ELEKTRİKSEL İLETKENLİK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTRİKSEL İLETKENLİK"

Transkript

1 ELEKTRİKSEL İLETKENLİK Pek çok uygulamada malzemelerin elektriksel davranışı mekanik davranışlarından daha önemlidir. -Uzun mesafelere akım ileten metal tel, ısınma sonucu oluşan güç kaybını azaltmak için yüksek bir elektrik iletkenliğe sahip olmalıdır. -Seramik yalıtkanlar, iletkenler arasındaki arkı önlemelidir. -Güneş enerjisini elektriksel güce dönüştürmek için kullanılan yarıiletken cihazlar, güneş hücreleri uygulanabilir alternatif bir enerji kaynağı yapmak için mümkün olduğu kadar etkin olmalıdır. 1

2 Elektrik ve elektronik uygulamalar için malzeme seçmek ve kullanmak elektrik iletkenliği gibi özelliklerin nasıl üretildiğinin ve denetlendiğinin anlaşılmasını gerektirir. Elektriksel davranış, malzeme yapısından, malzemenin işlenişinden ve malzemenin maruz kaldığı çevreden etkilenir. Bu nedenle malzemelerin atomik yapı ve elektronik düzenlerinin iyi bilinmesi, temel elektrik yasalarının hatırlanması gerekmektedir.

3 Pozitif yüklü parçacıklar alan doğrultusunda, negatif yüklü partiküller ise ters yönde ivmelenirler. Çoğu katı malzemelerde, akım elektronların akışından kaynaklanır ve bu durum elektronik iletkenlik olarak, İyonik malzemelerde ise akım, yüklü iyonların hareketiyle oluşur ve bu olay iyonik iletkenlik olarak adlandırılır.

4 YÜK TAŞIYICILAR Metallerde; serbest elektronlar negatif kutuptan pozitif kutba doğru hareket eden (-) yük taşıyıcılardır. Yarıiletkenlerde; elektriksel alan etkisi ile kopan elektron pozitif kutba hareket eden (-), elektron eksilmesinden oluşan elektron boşlukları pozitif kutba hareket eden (+) yük taşıyıcılardır. İyonik bileşiklerde; + yüklü iyon negatif kutba hareket eden (+) yük taşıyıcı, - yüklü iyon pozitif kutba hareket eden (-) yük taşıyıcıdır. Elektron Elektron boşluğu +yüklü iyon ve -yüklü iyon olmak üzere dört tür yük taşıyıcı vardır.

5 Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Geçen akım şiddeti I, malzemenin direnci R ve tatbik edilen voltaj (V) arasındaki ilişki, ohm kanununa göre; V =I.R Burada, V (gerilim farkı) : volt (V), I (elektrik akımı) : amper (A) ve R (telin direnci) : ohm (Ω) dur.

6 Bir malzemenin direnci onun karakteristiğine bağlıdır. Örneğin Cu tel aynı kesit ve uzunluktaki demir tele oranla daha düşük bir dirence sahiptir. Bu fark ohm kanununa ilave edilerek özdirenç ( ) elde edilir. (ohm.m 2 /m= ohm.m) Burada; l = iletkenin boyu, m, A = iletkenin kesit alanı, m 2, ρ = iletkenin özdirenci, ohm.m Bir malzemeyi içinden geçen elektrik akımına karşı direnç gösteren değilde; iletken olarak düşünmek daha doğrudur. İletkenlik özdirencin tersine eşittir. 1 (ohm.m) -1 Elektrik iletkenliğinin birimi (ohmmetre) -1 = (Ω.m) -1 dir. SI biriminde ohm un tersi siemens tir. 6

7 Bu iki eşitlikten ohm kanunun ikinci biçimi elde edilir 7

8

9 Özgül iletkenlik, 1 cm 3 te bulunan yük taşıyıcı sayısı ile orantılıdır. n.q. n: 1cm 3 te bulunan yük taşıyıcı sayısı q: birim elektrik yük (kulon, Amper.sn) µ:elektriksel yük taşıyıcıların iletken ortamdaki hareket yeteneği (cm 2 /volt.sn) E elektrik alan içinde belli bir akış (sürüklenme) hızına ulaşan yük taşıyıcılar malzemedeki atomların ısıl titreşimleri, yapı hataları ile tanımlanır. Kesit alanı A olan malzemede l uzunluğu içinde tüm yük taşıyıcılar bir yüzden diğer yüze hareket eder ve akım yoğunluğu (J); J n.q. E olduğundan;.e. E J= n.q. = elde edilir. Pratikte iletkenlik ve öz direnç malzemenin kesit alanı ve malzeme uzunluğu ile kullanılır. 9

10 Hareketlilik (µ), atomik bağa, kafes düzensizliklerine, mikroyapıya ve iyonik bileşiklerde difüzyon hızına bağlıdır.

11 11

12 Soru 1: 50 A akımın geçtiği 1500 m uzunluğundaki bir Cu iletim hattındaki güç kaybını hesaplayınız? Cu telin çapı 1mm ve özdirenci Ωm dir. Güç=V.I=I 2.R Soru 2: Bakırda elektronların hareketliliğini (µ) hesaplayınız? (Bütün valans elektronlarının akım geçmesine katkıda bulunduğu kabul edilecek) q= C (Amper.s), a Cu = m Soru 3: 10 V uygulanan 1 m uzunluğunda Cu teldeki elektronların ortalama sürüklenme hızını bulunuz? Cu elektronlarının hareketliliği µ= m 2 /Ώ.C (m 2 /V.s) Soru 4: 110 volt ve 660 Watta çalışabilecek bir doğru akım ısıtıcısı yapılmak isteniyor. Bu ısıtıcı için 0.254cm çapında mikro.ohm.cm özdirençli kromel telden ne uzunlukta kullanmak gerekir? 12

13

14 Elektron teorileri genel olarak; Elektron gaz teorisi Serbest elektron teorisi Elektron band teorisi olarak 3 grupta incelenebilir. -Elektron gaz teorisinde elektronların tıpkı gaz atomları gibi davranarak, -Serbest elektron teorisinde elektronların katı içerisinde serbest olarak hareket ederek, -Band teorisinde ise elektronların katı içerisinde belli enerji seviyelerinde bulundukları ve seviyelerini değiştirme sureti ile iletkenliği sağladıkları esas alınmaktadır. 14

15 Enerji Seviyeleri ve Bant Yapıları Elektronlar, atom çekirdeği etrafında belirli yörüngeler boyunca sürekli dönmektedir. Bu hareket, dünyanın güneş etrafında dönüşüne benzetilir. Hareket halindeki elektron, Çekirdeğin çekme kuvveti ve Dönme hareketi ile oluşan merkezkaç kuvvetinin etkisi ile yörüngesinde kalmaktadır. Enerji Seviyeleri Hareket halinde olması nedeniyle her yörünge üzerindeki elektronlar belirli bir enerjiye sahiptir. Eğer herhangi bir yolla elektronlara, sahip olduğu enerjinin üzerinde bir enerji uygulanırsa, ara yörüngedeki elektron bir üst yörüngeye geçebilir. Valans elektrona uygulanan enerji ile de elektron atomu terk edebilir. Valans elektronun serbest hale geçmesi, o maddenin iletkenlik kazanması demektir.

16 Valans elektronlara enerji veren etkenler: -Elektriksel etki -Isı etkisi -Işık etkisi -Elektronlar kanalıyla yapılan bombardıman etkisi -Manyetik etki Ancak, valans elektronları serbest hale geçirecek enerji seviyeleri malzeme yapısına göre şöyle değişmektedir: İletkenler için düşük seviyeli bir enerji yeterlidir. Yarı iletkenlerde oldukça fazla enerji gereklidir. Yalıtkanlar için çok büyük enerji verilmelidir. 16

17 Bant Yapıları Valans bandı enerji seviyesi: Her malzemenin, valans elektronlarının belirli bir enerji seviyesi olup; buna valans bandı enerjisi denir. İletkenlik bandı enerji seviyesi Valans elektronunu atomdan ayırabilmek için verilmesi gereken bir enerji olup; iletkenlik bandı enerjisi olarak tanımlanır. İletkenlerde iletim için verilmesi gereken enerji: İletkenlerin, valans bandı enerji seviyesi ile iletkenlik bandı enerji seviyesi bitişiktir. Bu nedenle verilen küçük bir enerjiyle, pek çok valans elektron serbest hale geçmektedir. 17

18 Yarıiletkenlerde iletim için verilmesi gereken enerji: Yarıiletkenlerin valans bandı ile iletkenlik bandı arasında belirli bir boşluk bandı bulunmaktadır. Yarı iletkeni, iletken hale geçirebilmek için valans elektronlarına, boşluk bandınınki kadar ek enerji vermek gerekir. Yalıtkanlarda iletim için verilmesi gereken enerji: Yalıtkanlarda ise, oldukça geniş bir boşluk bandı bulunmaktadır. Yani elektronları, valans bandından iletkenlik bandına geçirebilmek için oldukça büyük bir enerji verilmesi gerekmektedir.

19 a) Yalıtkan b) Yarıiletken c) İletken Bant-enerji diyagramları Uygulamada malzemeler özdirençlerine veya iletkenliklerine göre; iletkenler, yarıiletkenler ve yalıtkanlar olarak 3 gruba ayrılırlar.

20

21

22 Örneğin Na metali, Atom numarası 11 dir ve elektronik konfigürasyonu 1 s 2 2s 2 2p 6 3s 1 dir. Atom sayısının artışı ile enerji seviyeleri bantlar haline genişler

23 Elektronlar Elektronlar çekirdeğin etrafında, 0,05-2 nm yarıçapındaki yörüngelerde bulunurlar. Bohr atom teorisine göre elektronlar, çekirdek etrafında belirli yarıçaptaki dairesel yörüngelerde dönerler. Her yörüngedeki elektronun belirli bir enerjisi vardır(-). Enerji çekirdekten uzaklaştıkça artar ve sonsuzda enerji sıfır olur. Dalga mekaniği teorisine göre ise, elektronların kesin yörüngeleri yoktur, sadece belirli noktalardan geçme ihtimalleri hesaplanabilir. Ayrıca elektronlar hem parçacık, hem de dalga özelliği gösterirler. 23

24 Buna karşılık, elektronların sadece belirli enerjilere sahip olabileceği (kuvantumlaşma) ve bir enerji düzeyinde en fazla iki elektron bulunabileceği (Pauli prensibi) her iki teori tarafından da kabul edilmektedir. Birbirlerine yakın olan enerji düzeyleri bir alt kabuğu, birbirlerine yakın alt kabuklar da bir ana kabuğu oluştururlar. En dış ana kabuktaki elektronlara valans elektronları denir. Bunlar çekirdeğe zayıf olarak bağlıdırlar ve söz konusu elementin özelliklerini belirtmekte büyük rol oynarlar. Bir ana kabukta 8 elektronun biraraya gelmesi, yani p alt kabuğunun dolması halinde, bu elektronlar çekirdeğe çok kuvvetli bağlanır, bir diğer deyişle kapalı kabuk oluştururlar. 24

25 Elektron enerji düzeyleri Elektronlar belirli enerjilere sahiptir. Belirli sayıda enerji düzeyi birleşerek enerji kabuklarını (bantlarını) oluştururlar. Atomların en dış kabuğundaki elektronlar valans elektronlarıdır. 25

26 Atomun Elektronik Yapısı Elektronlar atom içinde farklı enerji seviyelerine sahiptir. Her elektron belirli bir enerjiye sahiptir ve bir atomda aynı enerji seviyesine sahip 2 den fazla elektron bulunamaz. Bu da her elektron arasında kesin bir enerji farkının bulunduğunu gösterir. Kuantum sayıları, her elektronun ait olduğu enerji seviyelerini ayırmak için kullanılır. Dört kuantum sayısı vardır; 1. temel kuantum sayısı (n), 2. azimuthal kuantum sayısı (l), 3. magnetik kuantum sayısı (m l ) ve 4. spin kuantum sayısı (ms) dir. Muhtemel enerji seviyeleri sayısı üç kuantum sayısı ile belirlenir. (Atom çekirdeğinin çevresinde 7 tane yörünge vardır ve atomların tüm yörüngelerinde bulunabilecek en fazla elektron sayısı matematiksel bir formülle belirlenmiştir: 2n 2. (formüldeki "n" harfi, yörünge numarasını belirtir) 26

27 1.Temel (Birincil) Kuantum Sayısı : n ile gösterilir. { 1, 2, 3, 4.. n } Elektronun ana enerji seviyesini gösterir ve aynı zamanda ana kabuk olarak da adlandırılır ve her bir ana kabuk K, L, M, N, O, P, Q harfleri ile tanımlanarak belirli sayıda elektron bulundururlar. Elektronlar bir elektron kabuğu içerisinde en düşük enerji seviyesine sahip yörüngeleri doldurma eğilimi taşırlar. n=1=k kabuğu, 2 elektron n=2=l kabuğu, toplam 8 e n=3=m kabuğu, toplam 18 e n=4=n kabuğu, toplam 32 e n=5=o kabuğu, toplam 50 e n=6=p kabuğu, toplam 72 e n=7=q kabuğu, toplam 98 e bulunabilir. 27

28 2. Azimuthal (İkincil) Kuantum Sayısı: l ile gösterilir. {0,1, 2 n-1} l = n-1 Atom çekirdeği etrafındaki elektronların bulunduğu her bir ana kabuk, bir elektron bulutu şeklindedir. Bu kabuk içerisinde farklı enerji seviyelerine sahip ve elektronların hareket ettiği yörüngeler vardır. Bu yörüngeler ikincil kuantum sayısı (l) olarak ifade edilirler. İkincil kuantum sayısının değeri, birincil kuantum sayısının değerine bağlı olup, (n-1) ile bulunur ve dolayısıyla 0, 1, 2, 3 olarak belirlenir. Genellikle l=0 yerine s harfi, l=1 yerine p harfi, l=2 yerine d harfi, l=3 yerine f harfi kullanılır. Her bir s, p, d, f yörüngelerinde belirli sayıda elektron bulunabilir. s yörüngesinde 2 elektron p yörüngesinde 6 elektron, d yörüngesinde 10 e ve f yörüngesinde 14 adet e bulunabilir. 28

29 3. Manyetik Kuantum Sayısı:(m l ) ile gösterilir. (m l ) = 2l+1 Manyetik kuantum sayısı bir manyetik alanın etkisinde kalan yörüngelerin, uzaydaki farklı doğrultulardaki hareket biçimini tayin eder. Yörüngelerin sahip olduğu enerji seviyesi yükseliyorsa ml (+), azalıyorsa ml (-) değer alır. Manyetik alan etkileşimi olmadığı zaman sıfır değerindedir. Her azimuntal kuantum sayısı için enerji seviyeleri veya orbital sayısını verir. Değerler l ile +l arasındaki tüm sayıları içerir Örnek: l=2 için manyetik kuantum sayılarını yazınız? (ml) = 2l+1 = (2*2)+1= 5 (ml)={-2,-1,0,1,2} 29

30 4. Spin (Dönme) Kuantum Sayısı: (m s ) ile gösterilir. Pauli dışlama prensibine göre bir yörünge zıt elektronik dönmeli ikiden fazla elektron bulunduramaz. Elektronlar kendi ekseni etrafında biri saat yönünde diğeri ters yönde olmak üzere 2 farklı dönme yönüne sahiptir. Dönme kuantum sayısı farklı spinleri belirleyebilmek için +1/2 ve -1/2 değerlerini alır. Her enerji kabuğundaki max. elektron sayısı Tablodaki şablon kullanılarak gösterilir. 30

31 Kuantum Sayıları (Özet) n = baş kuantum sayısı, ortalama yarıçap, enerji seviyelerini belirler n = 1, 2, 3, 4, 5, 6, 7 KABUKLAR l = açısal momentum kuantum sayısı, orbitallerin şeklini belirler l = 0, 1, 2, 3, 4, 5 (n 1) s p d f g h ALTKABUKLAR m = manyetik kuantum sayısı, l nin z bileşeni, yönelmeleri belirler m = 0, ± 1, ± 2, ± 3.. ORBİTALLER

32 1S 2S 2P 3S 3P

33 Belli bir kuantum kabuğunda en düşük enerji seviyesine düşen elektronlar s ile gösterilir. Dolayısıyla 1s 2 birinci kuantum kabuğunda yani K kabuğunda düşük enerji seviyelerindeki zıt manyetik dönüşlü iki elektronu gösterir. 2s 2 işaretinin gösterdiği iki elektron ikinci kuantum kabuğunun (L kabuğu) en düşük enerji seviyesinde olanlardır. Bir kabuğun s enerji seviyesinde bulunabilecek elektron adedi en çok 2 dir. Germanyumun elektronik yapısı; 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 Valans: Bir atomun valansı, atomun diğer bir elementle kimyasal bileşime girme yeteneği ile ilişkilidir, ve genellikle kombine edilmiş sp seviyesinin en dıştaki elektron sayısı ile belirlenir. Mg: 1s 2 2s 2 2p 6 [3s 2 ] Valans: 2 Al: 1s 2 2s 2 2p 6 [3s 2 3p 1 ] Valans:3 Ge: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 [4s 2 4p 2 ] Valans:4 33

34 Dış Yörüngedeki elektronlar atomun elektriksel, kimyasal, ısıl özelliklerini belirler. Tablo: Kuantum sayılarının gösterimi 1. Kuantum sayısı (n) 2. Kuantum sayısı (l) 3. Magnetik Kuantum sayısı (m l ) 4. Spin Kuantum sayısı (m s ) Alt yörünge yerleşimi ±1/2 1s , 0, 1 0-1, 0, 1-2, -1,0, 1,2 ±1/2 2s 2p ±1/2 3s 3p 3d 34

35 35

36 Atomlararası mesafenin nispeten büyük olduğu durumlarda, her bir atom diğerlerinden bağımsızdır ve izole bir atomda olduğu gibi, atomik enerji seviyeleri ve dizilişine sahiptir. Ancak atomların bir başka atoma çok yaklaşması durumunda, komşu atomun elektronları ve çekirdeği tarafından etkilenir. Bu etkiyle, katıda her bir atom konumu, birbirlerine çok kısa mesafeli bir seri elektron konumlarına ayrılır ve oluşan bu konumlara elektron enerji bandı denir.

37

38

39 Fermi enerjisi 0 K de dolu olan mevcut elektron enerji seviyelerinin en yüksek konumuna karşılık gelir ve E f ile gösterilir. Bu enerji bant yapısı, özellikle bir tek s valans elektronuna sahip olan bazı metallerde (örneğin bakır) belirgindir. Dalga hareketi yapan e tarafından doldurulmuş en yüksek enerji seviyesine Fermi seviyesi bu seviyenin enerjisine de Fermi enerjisi denir.

40 0 K de e lar en alt enerji seviyesinden yukarıya doğru her enerji seviyesinde 2e bulunarak dizilirler. En son e nun bulunduğu seviye Fermi seviyesi olup, 0 K de tüm e lar Fermi seviyesi veya daha küçük enerjiye sahiptirler. Bir elektronun Fermi enerjisinin altında bulunma olasılığı 0 K de %100 dür. Sıcaklık artınca e lar kazandıkları enerji ile Fermi enerjisinin hemen üstündeki seviyelere çıkabilirler. Fermi fonksiyonu Soru: Gümüşün Fermi enerjisi E f =5.51 ev tur. 300K de dolma ihtimali %10 olan enerji seviyesini bulunuz? k= J/ atom K k B =Boltzman Sabiti (T=300 K, k B.T=0,026 ev)

41

42 Elektrondaki saçılma olayı, geçen elektrik akımına gösterilen direnç olarak ifade edilebilir. Bu saçılmanın boyutunu tanımlamak için, birkaç parametre kullanılır. Bunlar elektronun sürüklenme hızı ve elektronun hareketliliğidir.

43

44 Burada ρ t, ρ i, ρ d sırasıyla ısıl, empürite ve deformasyonun neden olduğu öz direnci göstermektedir. Denklem 18.9, Matthiessen kuralı olarak bilinir.

45

46 =a ve To oda sıcaklığı olarak da alınmaktadır. Şekil 18,8

47 Oda sıcaklığında artı yüklü iyonlar kafes üzerindeki yerlerinde titreştiren kinetik enerjiye sahiptir. Sıcaklık arttıkça iyonların titreşme genlikleri artar ve iyonlarla değerlik (valans) elektronları arasında sürekli bir enerji değişimi vardır. Bir elektrik potansiyelinin yokluğunda, değerlik elektronlarının hareketi rastgele ve sınırlıdır, dolayısıyla, herhangi bir yönde net elektron akışı ve elektrik akımı yoktur. Bir elektrik potansiyelinin uygulanması halinde elektronlar, uygulanan alanla orantılı fakat zıt yönde bir sürüklenme hızı kazanır. Metalin sıcaklığı yükseldiğinde ısıl enerji atomun titreşmesine sebep olur. Denge durumunda olmayan atomlar elektronlarla etkileşerek elektronları dağıtmakta ve elektronların hareketliliği azalmakta ve özdirenç artmaktadır. 47

48 hata =b(1-x)x hata = Hatalardan kaynaklanan dirençteki artış, X: empürite veya katı eriyik atomlarının kısmi atomik oranı, b: hata direnç katsayısı.

49

50 Plastik deformasyon da elektronların saçılmasına neden olduğu için, dislokasyon sayısındaki artış elektrik öz direncini arttırır. Deformasyonun öz direnç üzerine olan etkisi Şekil 18.8 de gösterilmiştir. Ancak grafikten de anlaşılacağı üzere, deformasyonun etkisi, sıcaklık veya empüriteye göre çok azdır.

51 İletken Malzemeler Çekirdeği çevreleyen elektronların yörünge konumları Kabuk olarak adlandırılır. Her bir kabuk 2n 2 formülü ile belirlenen elektron sayısına sahiptir. En dıştaki kabuk valans kabuğu dur. Bakır elektriksel ve diğer özellikleri nedeniyle en çok kullanılan metalik iletkendir. Gümüş hem bakırdan hem de alüminyumdan daha yüksek iletkenliğe sahip olmasına rağmen, ekonomik olmadığı için kullanımı alanı sınırlıdır.

52 İletken Malzemeler Valans kabuğu, malzemenin iletkenlik özelliğini belirler. Örneğin Bakır atomu (Cu) valans yörüngesinde sadece 1 elektrona sahiptir. Bu onu iyi bir iletken kılar.

53 İletkenlerin başlıca özellikleri: Elektrik akımını iyi iletirler. Atomların dış yörüngesindeki elektronlar atoma zayıf olarak bağlıdır. Isı, ışık ve elektriksel etki altında kolaylıkla atomdan ayrılırlar. Dış yörüngedeki elektronlara Valans Elektron denir. Metaller, bazı sıvı ve gazlar iletken olarak kullanılır. Metaller, sıvı ve gazlara göre daha iyi iletkendir. Metaller, iyi iletken ve kötü iletken olarak kendi aralarında gruplara ayrılır. Atomları 1 valans elektronlu olan metaller, iyi iletkendir. Au, Ag, Cu gibi Cu tam saf olarak elde edilmediğinden, Au ve Ag e göre biraz daha kötü iletken olmasına rağmen, ucuz ve bol olduğundan, en çok kullanılan metaldir. Atomlarında 2 ve 3 valans elektronu olan Fe (2 dış elektronlu) ve Al (3 dış elektronlu) iyi birer iletken olmamasına rağmen, ucuz ve bol olduğu için geçmiş yıllarda kablo olarak kullanılmıştır. 53

54 İletken Malzemeler Bir atomun en dış yörüngesinde az sayıda (1-2-3) elektron varsa, bu elektronları çekirdeğe bağlayan güç zayıftır. Örneğin bakır atomunun son yörüngesinde 1 elektron vardır ve bu çekirdek tarafından kuvvetlice çekilmediğinden çok kolayca serbest hale geçebilir. Bakırdan yapılmış bir iletkenin iki ucuna belli bir gerilim uygulanırsa, elektronlar pilin eksi (-) ucundan artı (+) ucuna doğru gitmeye başlar. İşte bu elektron hareketi "elektrik akımıdır". Gerilim kaynağının artı ucu elektronları yakalarken, eksi ucu maddeye elektron verir.

55 Başta elektrik telleri olmak üzere, kablolar ve baralar iletkenlerin sıkça kullanıldıkları yerlerin başında gelmektedir. Elektrik iletiminde kullanılacak iletkenlerin seçiminde I 2 R ısıl güç kaybına sebep olacak iletken dirençliliğin düşük olması istenir. Yaygın olarak kullanılan metaller içerisinde Ag, Cu, Au, Al sayılabilir. Bir tasarım yapılırken malzemenin maliyeti önem kazanmaktadır. Bu noktada cevher maliyeti, cevher ayrıştırma maliyeti, imalat maliyeti gibi noktalar da önem kazanmaktadır.

56 Elektrik iletkeni olarak sıklıkla kullanılan materyallerin maliyet açısından karşılaştırılması. Eleman Dirençlilik (X10-8 Ω) Cevher Maliyeti Cevher Ayrıştırma Maliyeti İşlenmemiş Malzeme Maliyeti ($/ton) Fabrikasyon İşçilik Maliyeti Gümüş 1.61 yüksek düşük düşük Bakır 1.70 orta orta 2700 düşük Altın 2.20 yüksek düşük düşük Alüminyum 2.74 düşük yüksek 1850 düşük

57 Kontak Yapımında Kullanılan İletken Malzemeler Bütün elektriksel kontakların görevi akım devrelerini kusursuz bir şekilde irtibatlandırmak ve kesmektir. Bu noktada kontak malzemelerinden beklenen özellikler şu şekildedir: Elektriksel iletkenliği iyi olmalıdır, Sabit kalan bir kontak direnci, İyi derecede ısıl iletkenlik, Kavrulmanın çok az olması, Kontakların kaynak yapmaması, Kimyasal dayanıklılık, Çok küçük erozyon (Bir kontaktan diğer bir kontağa eleman taşınması), Aşınmaya karşı yüksek dayanım.

58 Kontak Yapımında Kullanılan İletken Malzemeler Bakır:Kırmızı renkte ağır bir metaldir. Kolay bükülebilir, çok ince tel levha haline getirilebilir, sıcak ve soğuk olarak işlenebilir. Bakır gümüşten sonra en büyük elektriksel iletkenliği olan bir metaldir. Ayrıca ısı iletkenliği de yüksek olduğundan elektrik ve ısıtma endüstrisinde sıkça kullanılır. bileşikler oluşturur. Elektronikte özellikle kontak malzemesi olarak kullanıma oldukça elverişlidir. Bakır kontaklar zamanla havadan oksitlenerek, elektrik akımının geçişine mani olacak bileşikler oluşturur. Cu tel sargı çok telli Cu kablo

59 Kontak Yapımında Kullanılan İletken Malzemeler Gümüş: Saf Ag, beyaz parlak renkte yumuşak bir metaldir. Au dan sonra tel haline getirilmeye en uygun bir metal olup, soğuk olarak işlenebilme özelliğine sahiptir. Havadan etkilenmez ancak asitlere ve endüstri gazlarına karşı dayanıklı değildir. Ölçü aletlerinin kontaklarında, şalterlerde, kontaktörlerde, rölelerde, lehimcilikte kullanılır. Ag sargılı trafo Ag kablo

60 Kontak Yapımında Kullanılan İletken Malzemeler Altın: Saf Au (%99.95) elektrik akımını ve ısıyı iyi iletir. Hemen hemen bütün kimyasal etkilere karşı dayanıklıdır. Ancak çok yumuşak olup kontaklarda yapışma ve kaynama eğilimi gösterir. Bu nedenle kontak malzemesi olarak saf altın nadiren kullanılır. Ag, platin, Ni, Co, Cu ile alaşım yapmak suretiyle mekanik dayanımı yükseltilir ve kontakların yapışma eğilimi azaltılır. Au kaplamalı baskı devre kartları

61 Kontak Yapımında Kullanılan İletken Malzemeler Platin: Parlak ve beyaz renkli yumuşak bir metaldir. Havada ve yüksek ısı derecelerinde oksitlenmez ve işlenmeye elverişlidir. Platinden yapılmış kontaklar kimyasal etkilere karşı son derece dayanıklı olup hemen hemen hiç kavrulmazlar. Nikel, İridyum ve Wolfram gibi metallerle alaşım yapılarak platinin kavrulmaya karşı dayanımı daha da yükseltilebilir. Ölçü aleti kontakları, elektrik dirençleri, paratoner uçlarında kullanılırlar.

62 Diğer İletken Malzemeler METALLER ALAŞIMLAR Alüminyum Demir Çelik Çinko Kurşun Manganez Kalay Nikel Kadmiyum Tungsten Molibden Krom Tunç (Bakır+Kalay) Lehim (Kurşun+Kalay) Manganin (Manganez+nikel+ bakır) Krom-Nikel Pirinç (Bakır+Çinko) Konstantan (Nikel+Bakır) Nikelin (Bakır+Nikel) Sac

63 Civa: Beyaz renkli, sıvı bir madendir. Oda sıcaklığında buharlaşır. Buharı zehirlidir. Elektriği ve ısıyı iyi iletir. Isı değişimlerine karşı hassastır. Elektromekanik şamandıralarda kontak malzemesi ve kumanda elemanı olarak kullanılır. Isı değişimlerine çok hassas olduğundan termometre ve barometre gibi bir çok alette kullanılır. Sıvı İletken Malzemeler

64 GAZLAR Gazlar normal şartlar altında yalıtkandır. Fakat uygun şartlar sağlanarak iletken hale getirilebilir. Gazlardaki iletkenlik, sıcaklıkla doğru, basınçla ters orantılı olarak değişir. Basıncı düşürülen gazlar elektrik akımını iyi iletirler. İçinde basıncı düşürülmüş gaz bulunan flüoresan aydınlatma amaçlı ve neon lambaları günümüzde reklam tabelalarında oldukça yaygın olarak kullanılan iletken gazlardır.

65 Sıvı İletken Malzemeler Su: Saf su renksiz, kokusuz ve tatsız bir sıvıdır. 0 0 C de donar, C de kaynar. Saf su elektrik akımı iletmez, yalıtkandır. İletken hale getirmek için içerisine asit veya metal tuzları konur. Basınç arttıkça kaynama noktası artar. Su donacak kadar soğutulduğu zaman buz meydana gelir ve hacmi 1/10 oranında artar. Su, akümülatör, pil elektrolitlerinin hazırlanmasında kullanılır.

66 Yarı iletkenler, iletkenlik bakımından yalıtkan ile iletkenler arasındadır. Normal şartlarda yalıtkanlardır. Ama sıcaklığın etkisiyle iletken hale dönüşür. Bunun nedeni ise sıcaklık sayesinde bir miktar valans elektronunun serbest hale gelmesidir. Bu yüzden yarı iletkenler elektronikçiler tarafından oldukça sık kullanılmaktadır. Bileşik yarıiletkenler: Galyum Arsenid (GaAs), Galyum Fosfid (GaP) Saf (Has) GaAs için öz direnç ρ=80mω.cm Süper iletkenlik hali malzemenin direncinin 0 (sıfır) a düşmesiyle oluşur. Süper iletkenler sayesinde enerji kayıpsız bir şekilde transfer edilebilir. Bir maddenin direncinin sıfıra düşürülebilmesi için maddeye çok düşük sıcaklık uygulanmalıdır. 66

67 YARIİLETKEN MALZEMELER 67

68 Üretici şirketlerin yaygın olarak kullandığı bazı yarı iletken maddeler ve kullanım alanları: -Azot (N): N tipi yarı iletken oluşturmada. -Antimuan (Sb): N tipi yarı iletken oluşturmada. -Arsenik (Ar): N tipi yarı iletken oluşturmada. -Fosfor (P): N tipi yarı iletken oluşturmada. -Germanyum (Ge): Diyot, transistör, entegre vb. yapımında. -Silisyum (Si): Diyot, transistör, entegre vb. yapımında. -Bor (B): P tipi yarı iletken oluşturmada. -Galyum: P tipi yarı iletken oluşturmada. -İndiyum (In): P tipi yarı iletken oluşturmada. -Selenyum (Se): Diyot yapımında. -Bakır oksit (Cu 2 O): Diyot yapımında. 68

69 Yarıiletkenlerin kullanım alanları : - Sıcaklık ölçme - Işık şiddetini ölçme - Basınç ölçme - Işık yayıcı diyodlar - Doğrultucu diyodlar - Tranzistörler - Mikrochipler

70 Yalıtkanlar Elektrik akımını iletmeyen cam, mika, kağıt, kauçuk, lastik ve plastik gibi malzemelerdir. Elektronları atomlarına sıkı olarak bağlıdır. Bu maddelerin dış yörüngedeki elektron sayıları 8 ve 8 'e yakın sayıda olduğundan atomdan uzaklaştırılmaları zor olmaktadır. Bu tür yörüngeler doymuş yörünge sınıfına girdiği için elektron alıp verme gibi bir istekleri yoktur. Bu sebeple de elektriği iletmezler. Yalıtkan maddeler iletken maddelerin yalıtımında kullanılır. Yalıtkanlarda, değerlik elektronları iyonik ya da kovalent bağıyla atomlarına sıkı bir şekilde bağlı olduklarından, yüksek düzeyde enerji Ea verilmediği takdirde serbest hale geçerek elektriği iletemezler (6-7 ev). Bu nedenle, bir yalıtkanın elektriği iletebilmesi için değerlik elektronlarının aralığı atlamasına yetecek kadar büyük bir enerji altında 70 olması gerekir.

71 Yalıtkanlar Elektrik akımı iletmeyen malzemeler yalıtkanlar grubuna girerler. En dış yörüngedeki serbest elektron miktarı altıdan fazla olan maddelerin elektronları atom çekirdeğine sıkı sıkıya bağlıdır. Dolayısıyla elektriği iletmezler. Ancak her yalıtkan belirli şartlar altında belirli bir iletkenlik gösterirler. Yalıtkan malzemelerin yalıtkanlık dereceleri, ısı, yüksek değerli elektriksel basınç, rutubet etkisi veya yabancı cisimlerle etkileşim sebebiyle değişebilir.

72 Yalıtkan Cisimlerin Elektriksel Özellikleri Yalıtkan Delinmesi: Aslında elektrik akımını hiç geçirmeyen madde yoktur. Yalıtkan olarak bilinen maddeler "çok az" bir akım geçirirler. Yalıtkana uygulanan gerilim arttıkça geçirdiği akım da artmaya başlar. Belli bir gerilim seviyesinden sonra yalıtkan tamamen iletken olur. Buna yalıtkanın delinmesidenir. Elektrik ve elektronik çalışmalarında kullanılan el takımlarının sap izoleleri incelenecek olursa, burada yalıtkanın dayanabileceği son (maksimum) gerilim değeri yazılıdır. Örneğin penselerin sap izolesinde Voltyazar. Bu, plastik yalıtkan Volt'tan sonra iletken hale geçebilir anlamı taşır.

73 Yalıtkan Cisimlerin Elektriksel Özellikleri 1. Sızıntı akımlarına karşı dayanım: Bir yalıtkanın dış yüzeyinde mevcut olan yabancı maddeler bu yüzden sızıntı akımı olarak adlandırılan bir akım akışına neden olurlar. Yalıtkanın sızıntı akımının oluşmasına karşı gösterdiği dirençliliğe sızıntı akımı dayanımı denir. 2. Dielektrik dayanım: Bir yalıtkan malzemeyi iletken hale sokmaksızın birim kalınlığı başına uygulanacak en büyük gerilim değeri dielektrik dayanımı olarak adlandırılır. kv/mm birimi kullanılır.

74 Yalıtkan Cisimlerin Elektriksel Özellikleri Isıl kaçak: Yalıtkan malzeme içinde belirli miktarlarda yabancı madde var ise, bir sızıntı akımı başlar ve bu akım malzemeyi ısıtmaya başlar. Sonrada sızıntı akımının yolunu izleyen esas kaçak akım başlar. Kaçak akım ısınma neticesinde ortaya çıktığı için buna ısıl kaçak denir. Erozyon kaçağı: Bazen de yalıtkan malzemede üretimden kaynaklanan mikroskobik kaçaklar mevcut olabilir. Bu durumda da erozyon kaçağı adı verilen kaçak akımlar oluşur.

75 Yalıtkan Cisimlerin Elektriksel Özellikleri 3. Elektriksel direnç değerleri: Gerilim altında bulunan bir malzemenin göstermiş olduğu direnç değeridir. Ölçülen izolasyon direncinden yararlanılarak, birim boyut başına hesaplanan değere, o yalıtkanın özgül direnci denir. Birimi Ω.cm dir. 4. Yalıtkanların ark dayanımları: Elektrik arkı etkisine maruz kalan bir yalıtkanın ne ölçüde akım geçireceği ve nasıl bir değişime uğrayacağı ancak test yapmakla anlaşılabilir.

76 5. Dielektriksel kayıp faktörü: Dielektriksel kayıpların bir ölçeğidir. Bunlar yalıtkan malzemelerde ısı olarak açığa çıkarlar. Bu kayıplar, gerilimin büyüklüğüne, sıcaklığa ve frekansa bağlı olarak değişirler. Genellikle yüksek frekanslarda artan bir değer gösterirler. Bu nedenle yüksek frekanslarda çok özel yalıtkanlı (polietilen vb.) kablolar kullanılır.

77 Yalıtım (İzolasyon) Malzemeleri Berilyum Oksit: Seramik benzeri beyaz renkli katı bir malzemedir. Yüksek değerde sıcaklık iletkenliği gereken yerlerde elektriksel izolasyon malzemesi olarak kullanılır. Güç devrelerinde kullanılan yarıiletkenlerde elektriksel izolasyon için ısı emici pulcuk şeklinde imal edilmekte ve kullanılmaktadır. Zehirlidir toz halindeyken solunması ciddi akciğer rahatsızlıklarına neden olur. Elektriksel izolasyon için ısı emici pulcuklar

78 Yalıtım (İzolasyon) Malzemeleri A.B.S.(Acrylonitrile Butadiene Styrene) Akrilonitril, bütadien, ve sıvı hidrokarbon bileşiminden oluşan plastik bir malzemedir. Dielektrik dayanımı 20MV/m dir. Bir çok cihazın dış kaplamasında kullanılır. A.B.S. kaplamalı mikser ve telefon

79 Asetat Yalıtım (İzolasyon) Malzemeleri Elektriksel yönden iyi bir izolasyon özelliğine sahip olduğundan elektriksel güvenlik ekipmanlarında, elekriksel yalıtkanlık istenilen yerlerde kullanılır. En çok sinema ve mikrofilmlerin imalatında kullanılır.

80 Yalıtım (İzolasyon) Malzemeleri Akrilik Yalıtkanlığın yanı sıra katılık ve şeffaflık özelliğinin birlikte bulunması gerektiği yerlerde akrilik kullanılır. Işıklandırılmış işaretler, otomobillerin arka lambaları, ışıklandırma üniteleri v.b. Otomobil panel göstergesi ve stop lambası

81 Seramik Yalıtım (İzolasyon) Malzemeleri Seramik çoğunluğu metal ve ametal malzemelerin karışımından meydana gelen oksitlerdir. Yüksek sıcaklık iletkenliği yardımıyla iyi derecede elektriksel izolasyon özelliği sağladığı gibi elektronikte direnç, kapasitör v.b. yapımında kullanılmaktadır. Seramik izolatörler ve soket

82 Yalıtım (İzolasyon) Malzemeleri Cam Silisyum, sodyum, potasyum karbonatları, kireç ve kurşun oksitleri gibi türlü maddelerin ergitilmelerinden elde edilir. Esas rengi saydam ve şekilsizdir. Sıcak olarak çeşitli şekillere girdirilebilir. Su, yağ ve asitlerden etkilenmez. Kırılgan olup ani ısı değişimlerinde çatlama eğilimi gösterir.

83 Yalıtım (İzolasyon) Malzemeleri Porselen Pişmiş beyaz renkte yalıtkan bir topraktır. Su geçirmez Dayanıklı, sert, ani ısı değişimlerinden (0-100 C) ve asitlerden etkilenmezler. Isıyı çok az geçirir, kırılgandır.

84 Yalıtım (İzolasyon) Malzemeleri Polivinilklorür PVC Polyvinylcloride veya kısaca PVC belki en çok yaygın olan bir izolasyon malzemesidir. Saf halde iken cam gibi kırılgandır. İçine yağ kapsayan maddeler katılınca özellikleri değişir ve ısı ile plastikleşir. Elektrik akımı taşıyan kabloların büyük bir çoğunluğu PVC ile kaplanarak yalıtılır. Elektrikli ve elektronik cihaz gövdeleri genellikle PVC den imal edilirler.

85 Diğer Yalıtım (İzolasyon) Malzemeleri Delrin Teflon Kapton Kynar Lexan ve Merlon Melamin Mika Neopren Nomex Naylon Phenolics Polyester Poliüretan Silikon kauçuk Epoksi Fiberglas Silikon Fiberglas Plastik Ebonit

86 Gazlar Gaz Yalıtkanlar İyonize olmadıkça iletken duruma geçmezler. Bu işlem, iyonlaştırma gerilimi belirli bir değere gelince elektriksel bir boşalma ile kendi kendine meydana gelir. Çeşitli gazlara ait dielektrik sabitleri normal sıcaklıkta birbirine eşittir. Bunlara ait fark %3 'ü geçmez. Bu değerler, sıcaklık ve basınç değişmesiyle farklı olabilir. Gazların dielektrik dayanımları sıcaklığa, basınca, elektrot şekline, elektrotlar arası uzaklığa göre değişir. Basınç arttıkça dielektrik dayanım azalır.

87 Hava Gaz Yalıtkanlar Havanın içindeki toz, kömür, nem gibi maddeler iletkenliğini artırır yani yalıtkanlığını azaltır. Yüksek gerilimde enerji taşıyan hatlarda doğal bir yalıtkan olarak işlev görür. Kondansatör ve transformatör gibi araçlarda ise yalıtkan bir çekirdek görevi görür.

88 Şalter Yağı: Sıvı Yalıtkanlar Çalışması esnasında ark oluşturan şalter gibi cihazlarda oluşan ısıyı hızlı bir şekilde almak ve arkın kısa bir zamanda sönmesini sağlamak amacıyla kullanılır. Transformatör Yağı: Tranformatör yağı, hem yalıtkanlık hem de soğutma amaçlı kullanılır. Genellikle madeni yağlar kullanılır. Tranformatör yağının bazı özellikleri: Katılaşma noktası Parlama ve yanma noktası Isı iletimi Akıcılık (viskozite) v.b.

İletken Malzemeler 9.11.2015

İletken Malzemeler 9.11.2015 Atomun Temel Parçaları 1.Elektronlar: Çekirdek etrafında yörüngelerde bulunurlar ve ( ) yüklüdürler. Boyutları çok küçüktür. 2. Nükleus (çekirdek): Proton: (+) yüklü parçacıktır. Elektrondan 1836 kat büyüktür.

Detaylı

ELEKTRİKSEL İLETKENLİK

ELEKTRİKSEL İLETKENLİK ELEKTRİKSEL İLETKENLİK Pek çok uygulamada malzemelerin elektriksel davranışı mekanik davranışlarından daha önemlidir. -Uzun mesafelere akım ileten metal tel, ısınma sonucu oluşan güç kaybını azaltmak için

Detaylı

ELEKTRİKSEL ÖZELLİKLER

ELEKTRİKSEL ÖZELLİKLER ELEKTRİKSEL ÖZELLİKLER İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda yük taşıyan elemanlar (charge carriers) tarafından gerçekleştirilir. Bunlar elektron veya elektron boşluklarıdır.

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Bölüm 27 Akım ve Direnç Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik Akımı Elektrik yüklerinin

Detaylı

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

BÖLÜM 7 YALITKANLAR & DİELEKTRİK ÖZELLİKLERİ

BÖLÜM 7 YALITKANLAR & DİELEKTRİK ÖZELLİKLERİ YALITKANLAR & DİELEKTRİK ÖZELLİKLERİ Dielektrikler elektriksel olarak yalıtkan malzemelerdir. Malzemenin elektriksel özelliğinin enerji band yapısına bağlı olduğunu söylemiştik. Yalıtkan malzemelerde enerji

Detaylı

ÖLÇME VE ÖLÇÜ ALETLERİ

ÖLÇME VE ÖLÇÜ ALETLERİ ÖLÇME VE ÖLÇÜ ALETLERİ 1. KISA DEVRE Kısa devre; kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. Kısa devre olduğunda

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün geçiş hızının, uygulanan voltaj V ile aşağıdaki şekilde

Detaylı

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir.

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir. TEMEL ELEKTRONİK Elektronik: Maddelerde bulunan atomların son yörüngelerinde dolaşan eksi yüklü elektronların hareketleriyle çeşitli işlemleri yapma bilimine elektronik adı verilir. KISA ATOM BİLGİSİ Maddenin

Detaylı

Karadeniz Teknik Üniversitesi. Elektrik-Elektronik Mühendisliği Bölümü

Karadeniz Teknik Üniversitesi. Elektrik-Elektronik Mühendisliği Bölümü Elektrik-Elektronik Mühendisliği Bölümü Karadeniz Teknik Üniversitesi ELEKTRİK MÜHENDİSLİĞİNDE MALZEME Yrd. Doç. Dr. H. İbrahim OKUMUŞ E-mail : okumus@ktu.edu.tr WEB : 1 Yarı-iletken elemanların yapısı

Detaylı

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010 WEBSİTE www2.aku.edu.tr/~hitit Dersler İÇERİK Metalik Malzemelerin Genel Karakteristiklerİ Denge diyagramları Ergitme ve döküm Dökme demir ve çelikler

Detaylı

Enerji Band Diyagramları

Enerji Band Diyagramları Yarıiletkenler Yarıiletkenler Germanyumun kimyasal yapısı Silisyum kimyasal yapısı Yarıiletken Yapım Teknikleri n Tipi Yarıiletkenin Meydana Gelişi p Tipi Yarıiletkenin Meydana Gelişi Yarıiletkenlerde

Detaylı

Elektronik-I. Yrd. Doç. Dr. Özlem POLAT

Elektronik-I. Yrd. Doç. Dr. Özlem POLAT Elektronik-I Yrd. Doç. Dr. Özlem POLAT Kaynaklar 1-"Electronic Devices and Circuit Theory", Robert BOYLESTAD, Louis NASHELSKY, Prentice-Hall Int.,10th edition, 2009. 2- Elektronik Cihazlar ve Devre Teorisi,

Detaylı

Ölçme Kontrol ve Otomasyon Sistemleri 1

Ölçme Kontrol ve Otomasyon Sistemleri 1 Ölçme Kontrol ve Otomasyon Sistemleri 1 Dr. Mehmet Ali DAYIOĞLU Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 1. Elektroniğe giriş Akım, voltaj, direnç, elektriksel

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

Giriş. Yrd. Doç. Dr. Enis GÜNAY Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü

Giriş. Yrd. Doç. Dr. Enis GÜNAY Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Giriş Yrd. Doç. Dr. Enis GÜNAY Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Madde ve Maddenin Özellikleri Madde Nedir? Boşlukta yer kaplayan, kütlesi ve hacmi olan katı, sıvı veya gaz şeklinde

Detaylı

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT YALITKAN YARI- İLETKEN METAL DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT Amaç: Birinci deneyde Ohmik bir devre elemanı olan direncin uçları arasındaki gerilimle üzerinden geçen akımın doğru orantılı

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

İNSTAGRAM:kimyaci_glcn_hoca

İNSTAGRAM:kimyaci_glcn_hoca MODERN ATOM TEORİSİ ATOMUN KUANTUM MODELİ Bohr atom modeli 1 H, 2 He +, 3Li 2+ vb. gibi tek elektronlu atom ve iyonların çizgi spektrumlarını başarıyla açıklamıştır.ancak çok elektronlu atomların çizgi

Detaylı

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM

GENEL KİMYA. Yrd.Doç.Dr. Tuba YETİM GENEL KİMYA ATOMUN ELEKTRON YAPISI Bohr atom modelinde elektronun bulunduğu yer için yörünge tanımlaması kullanılırken, kuantum mekaniğinde bunun yerine orbital tanımlaması kullanılır. Orbital, elektronun

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu 2. Direnç ve Ohm Kanunu 3. Özdirenç 4. Elektromotor

Detaylı

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu

Atom. Atom 9.11.2015. 11 elektronlu Na. 29 elektronlu Cu Atom Maddelerin en küçük yapı taşlarına atom denir. Atomlar, elektron, nötron ve protonlardan oluşur. 1.Elektronlar: Çekirdek etrafında yörüngelerde bulunurlar ve ( ) yüklüdürler. Boyutları çok küçüktür.

Detaylı

ELEKTRİK MÜHENDİSLİĞİNDE MALZEME

ELEKTRİK MÜHENDİSLİĞİNDE MALZEME Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü ELEKTRİK MÜHENDİSLİĞİNDE MALZEME Yrd. Doç. Dr. H. İbrahim OKUMU E-mail : okumus@ktu.edu.tr WEB : http://www.hiokumus.com 1 İçerik Giriş

Detaylı

DİYOT KARAKTERİSTİKLERİ

DİYOT KARAKTERİSTİKLERİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı 1. Deneyin Amacı DİYOT KARAKTERİSTİKLERİ Diyot çeşitlerinin

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

AKHİSAR CUMHURİYET MESLEKİ VE TEKNİK ANADOLU LİSESİ YARI İLETKENLER

AKHİSAR CUMHURİYET MESLEKİ VE TEKNİK ANADOLU LİSESİ YARI İLETKENLER YARI İLETKENLER Doğada bulunan atamlar elektriği iletip-iletmeme durumuna görene iletken, yalıtkan ve yarı iletken olarak 3 e ayrılırlar. İletken maddelere örnek olarak demir, bakır, altın yalıtkan maddeler

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

ATOM, İLETKEN, YALITKAN VE YARIİLETKENLER

ATOM, İLETKEN, YALITKAN VE YARIİLETKENLER ATOM, İLETKEN, YALITKAN VE YARIİLETKENLER Hedefler Elektriksel karakteristikler bakımından maddeleri tanıyacak, Yarıiletkenlerin nasıl elde edildiğini, karakteristiklerini, çeşitlerini öğrenecek, kavrayacak

Detaylı

MALZEME BİLGİSİ. Katı Eriyikler

MALZEME BİLGİSİ. Katı Eriyikler MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Katı Eriyikler 1 Giriş Endüstriyel metaller çoğunlukla birden fazla tür eleman içerirler, çok azı arı halde kullanılır. Arı metallerin yüksek iletkenlik, korozyona

Detaylı

4/26/2016. Bölüm 7: Elektriksel Özellikler. Malzemelerin Elektriksel Özellikleri. Elektron hareketliliği İletkenlik Enerji bant yapıları

4/26/2016. Bölüm 7: Elektriksel Özellikler. Malzemelerin Elektriksel Özellikleri. Elektron hareketliliği İletkenlik Enerji bant yapıları Bölüm 7: Elektriksel Özellikler CEVAP ARANACAK SORULAR... Elektriksel iletkenlik ve direnç nasıl tarif edilebilir? İletkenlerin, yarıiletkenlerin ve yalıtkanların ortaya çıkmasında hangi fiziksel süreçler

Detaylı

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI BCP103 Öğr.Gör. MEHMET GÖL 1 Ders İçeriği Analog ve sayısal sinyal kavramları ler, çeşitleri, uygulama yerleri, direnç renk kodları Kondansatörler, çalışması, çeşitleri,

Detaylı

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. . ATOMUN KUANTUM MODELİ SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir. Orbital: Elektronların çekirdek etrafında

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 2 @ysevim61 https://www.facebook.com/groups/ktuemt/ 1 Akım, Gerilim, Direnç Anahtar Pil (Enerji kaynağı) V (Akımın yönü) R (Ampül) (e hareket yönü) Şekildeki devrede yük

Detaylı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır. ATOM ve YAPISI Elementin özelliğini taşıyan en küçük parçasına denir. Atom Numarası Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

YAŞAMIMIZDAKİ ELEKTRİK

YAŞAMIMIZDAKİ ELEKTRİK YAŞAMIMIZDAKİ ELEKTRİK DURGUN ELEKTRİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında

Detaylı

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Yarıiletken Elemanlar Kullandığımız pek çok cihazın üretiminde

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı

1. Yarı İletken Diyotlar Konunun Özeti

1. Yarı İletken Diyotlar Konunun Özeti Elektronik Devreler 1. Yarı İletken Diyotlar 1.1 Giriş 1.2. Yarı İletkenlerde Akım Taşıyıcılar 1.3. N tipi ve P tipi Yarı İletkenlerin Oluşumu 1.4. P-N Diyodunun Oluşumu 1.5. P-N Diyodunun Kutuplanması

Detaylı

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet

Fizik II Elektrik ve Manyetizma Akım, Direnç ve Elektromotor Kuvvet Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

Malzemelerin Elektriksel ve Manyetik Özellikleri

Malzemelerin Elektriksel ve Manyetik Özellikleri Malzemelerin Elektriksel ve Manyetik Özellikleri Malzemelerin fiziksel davranışları, çeşitli elektrik, manyetik, optik, ısıl ve elastik özelliklerle tanımlanır. Bu özellikler çoğunlukla, atomik yapı (elektronik

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI DA DEVRE Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI BÖLÜM 1 Temel Kavramlar Temel Konular Akım, Gerilim ve Yük Direnç Ohm Yasası, Güç ve Enerji Dirençsel Devreler Devre Çözümleme ve Kuramlar

Detaylı

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Valans Elektronları Atomun en dış kabuğundaki elektronlara valans elektron adı verilir. Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Bir atomun en dış kabuğundaki elektronlar,

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Şaban ULUS Şubat 2014 KAYSERİ

Detaylı

Nadir ve Kıymetli Metaller Metalurjisi. Y.Doç.Dr. Işıl KERTİ

Nadir ve Kıymetli Metaller Metalurjisi. Y.Doç.Dr. Işıl KERTİ Nadir ve Kıymetli Metaller Metalurjisi Y.Doç.Dr. Işıl KERTİ Ders içeriği 1. Giriş ve Periyodik cetvel 2. Kıymetli Metaller (Ag, Au, Pt, ) 3. Kıymetli Metaller (Ag, Au, Pt, ) 4. Kıymetli Metaller (Ag, Au,

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar

Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar Malzemeler elektrik yükünü iletebilme yeteneklerine göre 3 e ayrılırlar. İletkenler Yarı-iletkenler Yalıtkanlar : iletkenlik katsayısı (S/m) Malzemelerin iletkenlikleri sıcaklık ve frekansla değişir. >>

Detaylı

Malzemelerin elektriksel özellikleri

Malzemelerin elektriksel özellikleri Malzemelerin elektriksel özellikleri OHM yasası Elektriksel iletkenlik, ohm yasasından yola çıkılarak saptanabilir. V = IR Burada, V (gerilim farkı) : volt(v), I (elektrik akımı) : amper(a) ve R(telin

Detaylı

maddelere saf maddeler denir

maddelere saf maddeler denir Madde :Kütlesi olan her şeye madde denir. Saf madde: Aynı cins atom veya moleküllerden oluşan maddeye denir. Fiziksel yollarla kendisinden başka maddelere ayrışmayan maddelere saf maddeler denir Element:

Detaylı

ELEKTRİĞİN İLETİMİ. Adı:Muharrem Soyadı:Şireci No:683

ELEKTRİĞİN İLETİMİ. Adı:Muharrem Soyadı:Şireci No:683 ELEKTRİĞİN İLETİMİ Adı:Muharrem Soyadı:Şireci No:683 Elektrik Nedir? Günümüzde evlerin aydınlatılması, televizyon, radyo, telefon, çamaşır makinesi gibi araçların çalıştırılmasında elektrik kullanılmaktadır.

Detaylı

MALZEME BİLGİSİ DERS 4 DR. FATİH AY.

MALZEME BİLGİSİ DERS 4 DR. FATİH AY. MALZEME BİLGİSİ DERS 4 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA TEMEL KAVRAMLAR ATOMLARDA ELEKTRONLAR PERİYODİK TABLO BÖLÜM II ATOM YAPISI VE ATOMLARARASı BAĞLAR BAĞ KUVVETLERİ VE ENERJİLERİ

Detaylı

BİLEŞİKLER VE FORMÜLLERİ

BİLEŞİKLER VE FORMÜLLERİ BİLEŞİKLER VE FORMÜLLERİ Bileşikler : Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur). Bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere

Detaylı

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Atomlar Arası Bağlar 1 İyonik Bağ 2 Kovalent

Detaylı

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları 1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları Sol üstte yüzey seftleştirme işlemi uygulanmış bir çelik

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI ve LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller

Detaylı

Bölüm 8: Atomun Elektron Yapısı

Bölüm 8: Atomun Elektron Yapısı Bölüm 8: Atomun Elektron Yapısı 1. Elektromanyetik Işıma: Elektrik ve manyetik alanın dalgalar şeklinde taşınmasıdır. Her dalganın frekansı ve dalga boyu vardır. Dalga boyu (ʎ) : İki dalga tepeciği arasındaki

Detaylı

formülü zamanı da içerdiği zaman alttaki gibi değişecektir.

formülü zamanı da içerdiği zaman alttaki gibi değişecektir. Günümüz endüstrisinde en yaygın kullanılan Direnç Kaynak Yöntemi en eski elektrik kaynak yöntemlerinden biridir. Yöntem elektrik akımının kaynak edilecek parçalar üzerinden geçmesidir. Elektrik akımına

Detaylı

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK ELEKTRONİK 1 1. Atomun çekirdeği nelerden oluşur? A) Elektron B) Proton C) Proton +nötron D) Elektron + nötron 2. Elektron hangi yükle yüklüdür?

Detaylı

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci ELEKTRİK AKIMI Elektrikle yüklü ve potansiyelleri farklı olan iki iletken küreyi, iletken bir telle birleştirilirse, potansiyel farkından dolayı iletkende yük akışı meydana gelir. Bir iletkenden uzun süreli

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Dr. Cemile BARDAK Ders Gün ve Saatleri: Çarşamba (09:55-12.30) Ofis Gün ve Saatleri: Pazartesi / Çarşamba (13:00-14:00) 1 TEMEL KAVRAMLAR Bir atom, proton (+), elektron (-) ve

Detaylı

FEN ve TEKNOLOJİ DERSİ / PERİYODİK SİSTEM. Metaller, Ametaller ve Yarı metaller

FEN ve TEKNOLOJİ DERSİ / PERİYODİK SİSTEM. Metaller, Ametaller ve Yarı metaller Metaller, Ametaller ve Yarı metaller 1 Elementler gösterdikleri benzer özelliklere göre metaller, yarı metaller ve ametaller olarak sınıflandırılabilirler. Periyodik tabloda metal, ametal ve yarı metallerin

Detaylı

Element ve Bileşikler

Element ve Bileşikler Element ve Bileşikler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Bir elementi oluşturan bütün atomların

Detaylı

ELEKTRİK MÜHENDİSLİĞİNDE MALZEME GIRIŞ

ELEKTRİK MÜHENDİSLİĞİNDE MALZEME GIRIŞ ELEKTRİK MÜHENDİSLİĞİNDE MALZEME GIRIŞ MALZEMENİN GENEL TANIMI, ÇEŞİTLERİ VE ÖZELLİKLERİ Malzemenin Tanımı: Bir amacı gerçekleştirmek için kullanılan maddelerin tümüne malzeme denir. Çelik,bakır,kağıt,cam,porselen,çimento

Detaylı

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu

Paylaşılan elektron ya da elektronlar, her iki çekirdek etrafında dolanacaklar, iki çekirdek arasındaki bölgede daha uzun süre bulundukları için bu 4.Kimyasal Bağlar Kimyasal Bağlar Aynı ya da farklı cins atomları bir arada tutan kuvvetlere kimyasal bağlar denir. Pek çok madde farklı element atomlarının birleşmesiyle meydana gelmiştir. İyonik bağ

Detaylı

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan.

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan. Magnetic Materials 7. Ders: Ferromanyetizma Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASAM) Moleküler Alan Teorisinin

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere sahip milyonlarca yani madde yani bileşik

Detaylı

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru 2.5. İletkenlerde R, L, C Hesabı 2.5.1. İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru hesaplanması gerekir. DA direnci, R=ρ.l/A eşitliğinden

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ

MADDENİN YAPISI VE ÖZELLİKLERİ MADDENİN YAPISI VE ÖZELLİKLERİ 1. Atomun Yapısı KONULAR 2.Element ve Sembolleri 3. Elektronların Dizilimi ve Kimyasal Özellikler 4. Kimyasal Bağ 5. Bileşikler ve Formülleri 6. Karışımlar 1.Atomun Yapısı

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE

ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE ELEMENTLER ELEMENTLER METALLER AMETALLER SOYGAZLAR Hiçbir kimyasal ayırma yöntemi ile kendinden daha basit maddelere ayrıştırılamayan saf maddelere element

Detaylı

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ

Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM. o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ Serüveni 3. ÜNİTE KİMYASAL TÜRLER ARASI ETKİLEŞİM GÜÇLÜ ETKİLEŞİM o İYONİK BAĞ o KOVALENT BAĞ o METALİK BAĞ KİMYASAL TÜR 1. İYONİK BAĞ - - Ametal.- Kök Kök Kök (+) ve (-) yüklü iyonların çekim kuvvetidir..halde

Detaylı

PERİYODİK CETVEL

PERİYODİK CETVEL BÖLÜM4 W Periyodik cetvel, elementlerin atom numaraları esas alınarak düzenlenmiştir. Bu düzenlemede, kimyasal özellikleri benzer olan (değerlik elektron sayıları aynı) elementler aynı düşey sütunda yer

Detaylı

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ

KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ KİMYASAL BAĞLAR İYONİK BAĞ KOVALANT BAĞ POLAR KOVALENT BAĞ APOLAR KOVALENT BAĞ Atomlar bağ yaparken, elektron dizilişlerini soy gazlara benzetmeye çalışırlar. Bir atomun yapabileceği bağ sayısı, sahip

Detaylı

Kimya EğitimiE. Ders Sorumlusu Prof. Dr. Đnci MORGĐL

Kimya EğitimiE. Ders Sorumlusu Prof. Dr. Đnci MORGĐL Kimya EğitimiE Ders Sorumlusu Prof. Dr. Đnci MORGĐL Konu:Metallerin Reaksiyonları Süre: 4 ders saati Metallerin Su Đle Reaksiyonları Hedef : Metallerin su ile verdikleri reaksiyonları kavratabilmek. Davranışlar:

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 4: Fotovoltaik Teknolojinin Temelleri Fotovoltaik Hücre Fotovoltaik Etki Yarıiletken Fiziğin Temelleri Atomik Yapı Enerji Bandı Diyagramı Kristal Yapı Elektron-Boşluk Çiftleri

Detaylı

İLETKEN BAĞLANTILARI. http://www.meslekidenetim.com/ HAZ MUSTAFA ERDİL-ÜMİT AYAZ

İLETKEN BAĞLANTILARI. http://www.meslekidenetim.com/ HAZ MUSTAFA ERDİL-ÜMİT AYAZ İLETKEN BAĞLANTILARI A. TESİSATTA KULLANILAN İLETKENLER a.tanım: Elektrik akımını kolayca taşıyan maddelere iletken denir. Elektrik tesislerinde bakır, alüminyum, kalay, gümüş vb. gibi maddelerden yapılmış

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

BMM 205 Malzeme Biliminin Temelleri

BMM 205 Malzeme Biliminin Temelleri BMM 205 Malzeme Biliminin Temelleri Atom Yapısı ve Atomlar Arası Bağlar Dr. Ersin Emre Ören Biyomedikal Mühendisliği Bölümü Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü TOBB Ekonomi ve Teknoloji

Detaylı

Malzemelerin Fiziksel Özellikleri

Malzemelerin Fiziksel Özellikleri Malzemelerin Fiziksel Özellikleri Doç.Dr. Nil TOPLAN 2016 1 KONULAR 1. Hafta (15 Şubat): Elektriğin tanımı ve elektrik akımı iletimine göre malzemelerin sınıflandırılması 2. Hafta (22 Şubat): Elektronik

Detaylı

24.10.2012. Öğr.Gör.Alkan AKSOY. Hazırlayan: Öğr.Gör. Alkan AKSOY -Sürmene

24.10.2012. Öğr.Gör.Alkan AKSOY. Hazırlayan: Öğr.Gör. Alkan AKSOY -Sürmene Öğr.Gör.Alkan AKSOY Elektrik enerjisini ileten bir veya birden fazla telden oluşan yalıtılmamış tel veya tel demetlerine iletken eğer yalıtılmış ise kablo denir. Ülkemizde 1kV altında genellikle kablolar

Detaylı

PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6

PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6 PERİYODİK SİSTEM VE ELEKTRON DİZİLİMLERİ#6 Periyodik sistemde yatay sıralara Düşey sütunlara.. adı verilir. 1.periyotta element, 2 ve 3. periyotlarda..element, 4 ve 5.periyotlarda.element 6 ve 7. periyotlarda

Detaylı

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri ATOMUN YAPISI ATOMLAR Atom, elementlerin en küçük kimyasal yapıtaşıdır. Atom çekirdeği: genel olarak nükleon olarak adlandırılan proton ve nötronlardan meydana gelmiştir. Elektronlar: çekirdeğin etrafında

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

MAK108 / GMAK108 Temel Elektrik-Elektronik Bilgisi 1. HAFTA

MAK108 / GMAK108 Temel Elektrik-Elektronik Bilgisi 1. HAFTA MAK108 / GMAK108 Temel Elektrik-Elektronik Bilgisi 1. HAFTA Yardımcı Kaynaklar - Gazisem Elektronik Mühendisliği Ders Notu, 2015. - Analog Elektronik, 2011. Yazarlar: M. Bereket, E. Tekin - Electric Circuits,

Detaylı

Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 30.09.2011 Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton sayısından

Detaylı

Malzeme Bilimi ve Malzemelerin Sınıflandırılması

Malzeme Bilimi ve Malzemelerin Sınıflandırılması Malzeme Bilimi ve Malzemelerin Sınıflandırılması Malzeme Nedir? Genel anlamda ihtiyaçlarımızı karşılamak ve belli bir amacı gerçekleştirmek için kullanılan her türlü maddeye malzeme denir. Teknik anlamda

Detaylı

PERİYODİK CETVEL Mendeleev Henry Moseley Glenn Seaborg

PERİYODİK CETVEL Mendeleev Henry Moseley Glenn Seaborg PERİYODİK CETVEL Periyodik cetvel elementleri sınıflandırmak için hazırlanmıştır. İlkperiyodik cetvel Mendeleev tarafından yapılmıştır. Mendeleev elementleri artan kütle numaralarına göre sıralamış ve

Detaylı

MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ

MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ MALZEMENİN İÇ YAPISI: Katılarda Atomsal Bağ Bölüm İçeriği Bağ Enerjisi ve Kuvveti Atomlar arası mesafe, Kuvvet ve Enerji İlişkisi Atomlar arası Mesafeyi Etkileyen Faktörler. Sıcaklık, Iyonsallik derecesi,

Detaylı