
Gök Mekaniği: Eğrisel Hareket in Kinematiği Bundan bir önceki giriş yazımızda Kepler yasaları ve Newton ın hareket kanunlarını vermiş, bunlardan yola çıkarak gök mekaniklerini elde edeceğimizi söylemiştik.
ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI
ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,
RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ
RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,
TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET
TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.
ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES
ANAL T K GEOMETR ÜN TE II. UZAYDA VEKTÖR, DO RU VE DÜZLEM N ANAL T K NCELENMES 1. ANAL T K UZAY. ANAL T K UZAY D A D K KOORD NAT EKSENLER VE ANAL T K UZAY I. Analitik uzayda koordinat sistemi II. Analitik
VEKTÖR UZAYLARI 1.GİRİŞ
1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.
Aralıklar, Eşitsizlikler, Mutlak Değer
ARALIKLAR Gerçel sayıların, aralık olarak adlandırılan bazı kümeleri kalkülüste sık sık kullanılır ve geometrik olarak doğru parçalarına karşılık gelir. Örneğin, a < b ise, a dan b ye açık aralık, a ile
Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN
Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,