DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ"

Transkript

1 DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Ağaç Yapıları

2 Sunum planı Genel kavramlar İkili ağaç İkili arama ağacı AVL Tree B-Tree

3 Genel Kavramlar Bir ağaç yapısı örneği

4 Genel Kavramlar Düğüm (node) : Ağacın her bir elemanına düğüm adı verilir. (A, B, C) Kök (root) : En üst seviyedeki tek düğümdür. (A bilgisini içeren düğüm.) Çocuk (child) : Bir düğümün sol ve sağ bağı aracılığı ile bağlandığı düğümler o düğümün çocuklarıdır. (B ve C, A'nın çocuklarıdır.) Aile (parent) : Bir düğüm, sağ ve sol bağları ile bağlandığı düğümlerin ailesidir. (A düğümü, B ve C düğümlerinin ailesidir.) Bir düğümün düzey (level) veya derinliği (depth) : Bir düğümün kök düğümden olan uzaklığıdır. (D düğümünün düzeyi veya derinliği 2'dir.)

5 Genel Kavramlar Ağacın derinliği (depth of tree) : En derindeki yaprağın derinliği veya yüksekliği (Verilen ağacın derinliği 3'tür. ) Yaprak (leaf) : Herhangi bir çocuğu bulunmayan düğümlere yaprak adı verilir. (D,G,H,I) Kardeş (sibling, brother) : Aynı aileye sahip düğümlerdir. (B ile C kardeştir. D ile E kardeştir. H ile I kardeştir.)

6 İkili Ağaç (Binary Tree) Düğümlerinin en fazla 2 çocuğa sahip olduğu ağaçlardır. a b c d e f g h i j k l

7 İkili ağaç üzerinde dolaşma (traverse) Dolaşma (traverse), ağaç üzerindeki herhangi bir düğüme erişmek için ağaç üzerinde gezmedir. 1. Kökten başlayarak dolaşma (Preorder (depth-first order) traverse) I. Köke uğra II. III. Sol alt ağacı preorder olarak dolaş. Sağ alt ağacı preorder olarak dolaş. A B C D E F G A B D E C F G

8 İkili ağaç üzerinde dolaşma (traverse) 2. Sıralı Dolaşma (Inorder (Symmetric order) Traverse) I. Sol alt ağacı inorder'a göre dolaş II. Köke uğra III. Sağ alt ağacı inorder'a göre dolaş. 3. Sondan başlayarak dolaşma (Postorder Traverse) I. Sol alt ağacı postorder'a göre dolaş II. Sağ alt ağacı postorder'a göre dolaş. III. Köke uğra A A B C B C D E F G D B E A F C G D E F G D E B F G C A

9 İkili arama ağaçları (Binary search tree) İkili ağaçların özel bir halidir. İkili arama ağaçları, her bir düğümün solundaki tüm düğümler kendisinden küçük, sağındakiler de kendisinden büyük olacak şekilde oluşturulurlar.

10 İkili arama ağaçlarında arama 9 anahtarının aranması: I. 9 ile kökteki 15 karşılaştır. 9<15 olduğundan sol alt ağaca git. II. 9 ile 6 karşılaştır. 9>6 olduğundan sağ alt ağaca git. III. 9 ile 7 karşılaştır. 9>7 olduğundan sağ alt ağaca git. IV. 9 ile 13 karşılaştır. 9<13 olduğundan sol alt ağaca git. V. 9=9 dur. Aranan anahtar bulundu!

11 İkili arama ağaçları İndeks sıralı dosyalarda ağaç yapısı indeks amacıyla kullanılırken, kayıtlar yapraklarda bulunur. İkili arama ağaçlarında kayıtlar hem yapraklarda hem düğümlerde tutulurlar. İndeks Veri İndeks ve veri İndeks sıralı dosya İkili arama ağacı

12 AVL Tree AVL ağacı, denge şartı olan ikili arama ağacıdır. Height balanced tree olarak da adlandırılırlar. Herhangi bir ikili arama ağacının AVL ağacı olması için bütün düğümlerin çocukları arasındaki farkın en fazla bir olması gerekir.

13 Dengeli Ağaç (Balanced Tree) Bütün düğümler için sol alt ağacın yüksekliği ile sağ alt ağacın yüksekliği arasında en fazla bir fark varsa bu dengeli ağaç olarak adlandırılır. Denge faktörü (balance vector)önemlidir. Denge faktörü = yükseklik (sağ altağaç) yükseklik (sol altağaç) Denge faktörü -1, 0 ve 1 değerini alabilir.

14 Dengeli Ağaç (Balanced Tree) denge faktörü=2-3=-1 Dengeli bir ağaçtır. denge faktörü=1-3=-2 Dengeli bir ağaç değildir.

15 B-Tree B-Tree, çok yollu bir arama ağacıdır. Bir node un en fazla m çocuğu vardır. Her yaprak olmayan node un (kök hariç) en az m/2 çocuğu olmalıdır. Bir node taki anahtar, sol alt ağaçtaki tüm anahtarlardan büyüktür ve sağ alt ağaçtaki tüm anahtarlardan küçüktür.

16 B-Tree Kök (root) node en az iki tane yaprak olmayan node a sahiptir. Yaprak ve kök olmayan her node k-1 tane anahtara ve k adet alt ağaç referansına sahiptir. (m/2 k m) k çocuklu bir yaprak olmayan node u k -1 anahtara sahiptir. Capacity order=d dersek, anahtarlar d ile 2d arasında olmak zorundadır. Sadece kök 1 ile 2d arasında olabilir. İşaretçiler ise d+1 ile 2d+1 arasındadır. Yalnız kökün işaretçileri 2 ile 2d+1 arasında olabilir. Bütün yapraklar aynı düzeydedir.

17 B-Tree -- Ekleme Anahtar Ekleme: 1. Eğer boş alanı olan bir yaprağa yerleştirilecekse doğrudan yaprağın ilgili alanına yerleştirilir. 2. Eğer ilgili yaprak doluysa, yaprak ikiye bölünür ve anahtarların yarısı yeni bir yaprak oluşturur. Eski yapraktaki en son anahtar bir üst seviyedeki node aktarılır ve yeni yaprağı referans olarak gösterir. 3. Eğer kök ve tüm yapraklar doluysa, önce ilgili yaprak ikiye bölünür ve eski yapraktaki en son anahtar köke aktarılır. Kök node da dolu olduğu için ikiye bölünür ve eski node daki en son anahtar kök yapılır.

18 B-Tree -- Ekleme Örnek Anahtarlar= 80, 50, 100, 90, 60, 65, 70, 75, 55, 64, 51, 76, 77, 78, 200, 300, 150 capacity order=d=2 * 80 anahtarını ekleme ˆ 80 ˆ ˆ ˆ ˆ * 50 anahtarını ekleme ˆ 50 ˆ 80 ˆ ˆ ˆ * 100 anahtarını ekleme ˆ 50 ˆ 80 ˆ 100 ˆ ˆ * 90 anahtarını ekleme ˆ 50 ˆ 80 ˆ 90 ˆ 100 ˆ

19 B-Tree -- Ekleme Anahtarlar= 80, 50, 100, 90, 60, 65, 70, 75, 55, 64, 51, 76, 77, 78, 200, 300, 150 * 60 anahtarının eklenmesi * 65 anahtarının eklenmesi

20 B-Tree -- Ekleme Anahtarlar= 80, 50, 100, 90, 60, 65, 70, 75, 55, 64, 51, 76, 77, 78, 200, 300, 150 * 70 anahtarının eklenmesi * 75 anahtarının eklenmesi

21 B-Tree -- Ekleme Anahtarlar= 80, 50, 100, 90, 60, 65, 70, 75, 55, 64, 51, 76, 77, 78, 200, 300, 150 * 55 ve 64 anahtarının eklenmesi * 51 anahtarının eklenmesi

22 B-Tree -- Ekleme Anahtarlar= 80, 50, 100, 90, 60, 65, 70, 75, 55, 64, 51, 76, 77, 78, 200, 300, 150 * 76 ve 77 anahtarının eklenmesi * 78 anahtarının eklenmesi

23 B-Tree -- Ekleme Anahtarlar= 80, 50, 100, 90, 60, 65, 70, 75, 55, 64, 51, 76, 77, 78, 200, 300, 150 * 200 ve 300 anahtarlarının eklenmesi * 150 anahtarının eklenmesi

24 B-Tree -- Silme Anahtar silme: 1. Minimum kapasitenin (d/2) üzerindeki yapraklardan kayıt rahatlıkla silinebilir. * 88 anahtarlı kaydın silinmesi

25 B-Tree -- Silme 2. Bir yaprak olmayan node üzerinden kayıt silindiğinde inorder takipçisi yerine yazılır. (inorder takipçisi, eklemede soldaki en büyük düğüm, silmede sağdaki en küçük düğümdür.) Minimum kapasitenin altına düşülmediyse düzenlemeye gerek yoktur. * 71 anahtarlı kaydın silinmesi:

26 B-Tree -- Silme 3. Bir node daki kayıt sayısı minimum kapasiteden aşağı düşerse ve kardeş node u fazla kayda sahipse, parent ve kardeş node ile yeniden düzenleme yapılır. * 83 anahtarlı kaydın silinmesi: 83 ün silinmesi durumunda node daki eleman sayısı minimum kapasite olan 1 e (d/2=1) düşer. Bu durumda önce sağ, sonra sol node da minimumdan fazla kayıt olup olmadığına bakılır. Sağ node da olduğu için bir tane kayıt alınabilir. Burada 86, kayıdın silindiği node a alınırken 89 bir üst node a yazılır.

27 B-Tree -- Silme 4. İki kardeş node minimum kapasitenin altına düşerse ikisi ve parent node daki kayıt birleştirilir. * 73 anahtarlı kaydın silinmesi: 73 silindiğinde inorder takipçisi olan 74 yerine yazılır. 74 ün eski nodunda bulunan eleman sayısı minimumun altına düşer. Sağ ve sol kardeş nodelarında da minimum düzeyde kayıt olduğundan düzenleme yapılır..86,89,91,96 birleştirilerek tek node yapılır.

28 B-Tree -- Silme * 73 anahtarlı kaydın silinmesi devamı Üstten 89 alındığında üstteki node da minimum kapasitenin altına düşer. Benzer şekilde 98 tek kalır, sağ ve sol kardeş nodelar ından alınabilecek eleman olmadığından düzenleme yapmak gereklidir. 31,50,74,98 birleştirilerek tek node yapılır.

29 Kaynaklar

AĞAÇLAR. Doç. Dr. Aybars UĞUR

AĞAÇLAR. Doç. Dr. Aybars UĞUR AĞAÇLAR TREES Doç. Dr. Aybars UĞUR Giriş Bağlı listeler, yığıtlar ve kuyruklar doğrusal (linear) veri yapılarıdır. Ağaçlar ise doğrusal olmayan belirli niteliklere sahip iki boyutlu veri yapılarıdır (Şekil

Detaylı

Ağaçlar (Trees) Ağaçlar (Trees)

Ağaçlar (Trees) Ağaçlar (Trees) Giriş Binary Trees (İkilik Ağaçlar) Full Binary Trees Proper Binary Trees Complete Binary Trees Heap Binary Trees Balanced Binary Trees Binary Search Trees (İkilik Arama Ağaçları) Yrd.Doç.Dr. M. Ali Akcayol

Detaylı

Ağaç Yapıları (Tree Structures) Kütük Organizasyonu 1

Ağaç Yapıları (Tree Structures) Kütük Organizasyonu 1 Ağaç Yapıları (Tree Structures) Kütük Organizasyonu 1 İçerik Temel Kavramlar Ağaçlarda Dolaşım İkili Ağaçlar (Binary Trees) İkili Arama Ağacı (Binary Search Tree ve Temel İşlemler Kütük Organizasyonu 2

Detaylı

AĞAÇLAR TREES. Doç. Dr. Aybars UĞUR

AĞAÇLAR TREES. Doç. Dr. Aybars UĞUR AĞAÇLAR TREES Doç. Dr. Aybars UĞUR Giriş Bağlı listeler, yığıtlar ve kuyruklar doğrusal (linear) veri yapılarıdır. Ağaçlar ise doğrusal olmayan belirli niteliklere sahip iki boyutlu veri yapılarıdır (Şekil

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 8 Problem Tanımı Arama Ağaçları İkili Arama

Detaylı

Ağaç (Tree) Veri Modeli

Ağaç (Tree) Veri Modeli Ağaç (Tree) Veri Modeli 1 2 Ağaç Veri Modeli Temel Kavramları Ağaç, bir kök işaretçisi, sonlu sayıda düğümleri ve onları birbirine bağlayan dalları olan bir veri modelidir; aynı aile soyağacında olduğu

Detaylı

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > =

Week 9: Trees 1. TREE KAVRAMI 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI 2. İKİLİ AĞAÇ VE SUNUMU > = Week 9: Trees 1. TREE KAVRAMI 2. İKİLİ AĞAÇ VE SUNUMU 3. İKİLİ AĞAÇ DİZİLİMİ 4. İKİLİ ARAMA AĞACI < 6 2 > = 1 4 8 9 1. TREES KAVRAMI Bir ağaç bir veya daha fazla düğümün (T) bir kümesidir : Spesifik olarak

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 7 Ağaç (Tree) Veri Yapısı Giriş Ağaç VY Temel

Detaylı

BIL222 Veri Yapıları ve Algoritmalar

BIL222 Veri Yapıları ve Algoritmalar BIL222 Veri Yapıları ve Algoritmalar 1. ĠKĠLĠ AĞAÇLAR (BIARY TREES) Bütün düğümlerinin derecesi en fazla iki olan ağaca ikili ağaç denir. Yani bir düğüme en fazla iki tane düğüm bağlanabilir ( çocuk sayısı

Detaylı

Çok Yollu Ağaçlar: B*-Trees B*-Trees

Çok Yollu Ağaçlar: B*-Trees B*-Trees Çok Yollu Ağaçlar: B*-Trees B*-Trees B-tree lerde bir node dolunca bölme işlemi yapılmaktadır Bölme sonucunda oluşan iki node da yarı yarıya doludur B*-tree lerde bölme işlemi geciktirilerek node ların

Detaylı

AĞAÇ-TREE VERİ YAPISI

AĞAÇ-TREE VERİ YAPISI AĞAÇ-TREE VERİ YAPISI AĞAÇ-TREE Ağaç; verileri birbirine hiyerarşik(sıradüzensel) bir biçimde sanal olarak bağlayan, doğrusal olmayan bir veri yapısıdır. Doğada bulunan biyolojik ağaçlardaki ve aile soyağacındaki

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

BIP116-H14-1 BTP104-H014-1

BIP116-H14-1 BTP104-H014-1 VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Çarpışma çözümleme yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Çarpışma çözümleme yöntemleri Sunum planı Bağlantıları kullanarak çarpışmaların çözümlenmesi. Coalesced Hashing (Birleştirilmiş

Detaylı

Çok Yollu Ağaçlar (Multi-Way Trees)

Çok Yollu Ağaçlar (Multi-Way Trees) Çok Yollu Ağaçlar (Multi-Way Trees) B-Trees B*-Trees B+-Trees Yrd.Doç.Dr. M. Ali Akcayol Çok Yollu Ağaçlar (Multi-Way Trees) Disk üzerindeki bilgilerin elde edilmesinde kullanılır. 3600 rpm ile dönen bir

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 VERİ YAPILARI Sunu Planı Kendini-gösteren Yapılar Dinamik Bellek Tahsisi Bağlı Listeler Yığınlar Kuyruklar Ağaçlar 1 Veri Yapıları Şu ana kadar, diziler, matrisler ve yapılar

Detaylı

Veri Yapıları. Ağaçlar. Ağaçlar genel bilgi

Veri Yapıları. Ağaçlar. Ağaçlar genel bilgi Veri Yapıları Ağaçlar Dr. Sinan TUNCEL Ağaçlar genel bilgi Ağaçlar, fizikçi Gustava Kirşof tarafından 1847 de kablo ağlarındaki elektrik akışını formülize etmek için kullanılmıştır. Kirşof yasaları olarak

Detaylı

Binary Tree nedir?uygulamas nasl yaplr?

Binary Tree nedir?uygulamas nasl yaplr? Yazar : Tu çe Kalkavan Web : tugcekalkavan.net admin@tugcekalkavan.net Bili³im Blo u Binary Tree nedir?uygulamas nasl yaplr? Bu bölümde veri yaplarnda önemli bir konu olan binary tree konusunu anlatmaya

Detaylı

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü

Çanakkale Onsekiz Mart Üniversitesi. Bilgisayar Mühendisliği Bölümü Çanakkale Onsekiz Mart Üniversitesi Bilgisayar Mühendisliği Bölümü Skip List(Atlamalı Liste) Veri Yapısı Seminer-30.03.2007/SkipList 1 Temel İhtiyaçlar Nelerdir? 1. Bilgisayarda verileri belirli yapıda

Detaylı

Veri Modelleri. Ağaç Veri Modeli. Ağaç Veri Modeli

Veri Modelleri. Ağaç Veri Modeli. Ağaç Veri Modeli Veri Modelleri Ağaç Veri Modeli Ağaç Veri Modeli Verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen bir veri modelidir. Ağaç veri modeli daha fazla bellek

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 9 Hatırlatmalar Tam İkili Ağaç Eksiksiz İkili

Detaylı

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR

Çizgeler (Graphs) Doç. Dr. Aybars UĞUR Çizgeler (Graphs) ve Uygulamaları Doç. Dr. Aybars UĞUR Giriş Şekil 12.1 : Çizge (Graph) Çizge (Graph) : Köşe (vertex) adı verilen düğümlerden ve kenar (edge) adı verilip köşeleri birbirine bağlayan bağlantılardan

Detaylı

Dosyalarda Farklı Yaklaşımlar. Kütük Organizasyonu 1

Dosyalarda Farklı Yaklaşımlar. Kütük Organizasyonu 1 Dosyalarda Farklı Yaklaşımlar Kütük Organizasyonu 1 Giriş Şimdiye kadar öğrendiğimiz temel dosyalama komutlarıyla (fopen,flclose, fputs vb..) dosya oluşturabilmekte, kayıt ekleyebilmekte ve her bir kaydın

Detaylı

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1

Algoritmalar. Heap Sort. Bahar 2017 Doç. Dr. Suat Özdemir 1 Algoritmalar Heap Sort Bahar 2017 Doç. Dr. Suat Özdemir 1 Heap Sort Heap Sort algoritması Merge Sort ve Insertion Sort algoritmalarının iyi özelliklerini bir arada toplar. Algoritma Insertion Sort gibi

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 S6 S7 Toplam HACETTEPE ÜNİVERSİTESİ 2012-2013 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 25.04.2013 Sınav Süresi:

Detaylı

VERİ YAPILARI LİSTELER. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ

VERİ YAPILARI LİSTELER. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ VERİ YAPILARI LİSTELER Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ Bağlı Listeler Aynı kümeye ait veri parçalarının birbirlerine bellek üzerinde, sanal olarak bağlanmasıyla

Detaylı

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER

Veri Yapıları. Yrd. Doç. Dr. Şadi Evren ŞEKER Veri Yapıları Yrd. Doç. Dr. Şadi Evren ŞEKER Not: Bu sunumun amacı, İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü, Bilgisayar Mühendisliğine Giriş Dersi için genel amaçlı veri yapıları hakkında

Detaylı

VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ. Yard. Doç. Dr. Deniz KILINÇ

VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ. Yard. Doç. Dr. Deniz KILINÇ VERİ YAPILARI DERS NOTLARI BÖLÜM 1 GİRİŞ Yard. Doç. Dr. Deniz KILINÇ CELAL BAYAR ÜNİVERSİTESİ, YAZILIM MÜHENDİSLİĞİ 2015-2016 1. DERS İÇERİĞİ VE KAYNAKLAR Veri Yapıları (VY) dersinde görülmesi muhtemel

Detaylı

Algoritmalar. DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme

Algoritmalar. DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme Algoritmalar DERS 7 Dengeli Arama Ağaçları Kırmızı-siyah ağaçlar Kırmızı-siyah ağacın yüksekliği Rotation / Dönme Insertion / araya yerleştirme October 19, 2005 Copyright 2001-5 by Erik D. Demaine and

Detaylı

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Sıralı erişimli dosya organizasyonu yöntemleri ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Sıralı erişimli dosya organizasyonu yöntemleri Sunum planı Sıralı erişimli dosya organizasyonu yöntemleri Basit sıralı

Detaylı

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 2 Veri Modelleri Veri modelleri, veriler arasında ilişkisel ve sırasal düzeni gösteren kavramsal tanımlardır. Her program en azından bir veri modeline dayanır. Uygun

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2014-2015 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 2. Ara Sınav 09.04.2015 Sınav Süresi: 90 dakika

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN BAĞLI LİSTELER Bağlı listeler konusuna çalışmanın bazı faydaları var. Bağlı listeler gerçek programlarda kullanılabilecek bir veri yapısıdır. Bağlı listelerin güçlü ve zayıf yönlerini

Detaylı

Yrd. Doç. Dr. Ümit ATİLA

Yrd. Doç. Dr. Ümit ATİLA Yrd. Doç. Dr. Ümit ATİLA Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme. Bilgisayar sistemleri için veri sıralama çok önemlidir. Sıralama işlemi, hem arama işlemlerini hem de bir grup veriyi

Detaylı

Algoritma Geliştirme ve Veri Yapıları 7 Liste ve Bağlantılı Liste. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 7 Liste ve Bağlantılı Liste. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 7 Liste ve Bağlantılı Liste Liste birbiriyle ilişkili verileri içeren bir kümedir, programlama açısından liste en basitinden bir dizi üzerinde tutulur. Dizi elemanları

Detaylı

Ağaçlar(Trees) AĞAÇ VERİ MODELİ

Ağaçlar(Trees) AĞAÇ VERİ MODELİ Ağaçlar(Trees) AĞAÇ VERİ MODELİ Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyerarşik yapıya sahip bir veri modelidir; bilgisayar yazılım

Detaylı

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15.

Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15. Algoritmalara Giriş Ekim 17, 2005 Massachusetts Institute of Technology 6.046J/18.410J Profesörler Erik D. Demaine ve Charles E. Leiserson Dağıtım 15 Problem Seti 4 Okumalar: Bölüm 12 13 ve 18 Hem egzersizler

Detaylı

Indeksli Sıralı Erişimli Dosya Yapıları (Indexed Sequential File Organization) ve. Bit Seviyesinde İşlemler (Bit Level and Related Structures)

Indeksli Sıralı Erişimli Dosya Yapıları (Indexed Sequential File Organization) ve. Bit Seviyesinde İşlemler (Bit Level and Related Structures) Indeksli Sıralı Erişimli Dosya Yapıları (Indexed Sequential File Organization) ve Bit Seviyesinde İşlemler (Bit Level and Related Structures) Kütük Organizasyonu 1 Indeksli Sıralı Erişimli Dosya Yapıları

Detaylı

Graflar bilgi parçaları arasındaki ilişkileri gösterirler.

Graflar bilgi parçaları arasındaki ilişkileri gösterirler. Graflar (Graphs) Graf gösterimi Uygulama alanları Graf terminolojisi Depth first dolaşma Breadth first dolaşma Topolojik sıralama Yrd.Doç.Dr. M. Ali Akcayol Graflar Graflar bilgi parçaları arasındaki ilişkileri

Detaylı

VERİ YAPILARI DERSİ TEST SORULARI

VERİ YAPILARI DERSİ TEST SORULARI VERİ YAPILARI DERSİ TEST SORULARI 1. Bir problemin çözümünde kullanılan komutlar dizisine ne ad verilir? a)veri(data ) b)array c)char d)algoritma e)structure(yapı) 2. Aşağıda ağaçla ilgili verilen bilgilerden

Detaylı

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları

BLM-112 PROGRAMLAMA DİLLERİ II. Ders-7 Sıralama Algoritmaları BLM-112 PROGRAMLAMA DİLLERİ II Ders-7 Sıralama Algoritmaları Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Sıralama Bir grup veriyi azalan veya artan şekilde yerleştirme.

Detaylı

SOMEBODY ELSE'S. ( DATA STRUCTURES and ALGORITHMS ) Veri Yapıları ve Algoritmaları

SOMEBODY ELSE'S. ( DATA STRUCTURES and ALGORITHMS ) Veri Yapıları ve Algoritmaları SOMEBODY ELSE'S ( DATA STRUCTURES and ALGORITHMS ) Veri Yapıları ve Algoritmaları Yazan: Burak Kıymaz Derleyen: Serhan Aksoy @2016 Burak Kıymaz 28.10.2015 Veri Yapıları Abstrak veri yapıları: (Abstract

Detaylı

Fiziksel Veritabanı Modelleme

Fiziksel Veritabanı Modelleme Fiziksel Veritabanı Modelleme Fiziksel Veritabanı VTYS, verileri yan bellekte tutar. Bu yüzden VTYS lerde sıklıkla READ (yan bellekten okuma) ve WRITE (yan belleğe yazma) işlemi meydana gelir. READ ve

Detaylı

VERİ YAPILARI VE PROGRAMLAMA

VERİ YAPILARI VE PROGRAMLAMA VERİ YAPILARI VE PROGRAMLAMA (BIP116) Yazar: Doç.Dr.İ.Hakkı.Cedimoğlu SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir.

Detaylı

İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2. SINIF 1. DÖNEM VERİ YAPILARI DERSİ LABORATUAR ÖDEVİ

İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2. SINIF 1. DÖNEM VERİ YAPILARI DERSİ LABORATUAR ÖDEVİ İNÖNÜ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2. SINIF 1. DÖNEM VERİ YAPILARI DERSİ LABORATUAR ÖDEVİ AD SOYAD: TESLİM TARİHİ: OKUL NO: TESLİM SÜRESİ: 2 hafta ÖDEV NO: 5 1- BANKA

Detaylı

BLG 312 Bilgisayar İşletim Sistemleri 2006 BLG 312. Bilgilerin Uzun Vadeli Saklanması. Dosya Sistemi Görevleri. Dosya Sistemi Özellikleri

BLG 312 Bilgisayar İşletim Sistemleri 2006 BLG 312. Bilgilerin Uzun Vadeli Saklanması. Dosya Sistemi Görevleri. Dosya Sistemi Özellikleri Bilgilerin Uzun Vadeli Saklanması Bilgisayar İşletim Sistemleri BLG 312 Dosya Sistemi saklanacak veriler çok fazla olabilir veriler proses sonlandıktan sonra da kaybolmamalı bilgiye prosesler ortak olarak

Detaylı

Arama metodlarında temel işlem anahtarları karşılaştırmaktır.

Arama metodlarında temel işlem anahtarları karşılaştırmaktır. (Kırpma) Hash Fonksiyonları Selecting Digits Folding (shift folding, boundary folding) Division MidSquare Extraction Radix Transformation Çakışma (Collision) ve çözümler Linear Probing Double Quadratic

Detaylı

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1

Algoritmalar. Arama Problemi ve Analizi. Bahar 2016 Doç. Dr. Suat Özdemir 1 Algoritmalar Arama Problemi ve Analizi Bahar 2016 Doç. Dr. Suat Özdemir 1 Arama Problemi Sıralama algoritmaları gibi arama algoritmaları da gerçek hayat bilgisayar mühendisliği problemlerinin çözümünde

Detaylı

Bilgilerin Uzun Vadeli Saklanması

Bilgilerin Uzun Vadeli Saklanması 8 DOSYA SİSTEMS STEMİ Bilgilerin Uzun Vadeli Saklanması saklanacak veriler çok fazla olabilir veriler proses sonlandıktan sonra da kaybolmamalı bilgiye prosesler ortak olarak ulaşabilmeli 424 Dosya Sistemi

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği Bu bölümde, BÖLÜM - 3 Motivasyon: Neden Listeye İhtiyaç Var? Bağlı

Detaylı

Sıralı Erişimli Dosyalar. Kütük Organizasyonu 1

Sıralı Erişimli Dosyalar. Kütük Organizasyonu 1 Sıralı Erişimli Dosyalar Kütük Organizasyonu 1 Dosya Fiziksel depolama ortamlarında verilerin saklandığı mantıksal yapılara dosya denir. Dosyalar iki şekilde görülebilir. Byte dizisi şeklinde veya Alanlar

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN BAĞLI LİSTELER Bağlı listeler konusuna çalışmanın bazı faydaları var. Bağlı listeler gerçek programlarda kullanılabilecek bir veri yapısıdır. Bağlı listelerin güçlü ve zayıf yönlerini

Detaylı

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ

HACETTEPE ÜNİVERSİTESİ BAHAR DÖNEMİ Öğrenci Adı Soyadı: Öğrenci Numarası: S1 S2 S3 S4 S5 Toplam HACETTEPE ÜNİVERSİTESİ 2013-2014 BAHAR DÖNEMİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BBM202 Algoritmalar 1. Ara Sınav 18.03.2014 Sınav Süresi: 50 dakika

Detaylı

#$% &'#(# Konular. Direct File Organization. Progressive Overflow Buckets Linear Quotient Brent s Method Binary Tree

#$% &'#(# Konular. Direct File Organization. Progressive Overflow Buckets Linear Quotient Brent s Method Binary Tree !" #$% &'#(# Konular Progressive Overflow Buckets Linear Quotient Brent s Method Progressive overflow Coalesced hashing temel dezavantajı linkler için ek yer gerektirmesidir Progressive overflow (linear

Detaylı

Algoritmalara Giriş 6.046J/18.401J

Algoritmalara Giriş 6.046J/18.401J Algoritmalara Giriş 6.046J/.40J DERS Veri Yapılarının Genişletilmesi Dinamik Seviye İstatistikleri Metodoloji Aralık Ağaçları Prof. Charles E. Leiserson Dinamik Seviye İstatistikleri OS-SEÇ(i,S) : dinamik

Detaylı

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 10 Graf Veri Modeli Graf, matematiksel anlamda, düğümler ve bu düğümler arasındaki ilişkiyi gösteren kenarlardan oluşan bir kümedir; mantıksal ilişki düğüm ile düğüm

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BÖLÜM - 11 Bu bölümde, Graph (Çizge - Graf) Terminoloji Çizge Kullanım

Detaylı

BLM-431 YAPAY ZEKA. Ders-4 Bilgisiz Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-4 Bilgisiz Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-4 Bilgisiz Arama Yöntemleri Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Dersin Hedefleri Aşağıda verilen arama stratejilerini anlamak

Detaylı

Week 6: Bağlı Liste (Linked List) BAĞLI LİSTE KAVRAMI TEKİL (SINGLE) BAĞLI LİSTE ÇİFT (DOUBLE) BAĞLI LİSTE DAİRESEL (CIRCULAR) BAĞLI LİSTE

Week 6: Bağlı Liste (Linked List) BAĞLI LİSTE KAVRAMI TEKİL (SINGLE) BAĞLI LİSTE ÇİFT (DOUBLE) BAĞLI LİSTE DAİRESEL (CIRCULAR) BAĞLI LİSTE Week 6: Bağlı Liste (Linked List) BAĞLI LİSTE KAVRAMI TEKİL (SINGLE) BAĞLI LİSTE ÇİFT (DOUBLE) BAĞLI LİSTE DAİRESEL (CIRCULAR) BAĞLI LİSTE BAĞLI LİSTE KAVRAMI Derleme zamanında boyutunun bilinmesine ihtiyaç

Detaylı

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1

VERİ YAPILARI. GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 VERİ YAPILARI GRAPH LAR Düzce Üniversitesi Teknoloji Fakültesi ÖĞR.GÖR.GÜNAY TEMÜR 1 GRAPH (ÇİZGE - GRAF) Terminoloji Çizge Kullanım Alanları Çizge Gösterimi Komşuluk Matrisi Komşuluk Listesi Çizge Üzerinde

Detaylı

Dosya Saklama Ortamları (Sabit Diskler) Kütük Organizasyonu 1

Dosya Saklama Ortamları (Sabit Diskler) Kütük Organizasyonu 1 Dosya Saklama Ortamları (Sabit Diskler) Kütük Organizasyonu 1 Depolama Aygıtları 1- Birincil Depolama Aygıtları Hızlı Erişim Süresine Sahiptirler Fiyatı daha fazladır. Daha küçük kapasiye sahiptir 2. İkincil

Detaylı

IP Alt Ağlara Bölmek (Subnetting)

IP Alt Ağlara Bölmek (Subnetting) IP Alt Ağlara Bölmek (Subnetting) İçerik Giriş Tanım - Gerekçe Temel Bilgiler Oktet İkili Sayı Sistemi IP Sınıfları Network ID (Ağ Adresi) Broadcast Adresi Giriş Internet Protokolü (IP) ile haberleşen

Detaylı

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi

Graf Veri Modeli. Düğümler kümesi. Kenarlar kümesi Graf Veri Modeli Graf, bir olay veya ifadenin düğüm ve çizgiler kullanılarak gösterilme şeklidir. Fizik, Kimya gibi temel bilimlerde ve mühendislik uygulamalarında ve tıp biliminde pek çok problemin çözümü

Detaylı

Akademik Rapor Hazırlama ve Yazışma Teknikleri

Akademik Rapor Hazırlama ve Yazışma Teknikleri Akademik Rapor Hazırlama ve Yazışma Teknikleri BLM2881 2015-1 DR. GÖKSEL Bİ R İ C İ K goksel@ce.yildiz.edu.tr Ders Planı Hafta Tarih Konu 1 16.09.2015 Tanışma, Ders Planı, Kriterler, Kaynaklar, Giriş Latex

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Veri Yapıları Laboratuvarı

Veri Yapıları Laboratuvarı 2013 2014 Veri Yapıları Laboratuvarı Ders Sorumlusu: Yrd. Doç. Dr. Hakan KUTUCU Lab. Sorumlusu: Arş. Gör. Caner ÖZCAN İÇİNDEKİLER Uygulama 1: Diziler ve İşaretçiler, Dinamik Bellek Ayırma... 4 1.1. Amaç

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 2. TEMEL KANUNLAR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi Bu bölümde Ohm Kanunu Düğüm, dal, çevre 2.1. Giriş Kirchhoff Kanunları Paralel

Detaylı

BLM-431 YAPAY ZEKA. Ders-5 Bilgili Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-5 Bilgili Arama Yöntemleri. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-5 Bilgili Arama Yöntemleri Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Arama Grafları Eğer arama uzayı ağaç yapısından değil de graf

Detaylı

BAĞLAÇLI LİSTELER LINKED LISTS

BAĞLAÇLI LİSTELER LINKED LISTS BAĞLAÇLI LİSTELER LINKED LISTS Liste Günlük yaşamda listeler pek çok yerde kullanılmaktadır. Alışveriş listeleri, adres listeleri, davetli listeleri gibi. Bilgisayar programlarında da listeler yararlı

Detaylı

YZM YAPAY ZEKA DERS#4: BİLGİSİZ ARAMA YÖNTEMLERİ

YZM YAPAY ZEKA DERS#4: BİLGİSİZ ARAMA YÖNTEMLERİ YZM 327 - YAPAY ZEKA DERS#4: BİLGİSİZ ARAMA YÖNTEMLERİ Bilgisiz Arama Stratejisi Sadece problem formülasyonundaki mevcut bilgiyi kullanır Durum bilgisinden yararlanmazlar Çözüme ulaşmak için hiçbir bilgi

Detaylı

SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır.

SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır. SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır. Bu dersimizde biz Microsoft SQL Server veritabanı sistemini kullanmayı öğreneceğiz. SQL Nedir? SQL Structured Query Language

Detaylı

IMDS TANIMLAR SÖZLÜĞÜ (AIOS TEDARĠKÇĠLERĠ ĠÇĠN HAZIRLANMIġTIR)

IMDS TANIMLAR SÖZLÜĞÜ (AIOS TEDARĠKÇĠLERĠ ĠÇĠN HAZIRLANMIġTIR) IMDS TANIMLAR SÖZLÜĞÜ (AIOS TEDARĠKÇĠLERĠ ĠÇĠN HAZIRLANMIġTIR) GİRİŞ Bu sunum IMDS sisteminde bahsi geçen tanımlar ile ilgili açıklamaları içerir. Sunum aşağıdaki genel başlıkları içerir; Genel tanımlar

Detaylı

BAĞLAÇLI LİSTELER LINKED LISTS

BAĞLAÇLI LİSTELER LINKED LISTS BAĞLAÇLI LİSTELER LINKED LISTS Liste Günlük yaşamda listeler pek çok yerde kullanılmaktadır: Alışveriş listeleri, adres listeleri, davetli listeleri gibi. Bilgisayar programlarında da listeler yararlı

Detaylı

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR

YZM ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR YZM 3207- ALGORİTMA ANALİZİ VE TASARIM DERS#9: AÇGÖZLÜ ALGORİTMALAR Aç Gözlü (Hırslı) Algoritmalar (Greedy ) Bozuk para verme problemi Bir kasiyer 48 kuruş para üstünü nasıl verir? 25 kuruş, 10 kuruş,

Detaylı

DOSYA ORGANİZASYONU. Doğrudan erişimli dosya organizasyonu ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Doğrudan erişimli dosya organizasyonu ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Doğrudan erişimli dosya organizasyonu Sunum planı Doğrudan erişimli dosyalar Anahtar değerin tek adres olması durumu Anahtar

Detaylı

BM-311 Bilgisayar Mimarisi

BM-311 Bilgisayar Mimarisi 1 BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Mikro işlemler Fetch cycle Indirect cycle Interrupt cycle Execute cycle Instruction

Detaylı

BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES)

BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES) BAĞLAMDAN BAĞIMSIZ VE BAĞLAMDAN BAĞIMSIZ OLMAYAN DİLLER (CONTEXT-FREE AND NON-CONTEXT-FREE LANGUAGES) Context-free dillerin üretilmesi için context-free gramer ler kullanılmaktadır. Context-free dillerin

Detaylı

ÇATI MAKASINA GELEN YÜKLER

ÇATI MAKASINA GELEN YÜKLER ÇATI MAKASINA GELEN YÜKLER Bir yapıyı dış etkilere karşı koruyan taşıyıcı sisteme çatı denir. Belirli aralıklarla yerleştirilen çatı makaslarının, yatay taşıyıcı eleman olan aşıklarla birleştirilmesi ile

Detaylı

VERİ YAPILARI. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ HASH TABLOLARI.

VERİ YAPILARI. Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ HASH TABLOLARI. VERİ YAPILARI HASH TABLOLARI Yrd. Doç. Dr. Murat GÖK Bilgisayar Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ muratgok@gmail.com Hash tabloları Hash tablo veri yapısı ile veri arama, ekleme ve silme işlemleri

Detaylı

Hesaplanabilen Zincirler (Computed Chaining) Kütük Organizasyonu 1

Hesaplanabilen Zincirler (Computed Chaining) Kütük Organizasyonu 1 Hesaplanabilen Zincirler (Computed Chaining) Kütük Organizasyonu Bu kısma kadar, meydana gelen çakışmaları genel olarak farklı yaklaşımla çözdük. Bunlar: Link alanı kullanan çözümleme yaklaşımları (Colaesced

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

ELN1002 BİLGİSAYAR PROGRAMLAMA 2

ELN1002 BİLGİSAYAR PROGRAMLAMA 2 ELN1002 BİLGİSAYAR PROGRAMLAMA 2 DOSYALAMA Sunu Planı Rasgele Erişim (Random Access) Dosyaları Rasgele Erişim Dosyalarına Veri Yazma Rasgele Erişim Dosyalarından Veri Okuma 1 Sıralı Erişim Dosyası Bir

Detaylı

BM312 Ders Notları 2014

BM312 Ders Notları 2014 Kümeler ve Bağıntılar Bir küme nesnelerden oluşur L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir c L, k L şeklinde ifade edilir. Elemanların sırası ve tekrarı önemli değildir {üzüm, kiraz,

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI SAKAA ÜNİESİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTİK ELEKTONİK MÜHENDİSLİĞİNE GİİŞ LABOATUAI DENEİ APTIAN: DENEİN ADI: DENE NO: DENEİ APANIN ADI ve SOADI: SINIFI: OKUL NO:

Detaylı

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır.

Page 1. b) Görünüşlerdeki boşluklar prizma üzerinde sırasıyla oluşturulur. Fazla çizgiler silinir, koyulaştırma yapılarak perspektif tamamlanır. TEKNİK BİLİMLER MESLEK YÜKSEKOKULU Teknik Resim İzometrik Perspektifler Küpün iz düşüm düzlemi üzerindeki döndürülme açısı eşit ise kenar uzunluklarındaki kısalma miktarı da aynı olur. Bu iz düşüme, izometrik

Detaylı

Masa Örneği (standard primitives)

Masa Örneği (standard primitives) Masa Örneği (standard primitives) 1. Yeni grid ölçüleri ile başlanır: NOT: Grid ölçü değeri aşağıdaki alanda gözükmesi için ekranın tazelenmesi gerekir. Bunun için aktif olandan farklı bir viewport ile

Detaylı

Çakışmalar ve Çakışmaların Statik Yaklaşımlarla Çözülmesi. Kütük Organizasyonu 1

Çakışmalar ve Çakışmaların Statik Yaklaşımlarla Çözülmesi. Kütük Organizasyonu 1 Çakışmalar ve Çakışmaların Statik Yaklaşımlarla Çözülmesi Kütük Organizasyonu 1 Çakışma (Collesion) Belirtilen hash fonksiyonlarından bazıları diğerlerine göre daha düzgün bir dağıtım gerçekleştirir. Fakat

Detaylı

Dosya Sıkıştırma (File Compression) Kütük Organizasyonu 1

Dosya Sıkıştırma (File Compression) Kütük Organizasyonu 1 Dosya Sıkıştırma (File Compression) Kütük Organizasyonu İçerik Dosya sıkıştırma nedir? Dosya sıkıştırma yöntemleri nelerdir? Run-Length Kodlaması Huffman Kodlaması Kütük Organizasyonu 2 Dosya Sıkıştırma

Detaylı

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr.

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr. Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi 00-0 Bahar Dönemi Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA Bu sunu izleyen kaynaklardaki örnek ve bilgilerden faydalanarak

Detaylı

C++ Dilinde Bazı Temel Algoritmalar

C++ Dilinde Bazı Temel Algoritmalar C++ Dilinde Bazı Temel Algoritmalar Bazı eşyalar için her eve lazım derler. Az sonra bahsedeceğimiz algoritmalar da her kodcuya lazım cinsten. Sayının tek mi çift mi olduğuna karar veren programdan, çarpım

Detaylı

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Karar Ağaçları ile Sınıflandırma) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr Genel İçerik Veri Madenciliğine Giriş Veri Madenciliğinin Adımları Veri Madenciliği Yöntemleri Sınıflandırma

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

NURBS ÖRNEKLER NOTU: Model FRONT görünümde orijin noktasından başlanarak ilk iki noktası gride snap edilmiş bir şekilde meydana getirilmiştir.

NURBS ÖRNEKLER NOTU: Model FRONT görünümde orijin noktasından başlanarak ilk iki noktası gride snap edilmiş bir şekilde meydana getirilmiştir. NURBS ÖRNEKLER NOTU: Model FRONT görünümde orijin noktasından başlanarak ilk iki noktası gride snap edilmiş bir şekilde meydana getirilmiştir. Gerektiği yerlerde eğri nokataları Move aracıyla taşınarak

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Gerilim Bölücü Bir gerilim kaynağından farklı

Detaylı

İçerik: Graflar. Tanım. Gösterim. Dolaşma Algoritmaları. Yönlü ve yönsüz graflar Ağırlıklı graflar. Komşuluk Matrisi Komşuluk Listesi

İçerik: Graflar. Tanım. Gösterim. Dolaşma Algoritmaları. Yönlü ve yönsüz graflar Ağırlıklı graflar. Komşuluk Matrisi Komşuluk Listesi Tanım Yönlü ve yönsüz graflar ğırlıklı graflar İçerik: Graflar Gösterim Komşuluk Matrisi Komşuluk Listesi olaşma lgoritmaları BS (Breath irst Search) S (epth-irst Search) 1 Graflar Graf, matematiksel anlamda,

Detaylı

+,- #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir

+,- #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir !"#$ %& '()*' ' #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir b L, z L / #* ) {red, blue, red} ile {red, blue} aynıdır {3, 1, 9}, {9, 1, 3} ve {3, 9, 1} aynıdır / 0 Bir elemana sahip

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimli Öğrenmenin Temelleri Karar Ağaçları Entropi ID3 Algoritması C4.5 Algoritması Twoing

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

VT Sistem Gerçeklemesi Ders Notları- #11

VT Sistem Gerçeklemesi Ders Notları- #11 VT Sistem Gerçeklemesi Ders Notları- #11 Dosya düzenleme ve amacı Adrese Dayalı indeksleme (hashing) Statik hashing Genişletilebilir hashing B-tree Indeksleme SimpleDB de Indeks-duyarlı operatör gerçeklemeleri

Detaylı