Yüzde Yüz Sonlu Sonsuz Oyunlar
|
|
- Hazan Deniz Yüksel
- 2 yıl önce
- İzleme sayısı:
Transkript
1 Yüzde Yüz Sonlu Sonsuz Oyunlar T avla Üzerine Bir Soru adl yaz da kuramsal olarak sonsuz bir oyun olan tavlan n gerçekte, yani uygulamada, sonsuz olup olmad sorusunu sorduk. Bu yaz da kuramsal olarak sonsuz, ancak uygulamada sonlu olan, yani oynand nda her zaman (yüzde yüz olas l kla) biten bir oyundan söz edece im. Oyunumuz iki kifli aras nda oynan yor. Yaz -tura at l yor. Yaz gelirse birinci oyuncu ikinciden 1 lira al yor, tura gelirse ikinci oyuncu birinciden 1 lira al yor. Oyunculardan birinin paras bitti inde oyun da bitiyor. E er iki oyuncunun da oyuna bafllarken ikifler liras varsa ve sürekli bir yaz bir tura gelirse, oyun sonsuza dek sürer; çünkü bu yaz -tura at fllar yla oyunculardan birinin paras bitmez. Öte yandan bu oyunu ne zaman oynasan z oyun biter! Hatta oldukça çabuk biter, iki dakika bile sürmez. Neden? ki dakika boyunca bir yaz bir tura gelme olas l çok zay ft r da ondan. Bu yaz da bunu kan tlayaca z. Kuramsal olarak sonsuza dek sürebilen bu oyun, uygulamada sonsuza dek süremez. Çünkü, bu oyunun sonsuza dek sürebilme olas l öyle küçük, öyle küçüktür ki... s f ra eflittir.
2 Bu olguyu kan tlamadan önce biraz e lenece iz. E lence, matemati in önemli ö elerinden biridir, savsaklamaya gelmez. Yeterince e lendikten sonra bu olgunun matematiksel kan t n verece iz. Oyunu daha iyi anlamak için oyunun a ac n bulal m. Oyun () durumu ile bafll yor. Yani bafllang çta her iki oyuncunun da ikifler liras var. Diyelim biz birinci oyuncuyuz ve yaz gelince kazan yoruz. A ac n tepesine () yazal m. Para at ld. ki olas l k var: Ya tura gelecek ve kaybedece iz ya da yaz gelecek ve kazanaca z. Kaybedersek oyunun yeni durumu (1, 3) olacak, yani bizim 1 liram z, öbür oyuncununsa 3 liras olacak. Bu (1, 3) durumunu a ac n soluna yazal m. Kazan rsak (3, 1) durumuna eriflece iz. Bunu da a ac n sa na yazal m. A aç sa l sollu kök salar. Soluna kaybetti imizde, sa naysa kazand m zda eriflece imiz durumu yazar z. (3, 1) den sonra gene iki durum ortaya ç kabilir: () ve (4, 0) durumlar. (2, 2) yi sola, (4, 0) sa a yazal m. (4, 0) durumunda oyun biter ve a aç kök salmaz. () durumundaysa oyun sürer. flte oyunun ilk dört aflamas n gösteren a aç: 1, 3 3, 1 0, 4 4, 0 1, 3 3, 1 1, 3 3, 1 0, 4 4, 0 0, 4 4, 0 Oyun ancak (4, 0) ve (0, 4) durumlar ndan birine geldi inde biter, öbür durumlarda sürer. Bu yüzden dördüncü aflamadaki () durumlar nda a aç kök salmay sürdürür. 132
3 Bu a aç sonsuz bir a açt r. Köklerden baz lar bitse bile, köklerin kökü kurumaz. A aç sonsuzdur çünkü oyun sonsuzdur. Örne in, (), (1, 3), (), (1, 3),... diye durmadan sonsuza dek uzay p giden bir kök vard r. Oyunun sonsuz oldu unu göstermek için illa sonsuz bir a aç yapmaya gerek yoktu. Sonlu bir flemayla da bu sonsuz oyunun gidiflini gösterebiliriz. Bu flemay çizelim. Oyunda befl durum var: (0, 4), (1, 3), (), (3, 1), (4, 0) durumlar. Bu befl durumu birer kare içine alal m. Bir durumdan öbür duruma nas l geçildi ini bir okla gösterelim. E er bir durumdan öbür duruma kazanarak geçebiliyorsak, okun kenar na 1 koyal m. Kaybederek geçebiliyorsak 0 koyal m. Örne- in, (1, 3) durumundan () durumuna kazanarak geçebildi- imizden, (1, 3) durumundan () durumuna giden oka 1 ad - n veririz. flte bu oyunun flemas : , 3 3, , 4 4, 0 (0, 4) ve (4, 0) durumlar nda oyun bitti inden, bu iki durumdan ok ç kmaz. Bu flemaya bakarak oyunun sonsuz oldu unu nas l anlar z? E er bir k s r döngü (yani bir daire) varsa oyun sonsuz demektir. () durumundan bafllayarak ve oklar izleyerek ya (4, 0) ya da (0, 4) durumlar na gelmek zorunda de ilsek oyun bitmez. Örne in () yle (1, 3) e gidip gelen bir k s r döngü vard r. Bunun gibi (), (1, 3), (), (3, 1), (), (1, 3),... döngüsü de döner durur. Demek bu oyun sonsuz bir oyun. 133
4 lk çizdi imiz a aca geri dönelim. A aca al c bir gözle bakt m zda oyunun birinci ve üçüncü yaz -tura at fllar ndan sonra bitmedi i anlafl l yor. Biraz düflününürsek, oyunun tek say - l yaz -tura at fllar ndan sonra bitmeyece ini görürüz (örne in tümevar mla.) Oyun 2, 4, 6 gibi çift say l at fllardan sonra bitebilir ancak. Oyunun ikinci yaz -tura at fl nda bitme olas l n bulal m 1. A ac n ikinci kuflak köklerine bakal m. Dört dal var. Her birinin olas l 1/4 tür, çünkü ikinci kuflaktaki (0, 4), (), () ve (4, 0) durumlar na ancak s ras yla TT (tura tura), TY (tura yaz ), YT, YY at ld nda eriflebiliriz. Bu dört durumdan ikisinde oyun bitiyor, ikisinde bitmiyor. Dolay s yla, ikinci yaz -tura at fl nda oyunun bitme olas l 1/4+1/4, yani 1/2 dir. fiimdi oyunun en fazla dördüncü yaz -tura at fl nda bitme olas l n bulal m. A aca bakarak, oyunun en fazla dört yaz - tura at fl nda nas l bitebilee ini buluruz: TT, TYTT, TYYY, YTTT, YTYY, YY at ld nda oyun biter. Bu 6 yaz -tura at fl n n (olay n) olas l klar s ras yla flöyle: 1/4, 1/16, 1/16, 1/16, 1/16, 1/4. Dolay s yla, oyunun en fazla dört yaz -tura at fl nda bitme olas l bu say lar n toplam d r, yani 3/4 tür. Oyunun en fazla alt yaz -tura at fl nda bitme olas l n hesaplayal m. Yukardaki a ac sürdürecek olursak, alt nc aflamada 4 tane (0, 4) ve 4 tane (4, 0) oldu unu görürüz. Oyunu sona erdirecek bu 8 kökten herbirine ulaflma olas l 1/2 6, yani 1/64. Dolay s yla oyunu bitiren bu 8 kök uçlar ndan birine ulaflma olas l m z 8/64, yani 1/8. Bu olas l bir önceki paragrafta buldu umuz 3/4 olas l na ekleyecek olursak oyunun alt ve daha az yaz -tura at fl nda bitme olas l n buluruz. De- 1 Paran n hileli olmad n varsay yoruz. Yani yaz gelme olas l 1/2, tura gelme olas l 1/2. 134
5 mek ki, oyunun en fazla alt yaz -tura at fl nda bitme olas l 3/4 + 1/8 = 7/8 dir. kinci, dördüncü ve alt nc yaz -tura at fllar ndan önce oyunun sona erme olas l klar n n s ras yla 1/2, 3/4, 7/8 oldu unu bulduk. Okur, oyunun en fazla sekiz yaz -tura at fl nda bitme olas l n hesaplarsa 15/16 bulacakt r. Bu kadar e lence yeter, art k matematik yapal m. Bir oyuncuda A lira, öbür oyuncuda B lira olsun. Oyunun hangi aflamas nda olursak olal m, üstüste A + B kez yaz at ld - nda, oyunculardan birinin paras biter, hatta daha önce de bitebilir. Demek ki, e er 1 olas l kla üstüste A + B kez yaz ataca m z kan tlarsak, bütün yaz -tura oyunlar n n 1 olas l kla sonlu bir zamanda bitece ini kan tlam fl oluruz. Dolay s yla flu teoremi kan tlamal y z: Teorem. n > 0 herhangi bir tamsay olsun. Sonsuz kez yaz - tura at ld nda üstüste n kez tura gelme olas l 1 dir, yani yüzde yüzdür. Bu teorem, tura gelince kazanan n oyunu kazanaca anlam na gelmez. Üstüste A + B kez tura gelecektir (1 olas l kla.) Oras kesin. Üstüste A + B kez de yaz gelecektir. O da kesin. Ama hangi oyuncu daha önce kaybedecektir? Oras kesin de il. fiansa ba l 2. Teoremin Kan t : Ardarda n kez yaz -tura at ld nda hep tura gelme olas l 1/2 n dir. Dolay s yla n yaz -tura at fl n n hepsinin birden tura olmama olas l 1 1/2 n dir. Bu say ya diyelim: 2 Yoksulun fians adl yaz da (sayfa 143) hangi oyuncunun kaç olas l kla oyunu kazanaca n bulaca z. 135
6 = 1 1/2 n. 0 < 1 eflitsizlikleri birazdan önem kazanacak, akl m z n bir köflesinde tutal m. fiimdi 2n kez yaz - tura atal m. 2n yaz - tura at fl nda n kez üstüste tura gelme olas - l na 2 diyelim. 2 say s n bulmak kolay olmayabilir, ama bu say n n 1 2 den büyük oldu unu kan tlayabiliriz. 2n at flta nas l üstüste n kez tura gelebilir? Çeflitli biçimlerde gelebilir. Örne in ilk n at fl salt tura olabilir, ya da son n at fl salt tura olabilir. Ne birinci n at fl n, ne de ikinci n at fl n salt tura olmama olas l 2 dir. Demek ki ya birinci n ya da ikinci n at flta salt tura gelme olas l 1 2 dir. Dolay s yla 2n at flta n kez üstüste tura gelme olas l en az 1 2 dir. Yani, eflitsizlikleri geçerlidir. Yukardaki ak l yürütmeyi 3n, 4n ve genel olarak kn at fl için yapabiliriz. fiöyle yapar z: k > 0 bir do al say olsun ve kn kez yaz -tura atal m. k, kn at flta üstüste en az n kez tura gelme olas l olsun. k k (1) eflitsizliklerini kan tlamak istiyoruz. k flitsizli i elbette do ru. Birinci eflitsizli e bakal m. Ne ilk n at fl n, ne ikinci n at fl n,... ne de k inci n at fl n salt tura olma olas l a k dir. Dolay s yla bu kn at fltan birinde (ya birinci, ya ikinci,... ya da kinci n at fllardan birinde) salt tura gelme olas l 1 a k dir. Demek ki kn at flta üstüste n kez tura gelme olas l 1 a k say s ndan fazlad r. 136
7 Yani k k eflitsizli i geçerlidir. (1) i kan tlad k. 0 < <1 eflitsizliklerinden dolay, k sonsuza gitti inde k say s s f ra yak nsar 3 ve 1 k say s bire yak nsar: lim k k (1) eflitli inde k yi sonsuza götürürsek, 1 = lim k k lim k k elde ederiz ki, bu da, k sonsuza gitti inde, b k say lar n n 1 e yak nsad n gösterir. Demek ki at fl say m z yükseldikçe n kez ardarda tura atma olas l m z 1 e yak ns yor. Teoremimiz kan tlanm flt r. Yukardaki kan tta at lan paran n hilesiz oldu unu pek kullanmad k. Para hileli bile olsa, tura gelme olas l s f r de ilse, her n için, sonsuz yaz -tura at fl nda üstüste n kez tura gelme olas l 1 dir. Bunun kan t da aynen yukardaki teoremin kan t gibidir. 3 Bu olgu, kitab n Yak nsamak adl yaz s nda kan tlanm flt r. (Bkz. s.83.) 137
yaz -tura at yor. Yaz gelirse birinci oyuncu, tura gelirse ikinci oyuncu kazanacak. Birinci oyuncu oyunun bafl nda ortaya 1 lira koyuyor.
Sonlu Oyunlar B u kitapta s k s k oyunlar konu edece iz. Oyunlar sonlu ve sonsuz oyunlar diye ikiye ay raca z. Sonsuz oyunlar da ilerde ikiye ay raca z: Uygulamada sonsuza dek sürebilen ve süremeyen oyunlar.
Bu yaz girifle gereksinmiyor. Do rudan, kan tlayaca m z
Yoksulun fians Bu yaz girifle gereksinmiyor. Do rudan, kan tlayaca m z sonuca geçelim: Teorem. Yoksulun zengine karfl flans yoktur. Bu çok bilinen teorem i kan tlayabilmek için her fleyden önce önermeyi
Bir önceki yaz da, yaz -tura oyununda yoksulun zengine karfl
Zü ürt Tesellisi Bir önceki yaz da, yaz -tura oyununda yoksulun zengine karfl flans n n çok az oldu unu kan tlam flt k. Öyle ki, zengin sonsuz zengin oldu unda oyunu 1 olas l kla (yani yüzde yüz) kazanacakt
Yoksulun Kazanabildi i Bir Oyun
Yoksulun Kazanabildi i Bir Oyun B u yaz da yoksulu kazand raca z. Küçük bir olas l kla da olsa, yoksul kazanabilecek. Oyunu aç klamadan önce, Sonlu Oyunlar adl yaz m zdaki (sayfa 17) oyunu an msayal m:
Bu dedi im yaln zca 0,9 say s için de il, 0 la 1 aras ndaki herhangi bir say için geçerlidir:
Yak nsamak B u yaz da, ilerde s k s k kullanaca m z bir olguyu tan mlayaca z ve matemati in en önemli kavramlar ndan birine (limit kavram na) de inece iz. Asl nda okur anlataca m kavram sezgisel olarak
Oyunlar mdan s k lan okurlardan -e er varsa- özür dilerim.
Barbut Oyunlar mdan s k lan okurlardan -e er varsa- özür dilerim. Ne yapal m ki ben oyun oynamay çok severim. Birinci Oyun. ki oyuncu s rayla zar at yorlar. fiefl (6) atan ilk oyuncu oyunu kazan yor. Ve
256 = 2 8 = = = 2. Bu kez de iflik bir yan t bulduk. Bir yerde bir yanl fl yapt k, ama nerde? kinci hesab m z yanl fl.
Bölünebilme B ir tamsay n n üçe ya da dokuza tam olarak bölünüp bölünmedi ini anlamak için çok bilinen bir yöntem vard r: Say - y oluflturan rakamlar toplan r. E er bu toplam üçe (dokuza) bölünüyorsa,
Bir tan mla bafllayal m. E er n bir do al say ysa, n! diye yaz -
Saymadan Saymak Bir tan mla bafllayal m. E er n bir do al say ysa, n! diye yaz - lan say 1 2... n say s na eflittir. Yani, tan m gere i, n! = 1 2... (n-1) n dir. n!, n fortoriyel diye okunur. Örne in,
1/3 Nerde ya da Kaos a Girifl
1/3 Nerde ya da Kaos a Girifl K aos, matemati in oldukça yeni kuramlar ndan biridir. Kaos, kargafla anlam na gelen Yunanca kökenli bir sözcüktür. Kaos kuram n biraz aç klamaya çal flay m. fiöyle kuvvetlice
Bir tavla maç 5 te biter. Yani 5 oyun kazanan ilk oyuncu
Bir Tavla Sorusu Bir tavla maç 5 te biter. Yani 5 oyun kazanan ilk oyuncu tavla maç n kazan r. Kimi tavlac lar maç n 5-4 bitmesine raz olmazlar, aradaki fark n en az 2 olmas n isterler, 6-4, 7-5, 8-6 gibi...
Olas l k Hesaplar (II)
Olas l k Hesaplar (II) B ir önceki yaz daki örneklerde olay say s sonluydu. Örne in, iki zarla 21 olay vard. fiimdi olay say m z sonsuz yapaca z. Kolay bir soruyla bafllayal m: [0, 1] aral nda rastgele
Bu yaz da kuramsal olarak sonsuz, ancak uygulamada
Matematik Düyas, 2008-I E Basit Yaz -Tura Oyular Üzerie Ali Nesi* / aesi@bilgi.edu.tr, 3 0, 4, 3 3, 0, 4 0, 4, 3 3, 3, * stabul Bilgi Üiversitesi Matematik Bölümü ö retim üyesi. Yazar Matematik ve Oyu
Sevdi im Birkaç Soru
Sevdi im Birkaç Soru M atematikte öyle sorular vard r ki, yan t bulmak önce çok zor gibi gelebilir, sonradan -saatler, günler, aylar, hatta kimi zaman y llar sonra- yan t n çok basit oldu u anlafl l r.
Olas l k hesaplar na günlük yaflam m zda s k s k gereksiniriz.
Olas l k Hesaplar (I) Olas l k hesaplar na günlük yaflam m zda s k s k gereksiniriz. Örne in tavla ya da kâ t oyunlar oynarken. ki kap ya üstüste birkaç kez gele atmayan tavlac görmedim hiç. fianss zl
Saymak San ld Kadar Kolay De ildir
Saymak San ld Kadar Kolay De ildir B ir matematikçinin bir zamanlar dedi i gibi, saymas n bilenler ve bilmeyenler olmak üzere üç tür insan vard r Bakal m siz hangi türdensiniz? Örne in bir odada bulunan
Bu yaz da 6 mant k sorusu sorup yan tlayaca z.
Do ru Önermeler, Yanl fl Önermeler Bu yaz da 6 mant k sorusu sorup yan tlayaca z. Birinci Bilmece. Yarg ç karar verecek. Mahkeme tutanaklar ndan flu bilgiler ç k yor: E er A suçsuzsa, hem B hem C suçlu.
Bu bölümde eski iyis ralamalardan yenilerini elde etmeyi ö renece iz.
5. Eski yis ralamalardan eni yis ralamalar Türetmek Bu bölümde eski iyis ralamalardan yenilerini elde etmeyi ö renece iz. Basitten zora do ru gidece iz. 5.1. yis ralaman n Sonuna Bir Eleman Eklemek. Bu
Her noktas ya maviye ya k rm z ya boyanm fl bir düzlem
Renkli Noktalar Her noktas ya maviye ya k rm z ya boyanm fl bir düzlem önündeyiz. Baz noktalar maviye, baz noktalar k rm z - ya boyanm fl bir düzlem... Düzlemin sonsuz tane noktas n kim boyam flsa boyam
Do al say lar kümesi, yani {0, 1, 2, 3, 4,... } kümesi, toplama
Ç karma ve Kare Alma Alt nda Kapal Kümeler Do al say lar kümesi, yani {0, 1, 2, 3, 4,... } kümesi, toplama ve çarpma ifllemleri alt nda kapal d r; bir baflka deyiflle, iki do al say y toplarsak ya da çarparsak
Oyunumuz iki kifli aras nda ve n m boyutlu bir dikdörtgenin
Kimin Kazand Bilinen Ama Nas l Kazand Bilinmeyen Bir Oyun Oyunumuz iki kifli aras nda ve n m boyutlu bir dikdörtgenin içindeki larla oynan yor. Örne in, 5 3 boyutlu bir oyun, afla daki fleklin en solundan
Rastgele Bir Say Seçme ya da Olas l k Nedir
Rastgele Bir Say Seçme ya da Olas l k Nedir B irçok yaz mda olas l k sorusu sordum. Bu yaz mda soru sormayaca m, sadece olas l n matematiksel tan m n verece im. 1, 2, 3, 4, 5, 6, 7, 8 ve 9 say lar aras
Düello, herkesin bildi i üzere, iki kifli aras nda yap l r. Trielloyu
Triello Düello, herkesin bildi i üzere, iki kifli aras nda yap l r. Trielloyu 1 herkes bilmeyebilir... Triello üç kifli aras nda yap - l r, ya da oynan r..., B ve, triello yapacak üç kifli olsun. Önce,
Birkaç Oyun Daha Birinci Oyun.
Birkaç Oyun Daha B irinci Oyun. ki oyuncu flu oyunu oynuyorlar: Her ikisi de, birbirinden habersiz, toplam 9 olan üç do al say seçiyor. En büyük say lar, ortanca say lar ve en küçük say lar karfl laflt
Eski Yunan matematikçileri cetvel ve pergel yard m yla
Cetvelsiz de Olur! Eski Yunan matematikçileri cetvel ve pergel yard m yla yap lan çizimler çok ilgilendirirdi. Çünkü Eflatun a göre, do ru ve daire, geometrik flekiller aras nda mükemmel olan tek flekillerdi.
Bu yaz da, r yar çapl bir çemberin çevresinin neden 2 r, alan n n
Çemberin Çevresi, Dairenin Alan, nin De eri Bu yaz da, r yar çapl bir çemberin çevresinin neden 2 r, alan n n neden r 2 oldu unu görece iz. lkokuldan beri ezberletilen bu formüllerin kan tlar n merak etmemifl
Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi
25. Hausdorff Zincir Teoremi ve Zorn Önsav n n Kan t Tolga Karayayla Geçen bölümde, Zorn Önsav varsay larak yis ralama Teoremi ve yis ralama Teoremi varsay larak Seçim Aksiyomu kan tland. Bu bölümde önce
Bahçe Sorusu 1. Girifl. Daire biçiminde bir bahçeye, merkezden bafllayarak, birer metre aral klarla yatay ve dikey s ralanm fl fi-
Bahçe Sorusu 1 Girifl. Daire biçiminde bir bahçeye, merkezden bafllayarak, birer metre aral klarla yatay ve dikey s ralanm fl fi- 1. dan dikmeyi düflünüyoruz. Bahçenin merkezine fidan dikmeyece- iz. Soru
Üç Oyun Birinci Oyun.
Üç Oyun B irinci Oyun. Oyunumuz en az iki kifli aras nda oynan yor. Ne iskambil kâ d na ne kalem kâ da ne de bir tahtaya gereksinim var bu oyunu oynamak için. Yolda, otobüste, vapurda, sinemada, tiyatroda,
Hiç K salmadan K salan Yol
Hiç K salmadan K salan Yol ki metrelik bir yol, hiç uzay p k salmadan, bir metrelik bir yola dönüflebilir mi? u yaz da yan t n evet oldu unu görece- iz. ki metrelik bir yol, hepimizin gözleri önünde, bir
Üst Üçgensel Matrisler
Ders Notlar Üst Üçgensel Matrisler Ali Nesin / anesin@bilgi.edu.tr 1. Lineer Cebir Tekrar V, bir K cismi üzerine n > 0 boyutlu bir vektör uzay olsun. V nin K-vektör uzay olarak andomorfizmalar, V nin lineer
Xherhangi bir küme olsun. Mesela X olabilir (ama olmayabilir
53. Fonksiyon Dizilerinin Noktasal Yak nsamas Xherhangi bir küme olsun. Mesela Xolabilir (ama olmayabilir de). Her n do al say s için bir ƒ n : X fonksiyonu verilmifl olsun. O zaman her xxiçin ayr bir
Bu bölümde, bugüne dek ancak rüyalar n zda görece inizi
Ek 3. Sonsuz Küçük Eleman Bu bölümde, bugüne dek ancak rüyalar n zda görece inizi tahmin edece iniz bir numara gerçeklefltirece iz: 3/5, 7/9, 4/5 ve 3 gibi kesirli say lara bir eleman ekleyece iz. Miniminnac
Fermat Ne Biliyordu? (I)
Fermat Ne Biliyordu? (I) S on Teorem Teorem Oldu En Sonunda bafll kl yaz da, 350 y ll k bir aray fltan sonra ancak daha yeni kan tlanan Fermat n n Son Teoremi nden söz etmifltik. 350 y ll k bir aray fltan
Yak nsak diziler kümesini Y ile gösterelim. Bu bölümde Y
9. Yak nsak Dizilerle Dört fllem ve S ralama Yak nsak diziler kümesini Y ile gösterelim. Bu bölümde Y kümesinde toplama, ç karma, çarpma ve kimi zaman da bölme ifllemlerini yapabilece imizi gösterece iz.
4. yis ralamalar Hissetmek
4. yis ralamalar Hissetmek yis ralamay koyun s ralamaya benzetmek pek yanl fl olmaz. Sonsuz say da koyun da olsa, iyis ralanm fl bir koyun sürüsünde mutlaka birinci koyun olmal. kinci, üçüncü, dördüncü
Kesirli say dizileriyle çal flmaya devam ediyoruz. Geçmiflte
11. Kesirli Temel Diziler Kesirli say dizileriyle çal flmaya devam ediyoruz. Geçmiflte (henüz var olmayan) 2 ye yak nsamak isteyen bir kesirli say dizisi örne i verdik. E er 2 orada olsayd, bu dizi kesirli
Bu bölümde kan tlayaca m z teoremi, artan ve üstten s -
18. S rl ve Arta Diziler Bu bölümde ka tlayaca m z teoremi, arta ve üstte s - rl bir gerçel say dizisii üsts ra çarpmas a ramak kal r biçimide özetleyebiliriz. (Üsts r kavram Bölüm 19 da görece iz.) flte
Matematikte sonsuz bir s fatt r, bir ad de ildir. Nas l sonlu bir s fatsa, matematikte kullan lan sonsuz da bir s fatt r. Sonsuz, sonlunun karfl t d
Matematik ve Sonsuz G erek konuflma vermeye gitti im okullarda, gerek bana gelen okur mektuplar nda, ö renci ve ö retmenlerin matematikteki sonsuzluk kavram n pek iyi bilmediklerini gözlemledim. Örne in,
Hemen Hemen Her Sonlu Çizge Asimetriktir
Çizgeler Kuram Hemen Hemen Her Sonlu Çizge Asimetriktir Kayhan Zemin E er bir çizgenin özdefllik, yani Id fonksiyonundan baflka otomorfizmas yoksa, bu çizgeye denir. flte en küçük asimetrik çizge: Asimetrik
içinde seçilen noktan n birinci koordinat birincinin geldi i saati, ikinci koordinat ysa
Tuhaf Bir Buluflma O las l k kuram ilkokullarda bile okutulabilecek kerte basit ve zevklidir. ABD de kimi okullarda 9 yafl ndaki çocuklara bile okutuluyor olas l k kuram. Basit olas l k kuram n anlamak
Yan t Bilinmeyen Bir Soru
Yan t Bilinmeyen Bir Soru Ö nce yan t n dünyada kimsenin bilmedi i bir soru soraca- m, sonra yan t n dünyada kimsenin bilmedi i bu soru üzerine birkaç kolay soru yan tlayaca m. Herhangi bir pozitif do
Bundan sonra, alttan ikinci s ran n en sa ndaki çubu u so-
Matematikçi Hilesi M atematik bölümünün tam karfl s na yeni bir lokanta aç lm fl. Bana kal rsa kötü bir yer seçilmifl. Kaç kifli gider ki o lokantaya? Bizim bölümden baflka bir tek bina yok çevrede. Yak
Bir çekirge çok ama çok uzun bir yol üstünde. Çekirge öne
Çekirge Kaç S çrar ya da Rastgele Yürüyüfl Bir çekirge çok ama çok uzun bir yol üstünde. Çekirge öne ya da arkaya 1 metre s çrayabiliyor. Belli bir olas l kla öne, belli bir olas l kla arkaya s çr yor.
Bir önceki yaz da, n bir tek tamsay oldu unda n n sihirli
Sihirli Kareler (II) Bir önceki yaz da, n bir tek tamsay oldu unda n n sihirli karelerin nas l yap laca n ö renmifltik. Bu yaz da n nin çift oldu u n n boyutlu sihirli kareleri ele alaca z. Her zaman yapt
Dünya satranç flampiyonu Kasparov la bir el satranç oynayacak olsan z, yüzde yüz yenilece inizi önceden kestirebilirsiniz. Kasparov a karfl hemen
Pokerin Matemati i S atrançta bir oyuncunun bilip de öbür oyuncunun bilmedi i bilgi yoktur. Bu tür oyunlara aç k oyun diyelim, bilgiler aç k, ortada anlam na. Tavlada da bir oyuncunun bildi ini öbür oyuncu
1 Bu hamle d2 d4 müydü bu hamle acaba?
N M D oktora yapt m okulun en büyük odas toplumsal etkinliklere ayr lm flt. Bu odan n hemen yan nda küçücük bir çay oca vard. Matematikçiler çal flmaktan bunald klar nda, sohbet etmek istediklerinde o
Bu bölümde birkaç yak nsak dizi örne i daha görece iz.
19B. Yak sak Gerçel Dizi Örekleri Bu bölümde birkaç yak sak dizi öre i daha görece iz. Verdi imiz örekleri her biri hem kedi bafl a hem de kulla la yötem aç s da öemlidir. Örek 19B.1. lim 1/ = 1. Ka t:
En az enerji harcama yasas do an n en bilinen yasalar ndan
Gizli Duvarlar En az enerji harcama yasas do an n en bilinen yasalar ndan biridir. Örne in, A noktas ndan yay lan fl k B noktas na gitmek için sonsuz tane yol aras ndan en az enerji harcayarak gidece i
Topolojik Uzay. Kapak Konusu: Topoloji
Kapak Konusu: Topoloji Topolojik Uzay Geçen yaz da nin, ad na aç k dedi imiz baz altkümelerini tan mlad k ve bir fonksiyonun süreklili ini tamamen aç k kümeler yard m yla (hiç ve kullanmadan) ifade ettik.
14. Ordinallerde Çarpma fllemi
14. Ordinallerde Çarpma fllemi 14.1. Çarpman n Tan m Gene ilkokul y llar m zdan bafllayal m. lkokulda do al say lar n çarp m n nas l ö rendi inizi an msay n. 3 4 = 12 eflitli i için her biri içinde üç
Seks, yemek ve oyun do al zevklerdendir. Her memeli hayvan
Beyin Cimnastikleri (I) Seks, yemek ve oyun do al zevklerdendir. Her memeli hayvan hofllan r bunlardan. lk ikisi konumuz d fl nda. Üçüncüsünü konu edece iz. 1. lk oyunumuz flöyle: Afla daki dört kibrit
Afin ve zdüflümsel Düzlemler
Kapak Konusu: Geometrik Kombinatorik Afin ve zdüflümsel Düzlemler Selda Küçükçifçi* / skucukcifci@ku.edu.tr Oluflum Geometrisi. Do ru dendi inde akl m za dümdüz ve dosdo ru do rular gelir. flte birkaç
Bir (xn)n dizisinin (n sonsuza giderken) limitini tan mlam fl
48. Limit Bir (xn)n dizisinin (n sonsuza giderken) limitini tan mlam fl ve bu ders notlar n n oldukça uzun bir bölümünü bu kavrama ay rm flt k. Bu bölümde benzer bir limit kavram tan taca z. E er ƒ bir
Geçen bölümde, P1 ve P2 özelliklerini sa layan (, S, 0)
3. Do al Say larda Toplama, Çarpma ve S ralama Geçen bölümde, P1 ve P2 özelliklerini sa layan (, S, 0) matematiksel yap s n n varl n kan tlam flt k. An msayal m: bir kümedir. 0, kümesinin bir eleman d
Önsav 1. Her fley yukardaki gibi olsun. {ƒ 1 (V) g 1 (W) : V X, W Y, V ve W aç k}
Kapak Konusu: Topoloji Çarp m Topolojisi Bu yaz da topolojik uzaylar n kartezyen çarp m n do al bir topolojik uzay yap s yla donataca z. E er ve topolojik uzaylarsa, üzerine en do al topolojik yap, herhalde,
Tafl Eksiltme Oyunlar Ali Nesin /
Tafl Eksiltme Oyunlar Ali Nesin / anesin@bilgi.edu.tr Birinci Oyun. Oyunumuz en az iki kifli aras nda oynan yor. Ne iskambil kâ d na ne kalem kâ- da ne de bir tahtaya gereksinim var bu oyunu oynamak için.
Okurun bir önceki bölümü okudu unu ve orada ortaya
23. Zorn Önsav ve Birkaç Sonucu Okurun bir önceki bölümü okudu unu ve orada ortaya konulan sorunu anlad n varsay yoruz. O bölümde ele ald m z ama pek baflar l olamad m z kan tlama yönteminden, yani bir
Pokerin Matemati i Ali Nesin* /
Kapak Konusu: Sayma Pokerin Matemati i Ali Nesin* / anesin@bilgi.edu.tr Bu yaz da pokeri bahane ederek sayman n temellerini ele alaca z. Poker, en fazla dört oyuncuyla ve yediliden asa 3 iskambil kâ d
Sonlu bir kümenin eleman say s n n ne demek oldu unu
30. Cennete Hoflgeldiniz! Sonlu bir kümenin eleman say s n n ne demek oldu unu herkes bilir. Örne in, {0, 2, 6, 7, 13} kümesinin 5 eleman vard r. Bu say m z n kapak konusunda, sonsuz bir kümenin eleman
22. Zorn Önsav na Girifl
22. Zorn Önsav na Girifl 22.1. mkâns z Bir Problem mkâns z bir problemle bafllayal m: Gerçel say lar kümesi nin maksimal bir sonlu altkümesini bulmaya çal flal m... Do ru anlad n z! Dedi imiz gibi imkâns
Dördüncü K s m: Gerçel Say lar Yap s
Dördüncü K s m: Gerçel Say lar Yap s 331 13. Gerçel Say lar Kümesi Nihayet gerçel say lar tan mlayaca z. Bir sonraki bölümde gerçel say lar üzerine dört ifllemi ve s ralamay tan mlay p bunlar n özelliklerini
Bir oteliniz var. Otelinizin sonsuz say da odas var. Her odan n
Sonsuz Odal Otel 1 Bir oteliniz var Otelinizin sonsuz say da odas var Her odan n bir numaras var: 1, 2, 3, 4, 5, 6, Böylece sonsuza kadar gidiyor En sonuncu oda yok Sonsuz numaral oda da yok Her odan n
Bu bölümde okuru Seçim Aksiyomu nun neden do al bir
20. Seçim Aksiyomu Neden Do ald r? Bu bölümde okuru Seçim Aksiyomu nun neden do al bir aksiyom oldu una ikna etmeye çal flaca z. Bu bölüm de okuru ikna etmezse hiçbir fley etmez! Ç k fl noktam z Bertrand
Hilbert in Program ve Gödel in Teoremleri
Hilbert in Program ve Gödel in Teoremleri M atematikçi bir arkadafl m n efli güle güle anlatt. Befl yafl ndaki o luna babas n n bahçede ne yapt n sormufl. Çocuk bahçeye ç k p bir de bakm fl ki, baba, bir
Bilgisayar Bilimi Köflesi
Bilgisayar Bilimi Köflesi Chris Stephenson ve Ali Nesin* cs@cs.bilgi.edu.tr, anesin@bilgi.edu.tr Say lar Tepeleyerek S ralamak S ralama. Bilgisayar programc l n n en önemli konular ndan biri s ralamad
Cemal Amca n n Zarlar
Cemal Amca n n Zarlar B aflkomiserlikten emekli alt kat komflumuz Cemal Amca tavlaya çok düflkündü. Emekli olmazdan önce haftasonlar n bahçede tavla oynayarak geçirirdi. Hafta içindeyse haftasonunu iple
Yoksulun Kazanabildiği Bir Oyun Ali Nesin
Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu
11. Limit Ordinaller ve Ordinallerde Tümevar m lkesi
11. Limit Ordinaller ve Ordinallerde Tümevar m lkesi yis ral kümelerde tümevar mla kan tlama yönteminden 6 nc bölümde sözettik. O bölümde flu teoremi kan tlad k: yis ralamalarda Tümevar m lkesi [Teorem
Üçgenin çemberleri deyince akla ilk gelen üçgenin
atematik ünyas, 2005 K fl Geometri Köflesi ustafa a c / yagcimustafa@yahoo.com www.mustafayagci.com okuz okta (ya da euerbach) Çemberi Üçgenin çemberleri deyince akla ilk gelen üçgenin çevrel çemberi ve
Tavla ve Bilimsel Düflünce
Tavla ve Bilimsel Düflünce Y llar önce çok satan bir gazetemiz Türkiye Tavla fiampiyonas düzenlemiflti. Bizde tavlac çok. fl yerlerinde bile tavla oynan r ülkemizde. Bile ine güvenen kat ld flampiyonaya.
Bu yaz da, basitlefltirilmifl birkaç poker oyunu oynayaca z.
Blöfün Matemati i Bu yaz da, basitlefltirilmifl birkaç poker oyunu oynayaca z. Yaz y anlamak için poker bilmeye gerek yoktur. Oyunlar - m z iki kifli aras nda ve as ve papazdan oluflan büyük bir desteyle
Matematik bölümlerinin birinci s -
Kapak Konusu: Analizden Konular Harmonik Serinin Iraksakl lham Aliyev* / ialiev@akdeniz.edu.tr Ayhan Dil* / adil@akdeniz.edu.tr Matematik bölümlerinin birinci s - n flar na okutulan analiz derslerinde,
Bu ay n konusu olan problem Amerika da baya heyecan
fiapka Problemi Bu ay n konusu olan problem Amerika da baya heyecan yaratm fl. Hatta Amerika n n en sayg de er gazetelerinden biri olarak kabul edilen The New York Times ta uzun bir yaz ya konu olmufl.
Say lar ve mgelem Gücü
Say lar ve mgelem Gücü lk insanlar n say lar bulmas kolay olmam flt r kuflkusuz. Bulunan ilk nicelik kavramlar az ve çok olmal. Daha sonra iki yi bulmufl olmal lar. Bir say s, iki bulunduktan sonra bulunabilir
Koninin Düzlemlerle Kesiflimi Selçuk Demir* / sdemir@bilgi.edu.tr
apak onusu: oncelet Teoremleri oni. Uzayda birbirini 0 < < 90 derecede kesen iki de iflik a ve do rusu alal m. Do rulardan birini di erinin etraf nda, diyelim a y nin etraf nda oluflturduklar aç s n bozmadan
Bu bölümde, içinde hem limiti hem de sonsuzlar bar nd ran
51. Limitler ve Sonsuzlar Bu bölümde, içinde hem limiti hem de sonsuzlar bar nd ran kavramlardan söz edece iz. Örne in lim ƒ() = b, lim a ƒ() = b ve lim ƒ() = gibi eflitliklerin matematiksel anlamlar n
Bilindi i gibi, günümüzün matemati i biçimsellefltirilebilir.
Matematikte Biçim ve Sezgi Üzerine Bilindi i gibi, günümüzün matemati i biçimsellefltirilebilir. Yani öyle bir yaz l m (bilgisayar program ) yap labilir ki, bir kan t n do ru olup olmad bilgisayara sorulup
Kümeler toplulu unun bir küme olamayaca n Bertrand
9. Ordinallerin fllevi Kümeler toplulu unun bir küme olamayaca n Bertrand Russell Paradoksu ndan biliyoruz [SKK]. Küme olmayan bir fleye küme diyemeyece imize göre, tüm kümeler toplulu una bir baflka ad
Amerika Birleflik Devletleri nde dikkatimi ilk çeken her fleyin
Dünyan n En Zeki nsan Matematikçilere Karfl Amerika Birleflik Devletleri nde dikkatimi ilk çeken her fleyin büyüklü ü oldu. Arabalar, binalar, Coca Cola lar, al flverifl merkezleri, insanlar... Her fley
Yalanc n n Hakk ndan Gelmek!
Yalanc n n Hakk ndan Gelmek! A c d r söylemesi, bunca ülke gördüm, bunca insan tan d m, ülkemde gördü üm kadar çok yalanc y hiçbir yerde görmedim. Do u ya az gittim, ama Bat da gitmedi im yer kalmad desem
11. SINIF KONU ANLATIMLI. 2. ÜNİTE: KUVVET ve HAREKET 3. Konu TORK, AÇISAL MOMENTUM ve DENGE ETKİNLİK ve TEST ÇÖZÜMLERİ
11. SINIF ONU ANAIMI 2. ÜNİE: UVVE ve HAREE 3. onu OR, AÇISA MOMENUM ve DENGE EİNİ ve ES ÇÖZÜMERİ 2 2. Ünite 3. onu ork, Aç sal Momentum ve Denge A n n Yan tlar 1. Çubuk dengede oldu una göre noktas na
Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı. ALES / Đlkbahar / Sayısal II / 22 Nisan 2007. Matematik Soruları ve Çözümleri
Akademik Personel ve Lisansüstü Eğitimi Giriş Sınavı ALES / Đlkbahar / Sayısal II / Nisan 007 Matematik Soruları ve Çözümleri 1. 3,15 sayısının aşağıdaki sayılardan hangisiyle çarpımının sonucu bir tam
Gerçekten Asal Var mı? Ali Nesin
Bu yazıda hile yapıyorum... Bir yerde bir hata var. Gerçekten Asal Var mı? Ali Nesin K endinden ve birden başka sayıya bölünmeyen a asal denir. Örneğin, 2, 3, 5, 7, 11, 13, 17, 19 asal dır. Ama 35 asal
Thomas Hare adl bir ngiliz 1860 larda güzel bir seçim sistemi
Bu Ne Biçim Seçim 1 Thomas Hare adl bir ngiliz 1860 larda güzel bir seçim sistemi bulmufl 2. Demek ki ngilizler o zamanlar bir yandan sömürüyor, öte yandan demokrasi üzerine araflt rma yap yorlarm fl.
Kavram Dersaneleri 8 SAYILAR - I ÖRNEK 23: ÖRNEK 24: a, 5 ve 6 say taban n göstermek üzere, (123) + (1a2) = (2b2) eflitli inde. b kaçt r?
ÖRNEK 3: x y y Bölme ifllemine göre x en az kaçt r? A) 6 B) 9 C) D) 4 E) 4 ÖRNEK 4: a, ve 6 say taban n göstermek üzere, (3) + (a) = (b) eflitli inde a 6 b kaçt r? A) 0 B) C) D) 3 E) 4 ÇÖZÜM 4: ÇÖZÜM 3
BİR SAYININ ÖZÜ VE DÖRT İŞLEM
ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.
Bölüm 1C de 0, 1, 2, 3, 4, 5, 6 ve 7 say lar n tan mlad k.
2. Do al Say lar Yap s Bölüm 1C de 0, 1, 2, 3, 4, 5, 6 ve 7 say lar n tan mlad k. Ama, her say y teker teker tan mlamaya zaman m z yok. Bu yaklafl mla say lar n sonunu getiremeyiz... Demek ki baflka bir
MATEMAT K. Hacmi Ölçme
Hacmi Ölçme MATEMAT K HACM ÖLÇME Yandaki yap n n hacmini birim küp cinsinden bulal m. Yap 5 s radan oluflmufltur. Her s ras nda 3 x 2 = 6 birim küp vard r. 5 s rada; 5 x 6 = 30 birim küp olur. Bu yap n
ZARLARLA OYNAYALIM. Önden = = + = Arkadan = = + + = = + + =
ZARLARLA OYNAYALIM Zar kullanarak toplama ve ç karma ifllemleri yapabiliriz. Zarda karfl l kl iki yüzdeki say lar n toplam daima 7 dir. Zarda 2 gözüküyorsa karfl s ndaki yüzeyin 7 2 = 5 oldu unu bulabilirsiniz.
TEST Levhan n a rl G olsun. G a rl n n O F 1 TORK (KUVVET MOMENT ) - DENGE
R (UVVE MME ) - DEE ES -... evhalar dengede oldu una göre, desteklerin oldu u noktalara göre moment al n rsa,...... oldu u görülür. CEVA B d d d d. ucuna göre moment cambaz den ye giderken momenti azald
mayan, kimileyin aç klay c, kimileyin biraz daha ileri seviyede ve daha ilgili ve merakl ö renci için yaz lm fl olan di er bölümlerin bafl na 3A, 4C
Önsöz Bu ders notlar, 1995 ten beri stanbul Bilgi Üniversitesi nde birinci s n f matematik ö rencilerine verdi im derslerden ortaya ç kt ve matemati i derinli i ve felsefesiyle ö renmek isteyen, çal flmaktan
NİM Ali Nesin. 1 d2 d4 müydü bu hamle acaba?
NİM Ali Nesin D oktora yaptığım okulun en büyük odası toplumsal etkinliklere ayrılmıştı. Bu odanın hemen yanında çay ve kahve ocağı vardı. Matematikçiler çalışmaktan bunaldıklarında, sohbet etmek istediklerinde
YGS Soru Bankas MATEMAT K Temel Kavramlar
9. 7 = 3.3.3, 07 = 3.3.3 007 = 3.3.3, 0007 = 3.3.3,... Yukar daki örüntüye göre, afla daki say lar n hangisi 81'in kat d r? A) 00 007 B) 0 000 007 C) 000 000 007 D) 00 000 000 007 13. Ard fl k 5 pozitif
ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler
ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir
KES RLER. Bunlar biliyor musunuz? Bütün bir fleyin bölündü ü iki eflit parçadan her biri. Tam, bölünmemifl fley. Bütün elma gibi.
KES RLER Bunlar biliyor musunuz? Bütün: Tam, bölünmemifl fley. Bütün elma gibi. Yar m: Bütün bir fleyin bölündü ü iki eflit parçadan her biri. Kesir: Bir bütünün bölündü ü eflit parçalar n birini veya
GEOMETR 7 ÜN TE II P RAM T
ÜN TE II P RAM T 1. P RAM TLER N TANIMI. DÜZGÜN P RAM T a. Tan m b. Düzgün Piramidin Özelikleri. P RAM D N ALANI a. Düzgün Olmayan Piramidin Alan b. Düzgün Piramidin Alan 4. P RAM D N HACM 5. DÜZGÜN DÖRTYÜZLÜ
2 onluk + 8 birlik + 4 onluk + 7 birlik 6 onluk + 15 birlik = 7 onluk + 5 birlik =
DO AL SAYILARLA TOPLAMA filem Bir k rtasiyede 35 tane hikâye kitab, 61 tane masal kitab vard r. K rtasiyedeki hikâye ve masal kitaplar toplam kaç tanedir? Bu problemin çözümünü inceleyelim: 35 tane hikâye,
OYUNCU SAYISI Oyun bir çocuk taraf ndan oynanabilece i gibi, farkl yafl gruplar nda 2-6 çocuk ile de oynanabilir.
OYUNCA IN ADI Akl nda Tut YAfi GRUBU 4-6 yafl OYUNCU SAYISI Oyun bir çocuk taraf ndan oynanabilece i gibi, farkl yafl gruplar nda 2-6 çocuk ile de oynanabilir. GENEL KURALLAR Çocuklar n görsel belle inin
CO RAFYA. DÜNYA NIN fiekl N N VE HAREKETLER N N SONUÇLARI ÖRNEK 1 :
CO RAFYA DÜNYA NIN fiekl N N VE HAREKETLER N N SONUÇLARI ÖRNEK 1 : K rk nc paralel üzerindeki bir noktan n hangi yar mkürede yer ald afla dakilerin hangisine bak larak saptanamaz? A) Gece-gündüz süresinin
GEOMETR 7 ÜN TE III S L ND R
ÜN TE III S L ND R 1. S L ND R K YÜZEY VE TANIMLAR 2. S L ND R a. Tan m b. Silindirin Özelikleri 3. DA RESEL S L ND R N ALANI a. Dik Dairesel Silindirin Alan I. Dik Dairesel Silindirin Yanal Alan II. Dik