YEREL İKİLİ ÖRNEKLERLE YÜZ GÜZELLİĞİ KARARI. Vasif Nabiyev 1, Fermudiye Koçak 2

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YEREL İKİLİ ÖRNEKLERLE YÜZ GÜZELLİĞİ KARARI. Vasif Nabiyev 1, Fermudiye Koçak 2"

Transkript

1 YEREL İKİLİ ÖRNEKLERLE YÜZ GÜZELLİĞİ KARARI Vasif Nabiyev 1, Fermudiye Koçak 1 Bilgisayar Mühendisliği Bölümü Karadeniz eknik Üniversitesi Bilgisayar Mühendisliği Bölümü Karadeniz eknik Üniversitesi ÖZE Çalışmada, estetiğin, toplumbilimin ve kültürün bir parçası olarak incelen güzellik konusu ele alınmış ve güzel yüzlerin otomatik sınıflandırılması gerçekleştirilmiştir. Sisteme giriş olarak verilen görüntülerde meydana gelen geometrik değişimler morflenerek elimine edilmiştir. İlk olarak veritabanındaki resimler, yapılan bazı araştırmalara göre güzel olduğu kabul edilen ünlü bayan resimleri ve güzel olmadığına karar verilen çirkin bayan resimleri olarak ikiye ayrılmıştır. Güzel bayan resimleri ve çirkin bayan resimleri kendi aralarında morflenerek sınıflar için tek bir model resim veritabanında tutulmuştur. İkinci adımda ise, bu resimlerin özellik verileri Yerel İkili Örnekler (YİÖ) kullanılarak çıkarılmıştır. Bu özellik verileri dikkate alınarak sisteme sorulan bir yüzün sınıflandırılması Euclid, Manhattan, Chebyshev ve Normalleştirilmiş Euclid uzaklığı kullanılarak gerçekleştirilmiştir. Yüz güzelliğinin sınıflandırılmasında elde edilen deneysel sonuçlarda, sistemin insana benzeyen kararlar verebildiği görülmüştür. Anahtar Kelimeler: Örüntü anıma, Yapay Zeka, Güzel Yüz, Yerel İkili Örnekler 1. GİRİŞ Güzellik, bir canlının, somut bir nesnenin veya soyut bir kavramın algısal bir haz duyumsatan; hoşnutluk veren hususiyetidir. Güzellik, estetiğin, toplumbilimin ve kültürün bir parçası olarak incelenmektedir. Kant güzelliğin sübjektifliğini vurgulamış, onun sadece duyumsama ile ilgili değil kişinin güzel ve çirkin ile ilgili yargılarının sonucu olduğunu ortaya koymuştur. Güzel olanın bakılana değil bakana göre belirlendiği, öznel olduğu yaklaşımına karşılık; bir başka yaklaşım, güzelliğin tanımını, bakana değil bakılana özgü olan ve simetri, oran gibi tartışılmaz matematik formüllere bağlanmış bir kurallar dizgesi olduğunu savunan, fenomenik güzellik tanımı da olmaktadır. oplumların beğenileri kültürlere ve zamana göre değişim gösterdiğinden mutlak ve ideal güzellikten bahsedilebilmenin mümkün olmadığı öznel güzellik tanımını destekleyen örneklerdir. Güzellik, göze hoş görünen sanat ve estetiğin temel bir kavramıdır. Şairler, ressamlar, filozoflar yüzyıllardır uğraşmalarına rağmen tam olarak güzelliğin tanımını yapamamışlardır; çünkü güzellik kavramı kişiden kişiye değişebilen bir niteliktir[1]. Bir kişinin "güzel" olarak vasıflandırılması, ister şahsi görüş olsun ister toplumun ortak değer yargısı olsun sıklıkla, kişilik, zeka, zarafet, cazibe gibi "iç güzelliğinin" ve sağlık, gençlik, ortalamaya yakınlık ve yaygınlık, cilt gibi "dış güzelliğin" bir birleşimine dayanır. Çiçekler, tabiat güzelliğinin en belirgin bir örneği olduğu gibi, yüz de insanın önemli dış güzellik örneklerindendir. Biçem ve modanın çok geniş ölçüde farklılık göstermesine rağmen, kültürler arası araştırmalar, insanların güzelliği algılamalarında çeşitli ortak noktalar bulmuştur. Örneğin, büyük gözler ve açık ten rengi bütün kültürlerde güzel bulunmuştur. Öte yandan yüz güzelliği her yaş dilimi için geçerli olmaktadır, Şekil 1. Şekil 1: Yaşlara göre yüz güzelliği örnekleri Yüz güzelliğinin bilgisayarlı değerlendirilmesine yönelik sınırlı sayıda çalışmalar olmaktadır. Yüzde çeşitli oranlar bulunsa da tam olarak güzellik kavramını ortaya koyan matematiksel formüller mevcut değildir. Öte yandan yüz öğeleri arasında belirlenen altın oran değerleri ( ) sadece ideal insan yüzü için geçerlidir[]. Her ne kadar güzelliğin altın kuralı kendine güvenmek ve kendinin tek olduğunu anlamak olsa da son zamanlar yüz güzelliği kararının otomatik verilebilmesi için çeşitli çalışmalar da yapılmaktadır. Eisenthall, Dror ve Rupin, insanların yaptıkları değerlendirmeye benzer bir çekicilik değerlendirmesi yapabilmek için emel Bileşen Analizi ve K-en Yakın Komşu yöntemleri kullanarak, iki boyutlu yüz görüntülerinden sistemin öğrenme ve analiz yapabilmesini sağlayan bir sistem önermişlerdir[3]. Bazı çalışmalarda Destek Vektör Makinelerine göre sınıflandırma yapılarak çeşitli ırklar için yüz güzelliği kararı verilmeye çalışılmıştır[4,5] İnsan güzelliği kanonları Kusursuz orantılara sahip bir insanın boyunun, başının yedi buçuk katı olduğu bilinmektedir. İnsan başı kanonlarına göre önden bakıldığında baş, yüksekliği 3.5 ve genişliği.5 oranlarında olan dikdörtgen meydana getirir. Bu kanon modüllerine göre gözler başın yüksekliğinin tam ortasında yer almaktadır. İki göz arasındaki mesafe bir gözün genişliği kadardır ve burun genişliğini belirler [6]. Enine baş ölçüleri dört göz kadardır. Kadın başının orantıları temel olarak erkek başının orantılarının aynısıdır. Kadın ve erkek başları arasında tabii hallerinde (makyajsız) pek az fark olmaktadır. Olan farklılıklar ise en çok kadının fiziksel yapısından, özellikle yüzün yapısını etkileyen deri altı yağların fazlalığından meydana gelir. 94

2 Elektrik-Elektronik ve Bilgisayar Sempozyumu 11 Erkeğin daha hareketli bir yaşamı olmasının - spor, oyun, iş hayatı - bir sonucu olarak kemik ve kas yapısı daha güçlüdür. Örnek olarak bir erkeğin burnunun genellikle daha geniş ve iri olmasının nedeni; erkeğin daha çok koşması, sıçraması vb. nedenlerle daha güçlü solunuma gereksinmesi ve bunun bir sonucu olarak solunum organlarının boğaz vb. daha büyümesidir. Kadın ve erkek arasındaki fark aşağıdaki özelliklerle belirtilebilir. Kadınlarda; Yüz biraz küçüktür. Gözler biraz daha büyüktür. Kaşlar biraz yüksek ve kavislidir. Burun ve ağız daha küçüktür. Dudakları daha etlidir. Çene yuvarlaktır. Ressamlar genellikle aşağıdaki kurala uymaktadırlar: erkeklerde hatlar daha köşeli olurken, kadınlarda aynı hatlar yumuşak ve kavislidir. Antropometrik çalışmalarda insan yüzünde olduğu gibi güzel vücut ölçülerinde de oranlar aranmaktadır olarak kabul edilen ideal kadın ölçüleri aslında boy dikkate alınmadığında geçerlilik kazanmamaktadır. Venus de Milo nun ölçüleri dikkate alınarak modelleme katsayısı ile yapılan değerlendirmelerde gerçek altın oran aşağıdaki şekilde ölçülmektedir. Gerçek "altın oran" = ( ) х М, burada М = boy (c / 166. Formüle göre örneğin 15 cm boy için gerçek "altın oran" yaklaşık olduğu halde 18 cm ler için olmaktadır. Güzelliğin tek bir tanımı olmamaktadır. Orantılı olanlar güzel kabul edilse de orantısız olup güzel görünenler de var. Dereceli bir kavram olan güzellik anlayışı çağlara göre de değişkenlik göstermiştir, Şekil. Şekil : Çağlara göre güzel yüz anlayışı - Antikçağ güzeli. Oval yüz, dolgun dudak ve yanak, düz burun, yuvarlak çene, yumuşak alın, orantılı yüz hatları - Roma güzeli. Kocaman kara gözler, koyu renk saçları, esmer ten, yuvarlağa yakın yüz şekli, etkili göz makyajının sağladığı derin bakışlar - Orta Çağ güzeli. Geniş alın, sarı saçlar, düz burun, ince kaşlar ve zayıf beden - Barok güzeli. Altın sarısı saçlar, açık renk veya saydam ten, yuvarlak, dolgun yüz ve beden. - Romantik Dönem güzeli. Koyu renk saçlar, açık ve solgun tenli, ince yüzler, çökmüş yanaklar -. yüzyılın başlarında antikçağ Yunan ve Roma güzelliği yine etalon olarak alınmaktaydı. Bu yüzyılın ortalarına doğru daha sert yapılı, belirgin yüz çizgileri güzel sanılmaktaydı. Günümüzde ise güzelliğin içgüdüsel olarak değerlendirildiği varsayılmaktadır. Güzellik hakkında anlayışlar tarihsel olarak kültürlere ve ülkelere göre de değişmektedir[7]. Çalışmada önden olan kadın yüz görüntülerinden güzellik kararının verilmesi üzerinde durulmuştur. Yüz güzelliğinin belirlenmesi plastik cerrahi, güzellik reklamları, fotoğrafçılık, kozmetik endüstrisi için önemli yer tutmaktadır. Bu sebeple yüz güzelliğinin belirlenmesi konusunda yapılan çalışmalar artmaktadır. Yüz güzelliği kararı verme amacıyla oluşturulan sistem ön işlemlerin uygulanması, özellik çıkarımı, eğitim ve sınıflandırılma olmak üzere dört modülden oluşmaktadır.. ÖN İŞLEMLER Görüntülere uygulanan ön işlemlerin amacı, resimlerin işlenmesini kolaylaştırmak, hızlandırmak ve geometrik olarak meydana gelen değişimleri düzenleyerek resimleri özellik çıkarımına hazır duruma getirmektir. Sisteme giriş olarak verilen resimlerde kafa bölgesi dönmüş olabilir. Kafa bölgesinin dönmüş olması özellik çıkarımında farklı bölgelere ait özelliklerin tutulmasına sebep olacaktır. Bu çalışmada morfleme kullanılarak geometrik etkiler elimine edilmiş, ayrıca kafaya ait olmayan verilerin elenmesi sağlanmıştır. Özellik çıkarımında kullanılan yöntem gri seviye görüntüler üzerinde uygulandığından düzeltilen görüntü gri seviyeye dönüştürülerek ön işlemler tamamlanır..1. Morfleme ve Yüz Resminin Döndürülmesi Morfleme, görüntülerin birbiri ile işlenerek geçiş görüntüsü oluşturulduğu görüntü düzenleme tekniğidir. Morfleme iki farklı resme uygulanabildiği gibi, geometrik açıdan farklı olan aynı resimlere de uygulanabilir. İlk aşamada morfleme döndürme amaçlı kullanılmıştır. Morfleme yöntemi görüntünün özellik bölgelerinin belirlenmesi, üçgensel bölge dönüşümü ve resmin birleştirilmesi olmak üzere üç aşamadan oluşur. Özellik noktaları olarak kaşlar, göz sınırları, gözbebeği, burun, dudak kenarları ve çene noktaları alınmıştır. Morfleme işleminde özellik noktalarının belirlenmesi çok önemlidir. Özellik noktalarında meydana gelen ufak bir değişiklik morflemede farklı sonuçlara sebep olacaktır. Bu sebeple özellik noktalarının belirlenmesi manüel olarak gerçekleştirilmiş ve özellik bölgelerine göre görüntü üçgensel bölgelere ayrılmıştır. Üçgensel bölgelere ayrılan görüntülerdeki üçgenlerin köşe noktalarının ortalaması alınarak yeni üçgenler elde edilir. Üçgenler içerisinde kalan pikseller alan testi yöntemi ile belirlenir. Üçgensel bölge dönüşümüyle belirlenen noktaların kaynak resimde hangi noktaya geldiği hesaplanır ve o pikselin parlaklık değeri alınarak hedef resimde kullanılır. A,B,C giriş resimlerindeki üçgenlerin köşe noktalarını, Q giriş resmindeki pikseli ifade edecek olursa kaynak resimdeki piksel koordinatı aşağıdaki bağıntılarla hesaplanır. Qx = λ1*ax + λ*bx + λ3*cx (1) Qy = λ1*ay + λ*by + λ3*cy () λ 1 + λ + λ3 = 1, λi> (3) Burada λ üçgen içerisindeki tüm noktaların katsayılarını temsil etmektedir. Üçgensel dönüşüm yapılarak özellik noktalarının aynı bölgelere denk gelmesi sağlanır. Sonuç resmin piksel değerleri aşağıdaki bağıntı ile hesaplanır ve morfleme aşamaları Şekil 3 te gösterilmiştir. 95

3 Sonuç(x,y) =.5*Resim1(x,y) +.5*Resim(x,y) (4) Şekil 3: Morfleme Aşamaları. Özellik Çıkarımı ve Eğitim Verileri Çalışmada, eğitim setinde yer alan ve sisteme sorulan yüzlerin özelliklerinin belirlenmesi için Yerel İkili Örnekler (LBP-Local Binary Patterns) yöntemi kullanılmıştır..1. Yerel İkili Örnekler Operatörü Yerel İkili Örnekler operatörü yerel komşuluk değerlerine dayalı bir özellik çıkarma yöntemidir. Bu yöntem ilk olarak Ojala vb. tarafından ortaya çıkarılmıştır [8]. YİÖ operatörü ile özellik vektörünün hesaplanması hızlı ve kolaydır. Gri seviye üzerinde uygulanan bu yöntemin ışık değişimlerine karşı duyarlılığı az olduğu için tanıma yöntemlerinde sıkça tercih edilir. YİÖ operatörü endüstriyel kontrol, 3 boyutlu doku yüzeylerinin sınıflandırılması, yüz tanıma, yüz bulma, yaşın belirlenmesi, yüz ifadesi tanıma, arka plan modelleme, hareketli nesnelerin tespiti gibi çeşitli bilgisayar uygulamalarında kullanılmış ve iyi performans göstermiştir [9,1,11,1,13,14]. Uygulamalarda genelde komşuluk değerlerine göre farklı operatörler kullanılır. Bu operatörler P merkez piksel etrafında alınacak komşu sayısını, R örnek sayısını temsil edecek şekilde YİÖ P,R gösterimiyle ifade edilir. Çalışmada YİÖ 8,1 operatörü kullanılmıştır. YİÖ operatörü 3x3 boyutlu bir çekirdektir ve görüntüdeki her pikseli, merkez piksel kabul ederek etiketleme işlemi gerçekleştirir. Merkez değer eşik değer olarak kabul edilir ve etrafındaki sekiz adet komşu parlaklık değeri, bu eşik değeri ile kıyaslanır. Bu kıyaslama ikili yönteme göre gerçekleştirilir. Elde edilen 3x3 lük operatör dairesel olarak ele alınır ve sekiz bit uzunluğunda ikili veri kodu elde edilir. Bu ikili verinin onluk değeri ele alınan merkez pikselin yerel değerini ifade eder. YİÖ operatörünün elde edilmesi ve bu bitlerin ağırlık katsayıları Şekil 4 te gösterilmiştir. YİÖ, merkez pikselin komşularına karşı düzenliliğini aynen alır, fakat komşularının düzenliliğini aynen almaz [9]. Bu nedenle bit geçişleri arasındaki düzene bakılarak YİÖ kodunun düzenli olup olmadığına karar verilir. Bu karar ölçütü 1- veya -1 geçişinin en fazla iki tane olmasıdır. 56 YİÖ kodunun 58 tanesi düzenli iken geri kalan 198 tanesi düzensizdir. Düzenli YİÖ (DYİÖ) kodlarının bulunması aşağıdaki bağıntılarla gösterilebilir. Bağıntıda verilen U c, merkez pikselin düzenlilik ölçüsünü ve s ise özel dönüşüm fonksiyonunu ifade etmektedir. P 1 Uc = s( gi gc ) s( gi 1 gc) (5) P 1 s ( g i g c ), eğer U c j, j = YİÖ c,j = (6) P + 1, aksi takdirde YİÖ ile etiketlenen görüntü üzerindeki verilerin dağılımlarını belirlemek için histogram kullanılır. Görüntü üzerinde genel bir histogram oluşturmaktansa yerel dağılımlara göre histogram oluşturulması tanımlama işlemini daha başarılı kılacaktır. Yerel histogram oluşturulması için görüntü belirli boyutlarda (örneğin 1x1) bloklara ayrılır ve daha sonra her bloğun histogramı çıkarılır. DYİÖ ler önemli olduğundan her blokta 58 düzenli örnek dikkate alınır. Düzensiz örnekler içinse tek bir değer tutmak yeterlidir. Yani 1x1 luk bloklar için 59x1 tane özellik vektörü bulunacaktır. Alt bloklardan elde edilen histogramlar uç uca eklenerek YİÖ yerel histogramı elde edilir, Şekil 5... Eğitim Verileri Şekil 5: YİÖ Histogramının elde edilmesi Sınıflandırmaya dayalı yöntemlerde sistemin eğitilmesi için eğitim seti oluşturulmalıdır. Yüz güzelliğine dayalı sistemlerde güzel ve çirkin veriler sisteme öğretilmeli, daha sonra sisteme sorulan verinin güzel olup olmadığı eğitim setine bakılarak karar verilmelidir. Güzel yüzler oluşturulurken yapılan bazı araştırmalara göre güzel kabul edilen ünlü yüzler model olarak alınmıştır. Çirkin yüzler içinse sıradan insan yüzleri çirkin olarak kabul edilmiştir. Sistemde kullanılan resimlerden bazıları Şekil 6 da gösterilmiştir. Şekil 4: YİÖ operatörünün elde edilmesi ve bitlerin ağırlık katsayıları 96

4 Elektrik-Elektronik ve Bilgisayar Sempozyumu 11 ifade etmek üzere uzaklığa dayalı sınıflandırma yöntemlerinin bağıntıları aşağıda verilmiştir. Euclid( s, = ( s i m i ) (7) (a) (b) Şekil 6: (a) Güzel yüzlere ait örnekler, (b) Güzel olmayan yüzlere ait örnekler Veritabanında birden fazla yüz resminin özellik vektörlerinin tutulması yerine, resimler morflenerek tek bir yüz oluşturulmuştur ve oluşturulan yüzler mutlak güzel ve çirkin kabul edilerek özellik vektörü tutulmuştur. Morflenerek oluşturulan resimler aynı özellik bölgelerinin normalizeli halini tuttuğu için birebir resimlerle karşılaştırmaya denk düşmektedir. Şekil 7 de güzel sınıfı için model resminin morflenerek oluşturulmasının bir kısmına örnek verilmiştir. Manhat tan( s, = s i m i (8) Chebyshev ( s, = max( s i mi ), 1,.., (9) ( s i m i ) NEuclid( s, = σ (1) s i Sınıflandırma yöntemleri ile test verisi hem güzel model hem de çirkin model ile karşılaştırılır. Bu karşılaştırma sonucunda güzel ve çirkin model arasındaki uzaklıklar temel alınarak uzaklıklar yüzde üzerinden hesaplanır. Böylece sadece çirkin-güzel ikili sonucu elde edilmez. Güzellik ve çirkinlik kavramı yüzde olarak değerlendirilmiş olur. Şekil 7: Veritabanı resminin morflenerek oluşturulması Güzel yüzlerin belirlenmesinde yüzdeki bölgeler farklı öneme sahiptir. Örneğin kaş, göz, dudak, burun önemli bölge iken alın bölgesinin önemi bu bölgelere göre daha düşüktür. Boyun kenarındaki boşlukların etkisi ise hiç yoktur. YİÖ histogramları çıkarılan bölgelerin, önemine göre ağırlıklandırılması sınıflandırma üzerinde etkili olmaktadır. Bu sebeple özellik vektörleri veritabanında tutulmadan önce ağırlıklandırılmalıdır. Ağırlıklandırma işleminde bölgeler önem derecesine göre dört aralığa bölünmüştür ve bölgelere önem sırasına göre 4,, 1, katsayıları verilmiştir. Ağırlıklandırılmış resim Şekil 8 de gösterilmiştir. Şekilde siyah kare, koyu gri kare 1, açık gri kare, beyaz kare ise 4 ağırlık değerini göstermektedir. 4. SONUÇLAR Çalışmada, bayan yüzlerinin özellikleri belirlenerek güzel olup olmadıklarına karar verebilen bir sistem oluşturulmuştur. Morfleme sonucu oluşturulan tek bir model resim veritabanında tutularak sistem kapasitesinin verimli kullanılması ve özellik çıkarımının hızlı gerçekleştirilmesi amaçlanmıştır. Özellik vektörlerinin Yerel İkili Örnekler kullanılarak oluşturulması ve düzenli verilerin alınarak özellik uzayının boyutunun azaltılması yine sistemi hızlandıran faktörlerdir. Güzel ve çirkin yüz modellerinin oluşturulmasında 1 ar adet yüz görüntüleri alınmış ve bu resimler, gözler aynı hizaya getirilerek morflenmiş, böylelikle veritabanına her sınıfa ait tek bir resim konulmuştur. Sistem görüntülerinin sınıflandırılmasında dört sınıflandırma yöntemi kullanılmış ve bu yöntemlerde dereceli (yüzde olarak) güzellik kararı verilmiştir. Çeşitli yüz görüntülerine ait sistemin verdiği karar örneği Şekil 9 da gösterilmiştir. Şekilde yukarıdaki yüz %6 çirkin bulunduğu halde, aşağıda verilen yüz %69.75 oranında güzel olarak tanımlanmıştır. Şekil 8: Ağırlıklandırılmış resim 3. SINIFLANDIRMA Yüz güzelliği test edilmek istenen görüntü, veritabanına kaydedilen görüntülerin geçtiği özellik çıkarım algoritmasına verilir. Sınıflandırma için dört farklı sınıflandırma yöntemi olan Euclid, Manhattan, Chebyshev ve Normalleştirilmiş Euclid uzaklık yöntemleri kullanılmıştır. s test edilecek veri, m veritabanındaki model veri ve özellik vektörünün boyutunu Şekil 9: Çeşitli yüzlere ait program sonuçları 97

5 Sistemin test aşamasında, güzellik eğitiminde kullanılan veritabanında bulunmayan 87 resim için sistemin verdiği kararla 74 farklı kişinin, aynı resimler için verdiği kararlar karşılaştırılmıştır. estlerde kullanılan görüntülerinden 46 sı güzel, 41 i ise güzel olmayan bayan yüzleridir. İnsanların verdiği kararlarla karşılaştırıldığında güzel yüzler için %9, çirkin yüzler için ise %89 başarı elde edilmiştir. %(45-55) arası değerler normal yüz olarak kabul edilmiştir. Denenen test verilerinin sonucunda, sistemin insana benzeyen kararlar verebildiği görülmüştür. Yüzün modele uygun kesilmesi, veri tabanına uygun test setinin oluşturulması, yüz ifadeleri sistemin doğru karar verebilmesini etkileyen faktörlerdir. Eğitim setinde farklı resimlerin yer alması sistemin daha doğru karar vermesini sağlayacaktır. Ayrıca cins, yaş ve ırk faktörleri de dikkate alınarak sistem daha da güçlendirilebilir. 5. KAYNAKLAR [1] [] Nabiyev, V.V., Yapay Zeka: İnsan-Bilgisayar Etkileşimi Seçkin Yayınevi,Ankara, 1. [3] Eisenthal, Y., Dror, G. Ruppin, E., Learning Facial Attractiveness. Israel el-aviv University, School of Computer Science, 4. [4] urkmen, H.I., Kurt, Z., Karslıgil, E., Global Feature Based Female Facial Beauty Decision System, Proceeding of EURASIP7, 7 [5] Mao,H., Jin, L., Automatic Classfication of Chinese Female Facial Beauty using Support Vector Machine, 9 IEEE International Conference on Systems,Man and Cybernetics, 9 [6] Parramon, J.M., Baş ve Portre Çizme Sanatı,. Basım, Remzi Kitapevi, İstanbul, [7]http://www.trendus.com/blog/tugbagurkok/yorumlar/73/ guzelliginizi-hangi-cagdan-aliyorsunuz.html [8] Ojala,., Pietikinen, M., and Harwood,D., A comparative study of texture measures with classification based on featured distrubition, Pattern Recognition, vol. 9, no. 1, 1996 [9] Ojala,., Pietikinen,M., and Menp,., Multiresolution grayscale and rotation invariant texture classification with local binary patterns, IEEE PAMI, vol. 4, no. 7, July. [1] Maaenpaaa,., Pietikaainen M., exture Analysis with Local Binary Patterns, University of Oulu, 4 [11] Feng,X., Pietikäinen, M.,Hadid,A., Facial Expression Recognition with Local Binary Patterns and Linear Programming, University of Oulu, Finland,5 [1] Nabiyev V.V.,Kurt, B., Facial Expression Recognition, II. Uluslararası Bilim ve eğitimde Bilgi ve İletişim eknolojileri Uygulamaları Konferansı,Bakü, Azerbaycan, pp , Denklemi buraya yazın.7 [13] Gunay, A., Nabiyev, V.V., Automatic age classification with LBP, 3rd International Symposium on Computer and Information Sciences ISCIS, 8 [14] Kurt, B., Nabiyev V.V., Down Syndrome Recognition Using Local Binary Patterns And Statistical Evaluation Of he System, Expert Systems with Applications, 11 98

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI ÖZET ABSTRACT

GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI ÖZET ABSTRACT GÖRÜNTÜSÜ ALINAN BİR NESNENİN REFERANS BİR NESNE YARDIMIYLA BOYUTLARININ, ALANININ VE AÇISININ HESAPLANMASI Hüseyin GÜNEŞ 1, Alper BURMABIYIK 2, Semih KELEŞ 3, Davut AKDAŞ 4 1 hgunes@balikesir.edu.tr Balıkesir

Detaylı

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ

BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ BİYOMETRİK İRİS SINIFLANDIRMA SİSTEMLERİ Emre DANDIL, K.İBRAHİM KAPLAN Akademik Bilişim 2013 İnternet ve bilgisayar teknolojilerinin etkin kullanılmaya başlanması ile birlikte, bazı kişisel bilgilere veya

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Vize. İris Segmentation. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Vize İris Segmentation Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim program ve kaynak

Detaylı

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1.

Genel Bilgi. İz Düşüm Düzlemleri ve Bölgeler. Yrd. Doç. Dr. Garip GENÇ Şekil: İz düşüm düzlemlerine bakış doğrultuları. Page 1. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim Genel Bilgi Uzaydaki cisimlerin eksiksiz bir anlatımı için, ana boyutlarıyla birlikte parçanın bitmiş hallerinden ve üzerindeki işlemlerle birlikte diğer

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için

Detaylı

Yüz İfadelerinin Tanınması

Yüz İfadelerinin Tanınması Yüz İfadelerinin Tanınması Burçin Kurt Vasıf V. Nabiyev Yasemin Bekiroğlu Bilgisayar Mühendisliği Bölümü Karadeniz Teknik Üniversitesi 61080 Trabzon burcinnkurt@gmail.com, vasif@ktu.edu.tr, yaseminbekiroğlu@gmail.com

Detaylı

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır.

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim İzometrik Perspektifler Küpün iz düşüm düzlemi üzerindeki döndürülme açısı eşit ise kenar uzunluklarındaki kısalma miktarı da aynı olur. Bu iz düşüme, izometrik

Detaylı

Bulunması. Corresponding author: vasif@ktu.edu.tr. ikili örüntü (local binary pattern-lbp) histogramlarından faydalanılmaktadır.

Bulunması. Corresponding author: vasif@ktu.edu.tr. ikili örüntü (local binary pattern-lbp) histogramlarından faydalanılmaktadır. Çankaya University Journal of Science and Engineering Volume 8 (2011), No. 1, 27 41 LBP Yardımıyla Görüntüdeki Kişinin Yaşının Bulunması Vasif V. Nabiyev 1, ve Asuman Günay 1 1 Karadeniz Teknik Üniversitesi,

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

İRİSTEN KİMLİK TANIMA SİSTEMİ

İRİSTEN KİMLİK TANIMA SİSTEMİ ÖZEL EGE LİSESİ İRİSTEN KİMLİK TANIMA SİSTEMİ HAZIRLAYAN ÖĞRENCİLER: Ceren KÖKTÜRK Ece AYTAN DANIŞMAN ÖĞRETMEN: A.Ruhşah ERDUYGUN 2006 İZMİR AMAÇ Bu çalışma ile, güvenlik amacıyla kullanılabilecek bir

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ Melih Tuğrul, Serkan Er Hexagon Studio Araç Mühendisliği Bölümü OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran

Detaylı

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr VERİ MADENCİLİĞİ (Sınıflandırma Yöntemleri) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

AMAÇ Araçlardaki Kamera Sistemleri

AMAÇ Araçlardaki Kamera Sistemleri SUNU PLANI AMAÇ OPEN CV GÖRÜNTÜ EŞİKLEME KENAR BULMA ŞEKİL BULMA GÖRÜNTÜ GENİŞLETME VE BOZMA GÖRÜNTÜ DOLDURMA AFFİNE DÖNÜŞÜMÜ PERSPEKTİF DÖNÜŞÜM KUŞ BAKIŞI GÖRÜNTÜ DÖNÜŞÜMÜ AMAÇ Araçlardaki Kamera Sistemleri

Detaylı

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007

Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK. 2 Şubat 2007 AVUÇ İZİ VE PARMAK İZİNE DAYALI BİR BİYOMETRİK TANIMA SİSTEMİ Elena Battini SÖNMEZ Önder ÖZBEK N. Özge ÖZBEK İstanbul Bilgi Üniversitesi Bilgisayar Bilimleri 2 Şubat 2007 Biyometrik Biyometrik, kişileri

Detaylı

Şehir ve Bölge Planlamada Tasarım Değişkeni Boğuculuk Fonksiyonu için Değişkeleme Önerisi. R. Haluk KUL TC Beykent Üniversitesi, hkul@beykent.edu.

Şehir ve Bölge Planlamada Tasarım Değişkeni Boğuculuk Fonksiyonu için Değişkeleme Önerisi. R. Haluk KUL TC Beykent Üniversitesi, hkul@beykent.edu. Şehir ve Bölge Planlamada Tasarım Değişkeni Boğuculuk Fonksiyonu için Değişkeleme Önerisi R. Haluk KUL TC Beykent Üniversitesi hkul@beykent.edu.tr ÖZET Uydu Kentlerin tasarımında kullanılmak üzere önerilen

Detaylı

2012 YGS MATEMATİK Soruları

2012 YGS MATEMATİK Soruları 01 YGS MATEMATİK Soruları 1. 10, 1, 0, 0, işleminin sonucu kaçtır? A) B), C) 6 D) 6, E) 7. + ABC 4 x 864 Yukarıda verilenlere göre, çarpma işleminin sonucu kaçtır? A) 8974 B) 907 C) 9164 D) 94 E) 98. 6

Detaylı

Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım

Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Doküman dili tanıma için ikili örüntüler tabanlı yeni bir yaklaşım Yılmaz KAYA 1, Ömer Faruk ERTUĞRUL 2, Ramazan TEKİN 3 1 Siirt Üniversitesi, Bilgisayar Mühendisliği Bölümü 2 Batman Üniversitesi, Elektrik-Elektronik

Detaylı

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ Yasemin ŞİŞMAN, Ülkü KIRICI Sunum Akış Şeması 1. GİRİŞ 2. MATERYAL VE METHOD 3. AFİN KOORDİNAT DÖNÜŞÜMÜ 4. KALİTE KONTROL 5. İRDELEME

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

Yard. Doç. Dr. İrfan DELİ. Matematik

Yard. Doç. Dr. İrfan DELİ. Matematik Unvanı Yard. Doç. Dr. Adı Soyadı İrfan DELİ Doğum Yeri ve Tarihi: Çivril/Denizli -- 06.04.1986 Bölüm: E-Posta Matematik irfandeli20@gmail.com, irfandeli@kilis.edu.tr AKADEMİK GELİŞİM ÜNİVERSİTE YIL Lisans

Detaylı

CBS Veri. CBS Veri Modelleri. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB

CBS Veri. CBS Veri Modelleri. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB Modelleri Prof.Dr. Emin Zeki BAŞKENT Karadeniz Teknik Üniversitesi Orman Fakültesi Objelerin temsili Raster -- Grid Piksel Konum ve değeri Uydu görüntüleri ve hava fotoları bu formatta Vector -- Linear

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

PLANETARYUM TEKNOLOJİLERİ. Dev bir kürede süper boyutlu derinliklerde birlikte evreni keşfedelim...

PLANETARYUM TEKNOLOJİLERİ. Dev bir kürede süper boyutlu derinliklerde birlikte evreni keşfedelim... PLANETARYUM TEKNOLOJİLERİ Dev bir kürede süper boyutlu derinliklerde birlikte evreni keşfedelim... Cacabey Planetaryum, Bursa Yıldırım Belediyesi Eğitim ve Bilim Merkezi içerisinde yer almaktadır. Öz kaynakları

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2013 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 08 Ekim 2013 Salı 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar, kaynaklar.

Detaylı

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar KSÜ Mühendislik Bilimleri Dergisi, 12(1), 2009 6 KSU Journal of Engineering Sciences, 12 (1), 2009 İki Boyutlu Dalgacık Dönüşümü Kullanarak Ön Cepheden Çekilmiş İnsan Yüzü Resimlerini Tanıma Üzerine Yaklaşımlar

Detaylı

Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması

Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması Sahne Geçişlerinin Geometrik Tabanlı olarak Saptanması 1 Giriş Binnur Kurt, H. Tahsin Demiral, Muhittin Gökmen İstanbul Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Maslak, 80626 İstanbul {kurt,demiral,gokmen}@cs.itu.edu.tr

Detaylı

KAYNAK: Birol, K. Bülent. 2006. "Eğitimde Sanatın Önceliği." Eğitişim Dergisi. Sayı: 13 (Ekim 2006). 1. GİRİŞ

KAYNAK: Birol, K. Bülent. 2006. Eğitimde Sanatın Önceliği. Eğitişim Dergisi. Sayı: 13 (Ekim 2006). 1. GİRİŞ KAYNAK: Birol, K. Bülent. 2006. "Eğitimde Sanatın Önceliği." Eğitişim Dergisi. Sayı: 13 (Ekim 2006). 1. GİRİŞ Sanat, günlük yaşayışa bir anlam ve biçim kazandırma çabasıdır. Sanat, yalnızca resim, müzik,

Detaylı

PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI

PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI PROJEM İSTANBUL ARAŞTIRMA PROJESİ BİLGİSAYARLI GÖRÜ VE SINIFLANDIRMA TEKNİKLERİYLE ARAZİ KULLANIMININ OTOMATİK OLARAK BULUNMASI Proje Yüklenicisi: Yeditepe Üniversitesi Mühendislik ve Mimarlık Fakültesi

Detaylı

görüntü işleme, pattern tanıma yapay zeka

görüntü işleme, pattern tanıma yapay zeka KARAKTER TANIMA Çeşitli kaynaklardan bilgisayar ortamına aktarılmış karakterleri tanıma işi görüntü işleme, pattern tanıma ve yapay zeka alanlarında oldukça ilgi çekmiştir. Ancak bu alanda uygulanan klasik

Detaylı

3. SINIF MATEMATİK 1. KİTAP

3. SINIF MATEMATİK 1. KİTAP . SINIF MATEMATİK 1. KİTAP Bu kitabın bütün hakları Hacer KÜÇÜKAYDIN a aittir. Yazarın yazılı izni olmaksızın kısmen veya tamamen alıntı yapılamaz ve çoğaltılamaz. Copyright 2015 YAZAR Ahmet KÜÇÜKAYDIN

Detaylı

BÖLÜM 17 17. ÜÇ BOYUTLU NESNELERİ KAPLAMA VE GÖLGELENDİRME

BÖLÜM 17 17. ÜÇ BOYUTLU NESNELERİ KAPLAMA VE GÖLGELENDİRME BÖLÜM 17 17. ÜÇ BOYUTLU NESNELERİ KAPLAMA VE GÖLGELENDİRME 17.1. HİDE Üç boyutlu katı modelleme ve yüzey modellemede Wireframe yapılarının görünmemesi için çizgileri saklama görevi yapar. HİDE komutuna

Detaylı

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği varsayılan eksen çizgilerinin topoğrafik harita ya da arazi üzerindeki

Detaylı

Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır.

Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır. Doğada ki en belirgin özelliklerine; İnsan vücudunda Deniz kabuklarında Ağaç dallarında rastlanır. Altın oran pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı 1.618033988749894..(Noktadan

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

BİTİRME RAPORU. Ömer Furkan ARI 13.06.2010 Yıldız Teknik Üniversitesi

BİTİRME RAPORU. Ömer Furkan ARI 13.06.2010 Yıldız Teknik Üniversitesi BİTİRME RAPORU Tekstil sektöründe veritabanı sistemleri yaygın olarak kullanılmaktadır. Bu sistemler sayesinde satış işlemlerin kayıtları tutulup buna bağlı olarak çeşitli sorgulamalarla raporlama hizmetleri

Detaylı

Otomatik Doküman Sınıflandırma

Otomatik Doküman Sınıflandırma Otomatik Doküman Sınıflandırma Rumeysa YILMAZ, Rıfat AŞLIYAN, Korhan GÜNEL Adnan Menderes Üniversitesi, Fen Edebiyat Fakültesi Matematik Bölümü, Aydın rumeysa2903@gmailcom, rasliyan@aduedutr, kgunel@aduedutr

Detaylı

SANATSAL DÜZENLEME ÖĞE VE İLKELERİ

SANATSAL DÜZENLEME ÖĞE VE İLKELERİ SANATSAL DÜZENLEME ÖĞE VE İLKELERİ 1.Sanatsal düzenleme öğeleri Çizgi: Çizgi, noktaların aynı veya değişik yönlerde sınırlı veya sınırsız olarak ardı arda dizilmesinden elde edilen şekildir. Kalemimizle

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Üçüncü Uluslararası Matematik ve Fen Araştırması (TIMSS) Nedir? Neyi Sorgular? Örnek Geometri Soruları ve Etkinlikler

Üçüncü Uluslararası Matematik ve Fen Araştırması (TIMSS) Nedir? Neyi Sorgular? Örnek Geometri Soruları ve Etkinlikler Üçüncü Uluslararası Matematik ve Fen Araştırması (TIMSS) Nedir? Neyi Sorgular? Örnek Geometri Soruları ve Etkinlikler Yard. Doç. Dr. Sinan Olkun Arş. Gör. Tuba Aydoğdu Abant İzzet Baysal Üniversitesi,

Detaylı

28.03.2013. Algılama üzerinde etkilidir. Hareketi ve yönü belirleyici etki yaratırlar. Ayırma amaçlı. Kalın çizgiler daha etkilidir.

28.03.2013. Algılama üzerinde etkilidir. Hareketi ve yönü belirleyici etki yaratırlar. Ayırma amaçlı. Kalın çizgiler daha etkilidir. Hazırlayan ve sunan: Süleyman Nihat ŞAD 2 Kontrast/ Zıtlık ÇİZGİ ALAN-BOŞLUK DOKU Çizgi; gözü, belirli bir alanda ya da bir alan etrafında hareket ettirerek dikkatleri çeken tek boyutlu bir araçtır. ŞEKİL-FORM

Detaylı

ÖĞRENME VE ÖĞRETME SÜRECİ

ÖĞRENME VE ÖĞRETME SÜRECİ Ders: Matematik Sınıf: 6. Sınıf Öğrenme Alanı: Ölçme Alt Öğrenme Alanı: Alan Ölçme Beceriler: İletişim kurma, ilişkilendirme, akıl yürütme, problem çözme, tahmin etme Kazanımlar: 1. Düzlemsel bölgelerin

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı

KALİTE SİSTEM YÖNETİCİSİ EĞİTİMİ

KALİTE SİSTEM YÖNETİCİSİ EĞİTİMİ FMEA-HATA TÜRLERİ VE ETKİ ANALİZİ Tanımlama Mevcut veya olası hataları ortaya koyan, bu hataların yaratabileceği etkileri göz önünde bulunduran ve etkilerine göre hataları önceliklendirerek oluşmalarının

Detaylı

8. SINIF MATEMATİK TESTİ A

8. SINIF MATEMATİK TESTİ A . Yandaki tahtada yazılmış olan sayılardan hangisi silinirse kalan sayıların tamamı rasyonel sayı olur? 3, 5 45 44-8 4. 5-, _ 0,09-0,64 i işleminin sonucu kaçtır? A),6 B) C) D) 0,4 A) - 8 B) 44 C) 45 D)

Detaylı

TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM )

TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM ) TÜRK İŞARET DİLİ TANIMA SİSTEMİ ( TURKISH SIGN LANGUAGE RECOGNITION SYSTEM ) Şekil 1 İşaret dili tanıma örnek ekran görüntüsü Türk İşaret Dili Tanıma projesi 2005 2006 yılının 2. döneminde Yıldız Teknik

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

MATEMATİK MÜHENDİSLİĞİNE GİRİŞ DERSİ KAPSAMINDA OLUŞTURULACAK OLAN GRUP VE KONU SEÇİMİNE İLİŞKİN HUSUSLAR

MATEMATİK MÜHENDİSLİĞİNE GİRİŞ DERSİ KAPSAMINDA OLUŞTURULACAK OLAN GRUP VE KONU SEÇİMİNE İLİŞKİN HUSUSLAR MATEMATİK MÜHENDİSLİĞİNE GİRİŞ DERSİ KAPSAMINDA OLUŞTURULACAK OLAN GRUP VE KONU SEÇİMİNE İLİŞKİN HUSUSLAR 1. Gruplar tercihen 5 kişi olacaktır. (Zorunlu olan durumlarda 4-6 olabilir. Çok çok geçerli bir

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ)

2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları. (Doç.Dr. M. Kemal GÜLLÜ) 2015/2016 Bahar Yarıyılı Bitirme Çalışması Konuları (Doç.Dr. M. Kemal GÜLLÜ) 1. Ses temelli malzeme tanıma Malzemelerin çarpma etkisi ile çıkarttıkları seslerin mikrofon ile bir PC ye alınması ve işaretten

Detaylı

MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni

MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni MUHSİN ERTUĞRUL MESLEKİ EĞİTİM MERKEZİ TAKIDA TEKNİK RESİM SORULARI 1) Standart yazı ve rakamların basit ve sade olarak yazılması nedeni aşağıdakilerden hangisidir? A) Estetik görünmesi için. B) Rahat

Detaylı

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

TAHRİBATLI MALZEME MUAYENESİ DENEYİ TAHRİBATLI MALZEME MUAYENESİ DENEYİ MAK-LAB15 1. Giriş ve Deneyin Amacı Bilindiği gibi malzeme seçiminde mekanik özellikler esas alınır. Malzemelerin mekanik özellikleri de iç yapılarına bağlıdır. Malzemelerin

Detaylı

MATEMATIK ÖĞRETIM YÖNTEMLERI. Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi

MATEMATIK ÖĞRETIM YÖNTEMLERI. Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi MATEMATIK ÖĞRETIM YÖNTEMLERI Yrd. Doç. Dr. Nuray Çalışkan-Dedeoğlu Matematik Eğitimi Dersin İçeriği Matematiğin doğası / Matematiksel bilgi Matematik öğretiminin temel ilkeleri Matematikte başlıca kuramlar

Detaylı

ARALIK AYINDA NELER YAPTIK?

ARALIK AYINDA NELER YAPTIK? OYUN ETKİNLİĞİ Çocukların kendilerini, duygu ve düşüncelerini rahatça ifade edebildikleri oyun etkinliklerine yer verildi. Eğitici oyuncak merkezi, evcilik merkezi, kukla merkezi, blok merkezi, müzik merkezi,

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMM 302 KİMYA MÜHENDİSLİĞİ LABORATUVARI-I ÖĞÜTME ELEME DENEYİ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMM 302 KİMYA MÜHENDİSLİĞİ LABORATUVARI-I ÖĞÜTME ELEME DENEYİ SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMM 302 KİMYA MÜHENDİSLİĞİ LABORATUVARI-I ÖĞÜTME ELEME DENEYİ ISPARTA, 2014 ÖĞÜTME ELEME DENEYİ DENEYİN AMACI: Kolemanit mineralinin

Detaylı

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI

FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI FOTOGRAMETRİ DAİRESİ BAŞKANLIĞI FAALIYETLERI Fotg.D.Bşk.lığı, yurt içi ve yurt dışı harita üretimi için uydu görüntüsü ve hava fotoğraflarından fotogrametrik yöntemlerle topoğrafya ve insan yapısı detayları

Detaylı

İNSAN UYLUK KEMİĞİ VE KALÇA PROTEZİNİN GERİLME VE DEPLASMAN DAVRANIŞININ KIYASLANMASI

İNSAN UYLUK KEMİĞİ VE KALÇA PROTEZİNİN GERİLME VE DEPLASMAN DAVRANIŞININ KIYASLANMASI İNSAN UYLUK KEMİĞİ VE KALÇA PROTEZİNİN GERİLME VE DEPLASMAN DAVRANIŞININ KIYASLANMASI Fatih ATiK 1, Arif ÖZKAN 2, İlyas UYGUR 3 1 Düzce Üniversitesi, Fen Bilimleri Enstitüsü, Konuralp Kampüsü Düzce Türkiye

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü ÇEKME DENEYİ 1. DENEYİN AMACI Mühendislik malzemeleri rijit olmadığından kuvvet altında deforme olup, şekil ve boyut değişiklikleri gösterirler. Malzeme özelliklerini anlamak üzere mekanik testler yapılır.

Detaylı

5 İki Boyutlu Algılayıcılar

5 İki Boyutlu Algılayıcılar 65 5 İki Boyutlu Algılayıcılar 5.1 CCD Satır Kameralar Ölçülecek büyüklük, örneğin bir telin çapı, objeye uygun bir projeksiyon ile CCD satırının ışığa duyarlı elemanı üzerine düşürülerek ölçüm yapılır.

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ. İsmail Serkan Üncü, İsmail Taşcı

LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ. İsmail Serkan Üncü, İsmail Taşcı LED IŞIK KAYNAKLARININ RENK SICAKLIĞININ GÖRÜNTÜ İŞLEME TEKNİKLERİ KULLANILARAK BELİRLENMESİ İsmail Serkan Üncü, İsmail Taşcı To The Sources Of Light s Color Tempature With Image Processing Techniques

Detaylı

www.elektrikogretmenleri.com

www.elektrikogretmenleri.com FIREWORKS (MENU OLUŞ TURMA) 1 Önce Başlat menüsü Programlar Adobe Web Premium CS3 Adobe Fireworks CS3 kısayol simgesi ile Fireworks programı açılır. 2 Fireworks programı açıldığında Karşımıza gelen Yeni

Detaylı

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir.

= σ ε = Elastiklik sınırı: Elastik şekil değişiminin görüldüğü en yüksek gerilme değerine denir. ÇEKME DENEYİ Genel Bilgi Çekme deneyi, malzemelerin statik yük altındaki mekanik özelliklerini belirlemek ve malzemelerin özelliklerine göre sınıflandırılmasını sağlamak amacıyla uygulanan, mühendislik

Detaylı

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere,

2012 YGS MATEMATİK SORU VE ÇÖZÜMLERİ. b 27 18. 3. a 12 8 A) 4 2 B) 3 3 C) 4 D) 5 E) 6. Çözüm : Cevap : E. 4. x ve y birer gerçel sayı olmak üzere, 01 YGS MATEMATİK SORU VE ÇÖZÜMLERİ 1. 10, 5,1 0,5 0, işleminin sonucu kaçtır? A) 5 B) 5,5 C) 6 D) 6,5 E) 7. a 1 8 b 7 18 olduğuna göre a b çarpımı kaçtır? A) 4 B) C) 4 D) 5 E) 6 10, 5,1 105 1 41 1 5 0,

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM (TEKNİK RESİM-II) Yrd.Doç.Dr. Muhammed Arslan OMAR

BİLGİSAYAR DESTEKLİ TASARIM (TEKNİK RESİM-II) Yrd.Doç.Dr. Muhammed Arslan OMAR BİLGİSAYAR DESTEKLİ TASARIM (TEKNİK RESİM-II) Yrd.Doç.Dr. Muhammed Arslan OMAR Bilgisayar Destekli Tasarım Nedir? CAD (Computer Aided Design) Bütün mühendislik alanlarında olduğu gibi makine mühendislerinin

Detaylı

FMEA. Hata Türleri ve Etkileri Analizi

FMEA. Hata Türleri ve Etkileri Analizi FMEA Hata Türleri ve Etkileri Analizi 2007 FMEA Tanımı FMEA (HTEA), bir ürün veya prosesin potansiyel hatalarını ve bunların sonucu olabilecek etkilerini tanımlama, değerlendirme, potansiyel hatanın ortaya

Detaylı

Ders Materyali. Matematik ve Fizik arasındaki parabol - Yatay atma durumunda

Ders Materyali. Matematik ve Fizik arasındaki parabol - Yatay atma durumunda Ders Materyali Matematik ve Fizik arasındaki parabol - Yatay atma durumunda Olası kurs için öneri Bir sonraki sayfaya bakınız Giriş Modül iki bölümden oluşur. FİZİK bölümü fizik öğretmeni tarafından oluşturulmuştur,

Detaylı

Bilimsel Görselleştirme. Tahir Emre KALAYCI. Bilgisayar Grafikleri

Bilimsel Görselleştirme. Tahir Emre KALAYCI. Bilgisayar Grafikleri Tahir Emre KALAYCI Bilgisayar Grafikleri Gündem 1 Görselleştirme Yararlandığı alanlar Uygulama alanları Örnek Uygulamalar nin Amacı? Görselleştirme adımları Görselleştirme Görselleştirme Görselleştirme

Detaylı

ArcGIS ile Su Yönetimi Eğitimi

ArcGIS ile Su Yönetimi Eğitimi ArcGIS ile Su Yönetimi Eğitimi http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 5 Gün 30 Saat ArcGIS ile Su Yönetimi Genel Bir platform olarak ArcGIS,

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU KİŞİSEL BİLGİLER Adı Soyadı Tolga YÜKSEL Ünvanı Birimi Doğum Tarihi Yrd. Doç. Dr. Mühendislik Fakültesi/ Elektrik Elektronik Mühendisliği 23.10.1980

Detaylı

Fotogrametride işlem adımları

Fotogrametride işlem adımları Fotogrametride işlem adımları Uçuş planının hazırlanması Arazide yer kontrol noktalarının tesisi Resim çekimi Değerlendirme Analitik değerlendirme Dijital değerlendirme Değerlendirme Analog değerlendirme

Detaylı

TEKNE FORMUNUN BELİRLENMESİ

TEKNE FORMUNUN BELİRLENMESİ TEKNE FORMUNUN ELİRLENMESİ Ön dizaynda gemi büyüklüğünün ve ana boyutların belirlenmesinden sonraki aşamada tekne formunun belirlenmesi gelir. Tekne formu geminin, deplasmanını, kapasitesini, trimini,

Detaylı

Yrd. Doç. Dr. Mustafa NİL

Yrd. Doç. Dr. Mustafa NİL Yrd. Doç. Dr. Mustafa NİL ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Fırat Üniversitesi Elektrik-Elektronik Mühendisliği Y. Kocaeli Üniversitesi Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

İMPLANT VAKALARININ SINIFLANDIRILMASI

İMPLANT VAKALARININ SINIFLANDIRILMASI İMPLANT VAKALARININ SINIFLANDIRILMASI Prof. Dr. HALDUN İPLİKÇİOĞLU İmplant vakaları neden sınıflandırılmalıdır? İmplantoloji yüksek düzeyde bilgi ve deneyim gerektiren bir alandır. Bu konuda çalışmalar

Detaylı

SANAT FELSEFESİ. Sercan KALKAN Felsefe Öğretmeni

SANAT FELSEFESİ. Sercan KALKAN Felsefe Öğretmeni SANAT FELSEFESİ Sercan KALKAN Felsefe Öğretmeni Estetik güzel üzerine düşünme, onun ne olduğunu araştırma sanatıdır. A.G. Baumgarten SANATA FELSEFE İLE BAKMAK ESTETİK Estetik; güzelin ne olduğunu sorgulayan

Detaylı

RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ

RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ Journal of Naval Science and Engineering 2009, Vol 5, No2, pp 89-97 RENK BİLEŞENLERİ YARDIMIYLA HAREKETLİ HEDEFLERİN GERÇEK ZAMANLI TESPİTİ Öğr Kd Bnb Mustafa Yağımlı Elektrik/Elektronik Mühendisliği Bölümü,

Detaylı

JDF 116 / 120 ÖLÇME TEKNİĞİ / BİLGİSİ II POLİGONASYON

JDF 116 / 120 ÖLÇME TEKNİĞİ / BİLGİSİ II POLİGONASYON JDF 116 / 120 ÖLÇME TEKNİĞİ / BİLGİSİ II POLİGONASYON Yrd. Doç. Dr. HÜSEYİN KEMALDERE Jeodezik Noktaların Sınıflandırması (BÖHHBÜY-Md:8) Noktaların sınıflandırılması aşağıdaki şekildedir: a) Uzay ve uydu

Detaylı

MAPINFO PROFESSIONAL TEMEL VE İLERİ SEVİYE KURS İÇERİĞİ

MAPINFO PROFESSIONAL TEMEL VE İLERİ SEVİYE KURS İÇERİĞİ MAPINFO PROFESSIONAL TEMEL VE İLERİ SEVİYE KURS İÇERİĞİ Başar Bilgisayar Sistemleri Ve İletişim Teknolojileri San. Ve Tic. Ltd. Şti. Web site: http://www.basarsoft.com.tr Kontak mail: basar@basarsoft.com.tr

Detaylı

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ

YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ YOĞUN GÖRÜNTÜ EŞLEME ALGORİTMALARI İLE ÜRETİLEN YÜKSEK ÇÖZÜNÜRLÜKLÜ SAYISAL YÜZEY MODELİ ÜRETİMİNDE KALİTE DEĞERLENDİRME VE DOĞRULUK ANALİZİ Naci YASTIKLI a, Hüseyin BAYRAKTAR b a Yıldız Teknik Üniversitesi,

Detaylı

ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ

ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ ENERJĐ ELDESĐNDE ORTALAMA RÜZGAR HIZI ÖLÇÜM ARALIĞI ve HELLMANN KATSAYISININ ÖNEMĐ: SÖKE ÖRNEĞĐ Mete ÇUBUKÇU1 mecubuk@hotmail.com Doç. Dr. Aydoğan ÖZDAMAR2 aozdamar@bornova.ege.edu.tr ÖZET 1 Ege Üniversitesi

Detaylı

Leica DISTO D3a / BT Çok fonksiyonel, hassas ölçüm imkanı

Leica DISTO D3a / BT Çok fonksiyonel, hassas ölçüm imkanı Leica DISTO Da / BT Çok fonksiyonel, hassas ölçüm imkanı Leica DISTO Bu kadar hassas ölçüm yapabilir mi? ±.0 mm ölçüm hassasiyetle; Leica DISTO Da tek tuşa basarak hassas ölçüm yapabilmenize olanak sağlar.

Detaylı

TEMEL İNŞAATI ŞERİT TEMELLER

TEMEL İNŞAATI ŞERİT TEMELLER TEMEL İNŞAATI ŞERİT TEMELLER Kaynak; Temel Mühendisliğine Giriş, Prof. Dr. Bayram Ali Uzuner 1 2 Duvar Altı (veya Perde Altı) Şerit Temeller (Duvar Temelleri) 3 Taş Duvar Altı Şerit Temeller Basit tek

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ Ölçme Bilgisi DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ Çizim Hassasiyeti Haritaların çiziminde veya haritadan bilgi almada ne kadar itina gösterilirse gösterilsin kaçınılmayacak bir hata vardır. Buna çizim

Detaylı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Hatice NİZAM İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü haticenizam@outlook.com Saliha Sıla AKIN ERS Turizm Yazılım Şirketi, Bilgisayar

Detaylı

Bazı Gömülü Sistemlerde OpenCV ile Performans Analizi

Bazı Gömülü Sistemlerde OpenCV ile Performans Analizi OpenCV ile Performans Analizi S.Ü Bil.Müh. 2. Sınıf Öğrencisi Faruk GÜNER farukguner@outlook.com.tr S.Ü Bil.Müh. 2. Sınıf Öğrencisi Mesut PİŞKİN mesutpiskin@outlook.com S.Ü Öğr. Gör. Dr. Mustafa Nevzat

Detaylı