5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi"

Transkript

1 5. RITZ metodunun elemana uygulanması, elemanın rijitlik matrisi u bölümde RITZ metodu eleman bazında uygulanacak, elemanın yer değiştirme fonksiyonu, şekil değiştirme, gerilme bağıntıları, toplam potansiyeli, yerel ve genel denge koşulu belirlenecektir. u işlemler, anlaşılması kolay olması açısından, kafes sistemin i. elemanı için yapılacak, bağıntılar daha sonra genelleştirilecektir. ağıntıların basitleştirilmesi amacıyla, ara işlemlerde i indisi kullanılmayacaktır. 5. Düzlem kafes elemanının yer değiştirme fonksiyonu, RITZ uygulaması Yer değiştirme fonksiyonu: ir düzlem veya uzay kafes sistemin i ve j noktalarına bağlı i. elemanı şekil 5. de görülmektedir. E, A, L bilinmektedir. Sistem, dış yükler etkisiyle, yer değiştirince elemanın i ve j noktalarında ve yerel yer değiştirmeleri oluşur, ve değerleri sabittir. Çünkü şekil değiştirme tamamlanmış, ve son değerini almıştır. Soru şudur: i ve j arasındaki herhangi bir noktada yer değiştirme nedir? Kafes eleman sadece uzayıpkısaldığından(eğilmediğinden) eleman boyunca yer değiştirme doğrusal olacaktır. Şekilde bu değişim grafik olarak gösterilmiştir, yer değiştirme fonksiyonu(ritz fonksiyonu) x û û û û ( + û ) a a + (5.) dir. ve parametrelerinin fiziksel bir anlamı yoktur. Matematik anlamda yer değiştirme fonksiyonunun doğrusal olduğunu vurgulayan her hangi sabit bir sayı anlamındadırlar. 5. veya aynı anlama gelen 5. fonksiyonu elemanın sınır koşullarını sağlamalıdır, yani da olmalıdır + de olmalıdır + veya, matris notasyonunda: $ $% ile her iki taraf çarpılarak olur. 5. de yerine yazılırsa $() $() (5.) * ) * ) +* ) Kafes elemanın yer değiştirme fonksiyonu (5.3), +,, i. elemanın yer değiştirme fonksiyonu(ritz fonksiyonu) (5.4) elemanın yer değiştirme fonksiyonu olarak bulunur. 5.3 bağıntısı ile yer değiştirme fonksiyonu fiziksel anlamı olan ve parametreleri cinsinden ifade edilmiş olmaktadır. Şekil değiştirme: Şekil değiştirmeler ile yer değiştirmeler arasındaki ilişki. ye göre -. (süreklilik koşulu) idi. Kafes eleman için,. bağıntıları nedeniyle, - -,. * ), olur: 3 4 gibi x matrisin determinantı det 4 3 ve tersi % dir Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 5, Sayfa 49

2 -. - * ). 5.3 kullanılarak - * ) * ) * ) - ;+ :# 5. RİTZ metodunun elemana uygulanması, elemanın rijitlik matrisi. Türev alınarak: :# Kafes elemanda şekil değiştirme sabit -,.+,, i. elemanın şekil değiştirme fonksiyonusüreklilik koşulu (5.6) 5.6 bağıntısına süreklilik koşulu da denilmektedir. (5.5) Gerilme: < - < > :# Kafes elemanda gerilme sabit <,, -, (5.7a) (5.7) 5. Elemanın yerel koordinatlarda toplam potansiyeli ve yerel rijitlik matrisi Yer değiştirme fonksiyonu: ir düzlem veya uzay kafes sistemin i ve j noktalarına bağlı i. elemanı şekil 5. de görülmektedir. E, A, L bilinmektedir. Sistemin yer değiştirmesi sonucu elemanın i ve j noktalarında ve yerel yer değiştirmeleri ve E ve E yerel kuvvetleri oluşur, bunların değerleri sabittir. Çünkü şekil değiştirme tamamlanmış, son değerlerini almışlardır. Eleman içinde de ε şekil değiştirmesi ve σ gerilmesi oluşmuştur. x û ŝ û ŝ?, : gerilmelerin şekil değiştirmelerle yaptığı -A - 4C ak: yerine konarak ve nin sabit olduğu + A.+ 4C A.+ 4C.? 6 dış kuvvetlerin yaptığı işin ters işaretlisidir: ak: 3. E? 6 D 6 E + E :# G E? A.+ 4C A E I+ H A E? A JK A E Elemanın yerel koordinatlarda toplam potansiyeli (5.8) olur. uradaki A.+ 4C (5.9) Matrisine elemanın yerel rijitlik matrisi denir. oyutu elemanın yerel serbestlik derecesi kadar ve simetrik bir matristir. Şekil 5. deki eleman için x boyutundadır. Rijitlik matrisi ve transformasyon matrisi SEM in en önemli iki büyüklüğüdür. 5.9 bağıntısı her tip eleman(kafes, kiriş, levha, plak,..) için geçerli genel bir ifadedir. Ancak, eleman tipine bağlı olarak.+ ve matrislerinin boyutu ve terimleri değişir. Örneğin, kafes eleman için ve bağıntısındaki gibidir. Genelleştirme:?,, A JK,,, A E, i. Elemanın yerel koordinatlarda toplam potansiyeli (5.) A,.+, 4C i. Elemanın yerel koordinatlarda rijitlik matrisi (5.) Local stiffness matrix of the member Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 5, Sayfa 5

3 Teorik örnek: Şekil 5.3 deki kafes elemanın yerel rijitlik matrisinin açık ifadesini belirleyiniz. Yerel rijitlik matrisi 5.9 a göre: A.+ 4C. Kafes elemanda ve 5.5 e göre.+ dir, yerine yazarak O+P JK Q O+ 4 4C 4 Q JK Kafes elemanın yerel koordinatlarda rijitlik matrisi (5.) olur. Elemanın yerel serbestlik derecesi dir(, ). Yerel rijitlik matrisi de x boyutlu ve simetriktir, terimleri sabit sayılardan(e, A, L) oluşmaktadır. 5.9 hem düzlem hem de uzay kafes eleman için geçerlidir. Çünkü sistem düzlem de olsa uzay da olsa elemanın yerel eksen takımı, serbestlik derecesi ve yer değiştirme fonksiyonu aynıdır. û d V Ad û 5.3 Elemanın yerel denge koşulu Elemanın 5.8 deki toplam potansiyeli? A JK A E denge konumunda minimum olur. vektorünün terimleri? nin parametreleridir. Çünkü 5.4 e göre, yer değiştirme(ritz) fonksiyonu yu parametre olarak içermektedir.? nin minimum olma koşulu R A JK A E dır. JK simetrik olduğundan R J K E JK E (5.3) Genelleştirilirse: JK,, E, i. Elemanın yerel koordinatlarda denge koşulu (5.4) olur. 5.4 bağıntısı elemanın yerel yer değiştirmeleri, belli olunca yerel kuvvetleri E, nin hesaplanmasında kullanılır. Sabit terimlerden oluşan yerel rijitlik matrisi JK, simetrik, fakat tekildir, yani det JK, dır ve JK, nin tersi yoktur. Kafes eleman için örnekleyelim. 5. deki rijitlik matrisi ile Z[\]H ]^]_[`a` b]c]^ d]`e] Ifş:^:: VWWWWWWWXWWWWWWWY E :# T (5.4a) det JK, det olur. u nedenle E, belli ise 5.4 kullanılarak, hesaplanamaz. JK, neden tekildir? 5.4 uzayda sabitlenmemiş (mesnetlenmemiş), gezer bir elemanın denge koşuludur,, ne olursa olsun geçerlidir. Üzerinde birbirini dengeleyen yükleri olan ama hiç mesnedi olmayan uzayda bir kiriş düşünün. Uzayda gezen, yer değiştiren Local equilibrium condition of the member A JK A E ifadesinin ya göre türevini şu basit düşünce ile bulabiliriz. Önce integraldeki büyüklüklerin matris değil, basit değişken ve sabitler olduğunu varsayalım: değişken, JK ve E sabit. i A JK A E j ij K E#j J K E J K E JK E olur. Matris karşılığı: JK E. Ayrıca bak: EKLER türev. Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 5, Sayfa 5

4 ama şekil değiştirmeyen(rijit yer değiştirme yapan) her zaman dengede olan bir kiriştir. Kiriş kuvvetlerinden yer değiştirmeyi bulamazsınız, sonsuz cevabı vardır. Rijitlik matrisinin i. satır ve j. kolonundaki J,k teriminin fiziksel anlamı nedir? j. yer değiştirme ve diğerleri iken i. serbestlik derecesi yönünde oluşan kuvvettir(birimi: N/m, kn/mm, ). Kafes eleman ile örneklersek: :# T :# T E U E l :# T E U E l :# T û û Ŝ EA / L Ŝ EA / L Ŝ EA / L Ŝ EA / L û û Sayısal örnek: Şekil 5.5 deki kafes sistem kesiti verilen çelik borulardan imal edilmiştir. a noktasına uygulanan P ve P kuvvetleri bu noktanın yer değiştirmesine neden olmuştur. a) Yerel çubuk kuvvetlerini bulunuz. b) P ve P kuvvetlerini bulunuz. c) reaksiyonları bulunuz. Önce sistemin numaralanması, genel ve yerel koordinat sistemlerinin seçilmesi gerekir: Şekil 5.5a. E, yerel çubuk kuvvetlerini 5.4 teki JK,, E, bağıntısından bulabiliriz. unun için çubukların JK, yerel rijitlik matrislerini ve, yerel yer değiştirmelerini hesaplamamız gerekir. Genel yer değiştirmeler 4.a da verilen, ~,, bağıntısı ile yerel yer değiştirmelere dönüştürülür, o halde ~, transformasyon matrislerini de bulmalıyız. Düzlem kafes eleman için: Z[\]H ]^]_[`a` b]c]^%e]`]^ b]c d]ğtş Tc_] c[`h\fc_[hbf`: VWWWWWWWWWWWWXWWWWWWWWWWWWY :# T Δ n n n s t r G T { Z[\]H ]^]_[`a` b]c]^ d]`e] Ifş:^:: VWWWWWWWXWWWWWWWY E :# T ak: 5.4a : T ak: 4. Yapı çeliğinin elastisite modülü E.. 5 N/mm, kesit alanı { 6 { mm her elemanda aynıdır. 3 m 3 m x ˆx 3 ˆx x 3 m Şekil 5.5a: Düzlem kafes sistem Numaralandırma ve koordinat sistemi mm nolu elemanda : n 3 3 p, n p, n r, n r r s t, :# u G u E v ). w rxyz.{ r s t : u :# u Newton :# u H u I+u ˆx SEM işaret kuralına göre Klasik işaret kuralına göre (çekme pozitif) Hesaplar şekil değiştirmemiş sistem ile yapılır. Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 5, Sayfa 5

5 nolu elemanda: n 3 3 p, n 3 3 p p n r.77, n {.{ˆ %r.77 {.{ˆ 5. RİTZ metodunun elemana uygulanması, elemanın rijitlik matrisi s t, s t.77 :# G :# : kn kn E Newton :#. w rxyz.{ {{.ˆ H I+ H ˆx Klasik işaret kuralına göre P ve P kuvvetleri: SEM işaret kuralına göre kn kn kn Œ E JŽ Œ E JŽ noktasında reaksiyonlar : 3 noktasında reaksiyonlar: kn r Œ E45 r JŽ { Œ E45 { JŽ y 77.9 y 77.9 JŽ ˆ 5.4 Elemanın genel koordinatlarda toplam potansiyeli ve genel rijitlik matrisi Elemanın 5. daki toplam potansiyeli(i indisi kaldırıldı)? A JK A E cinsidendir. 4.a ve 4.a yerine konarak yerel büyüklükler(, J+,E? ~ A JK ~ ~ A E A ~ A JK ~ Š A ~ A E U v?,, A J,,, A E, (5.5) i. Elemanın genel koordinatlarda toplam potansiyeli toplam potansiyel genel büyüklükler(,,j,,e, cinsinden elde edilir. uradaki J, ~, A JK, ~, i. Elemanın genel rijitlik matrisi (5.6) matrisi elemanın genel rijitlik matrisidir. ilindiği gibi, toplam potansiyel bir sayıdır ve koordinat transformasyonu değerini değiştirmez, 5. ve 5.5 den bulunan sayısal değer aynıdır. Aradaki fark sadece Reaksiyonlar burada düğüm dengesinden, bilinen klasik yolla, hesaplanmıştır. SEM de daha sistematik başka bir yol izlenir, konular ilerledikçe açıklık kazanacaktır. Global stiffness matrix of the member Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 5, Sayfa 53

6 ilkinin yerel, ikincisinin genel büyüklükler cinsinden hesaplanmış olmasıdır. Sistemin toplam potansiyelinin hesaplanmasında 5.5 kullanılır, çünkü sistem genel koordinatlarda tanımlıdır. 5.5 Elemanın genel denge koşulu Elemanın denge konumunda 5.5 toplam potansiyeli minimum olmak zorundadır: R " " {, A J,,, A E, } J,, E, E, J,, i. Elemanın genel koordinatlarda denge koşulu (5.7) olur. Elemanın, genel yer değiştirmeleri belli olunca 5.7 bağıntısı ile elemanın genel koordinatlardaki E, uç kuvvetleri bulunur. det J, dır, J, nin tersi tanımsızdır(anlamı: bu bağıntıdan, hesaplanamaz). Teorik örnek: Düzlem kafes elemanın genel rijitlik matrisini bulunuz. 5.6 ya göre genel rijitlik matrisi J, ~, A JK, ~, 4. e göre transformasyon matrisi ~, n n n n 5. ye göre yerel rijitlik matrisi JK, dir. 3 n, 3 n ile gösterelim: 3 J, 3 s t ŠK A P A J, bulunur Düzlem kafes elemanın genel rijitlik matrisi (5.8) Teorik örnek: Uzay kafes elemanın genel rijitlik matrisini bulunuz. 5.6 ya göre genel rijitlik matrisi J, ~, A JK, ~, 4.4 e göre transformasyon matrisi ~, n n n r n n n r 5. ye göre yerel rijitlik matrisi JK, 3 3 J, 3 r r 3 ŠK A 3 r A P dir. 3 n, 3 n, 3 r n r ile gösterelim: Gloabal equilibrium condition of the member Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 5, Sayfa 54

7 r r r r J, 3 3 r 3 3 r 3 r 3 3 r 3 3 r 3 r r r r r 3 3 r 3 3 r 3 r 3 3 r 3 3 r 3 r Uzay kafes elemanın genel rijitlik matrisi (5.9) Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 5, Sayfa 55

p 2 p Üçgen levha eleman, düzlem şekil değiştirme durumu

p 2 p Üçgen levha eleman, düzlem şekil değiştirme durumu Üçgen levha eleman düzlem şekil değiştirme durumu Üçgen levha eleman düzlem şekil değiştirme durumu İstinat duvarı basınçlı uzun boru tünel ağırlık barajı gibi yapılar düzlem levha gibi davranırlar Uzun

Detaylı

20. Tanımlar ve temel bağıntılar: İzostatik sistem, hiperstatik sistem Tanımlar ve temel bağıntılar: İzostatik sistem

20. Tanımlar ve temel bağıntılar: İzostatik sistem, hiperstatik sistem Tanımlar ve temel bağıntılar: İzostatik sistem 0 Tanımlar ve temel bağıntılar: İzostatik sistem Kuvvet metodunda eleman iç kuvvetleri ve reaksiyonlar ana bilinmeyenlerdir Bu kuvvetler sistemin düğüm noktalarında yazılan denge denklemlerinden bulunmaya

Detaylı

7. Kafes sistem sayısal örnekleri

7. Kafes sistem sayısal örnekleri 7. Kafes sistem sayısal örnekleri 7. Düzlem kafes sistem sayısal örneği Şekil 7. deki kafes sistem elastisite modülü.. 5 N/mm olan çelik borulardan imal edilmiştir. a noktasındaki kuvvetlerinden oluşan:

Detaylı

(, ) = + + yönünde yer değiştirme fonksiyonu

(, ) = + + yönünde yer değiştirme fonksiyonu . Üçgen levha eleman, düzlem gerilme durumu. Üçgen levha eleman, düzlem gerilme durumu Çok katlı yapılardaki deprem perdeleri ve yüksek kirişler düzlem levha gibi davranır. Sağdaki şekilde bir levha sistem

Detaylı

6. Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması

6. Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması 6 Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması 6 Sistemin noktalarında süreklilik koşulu : Her elemanın düğüm noktası aynı zamanda sistemin de düğüm noktası olduğundan, sistemin noktaları

Detaylı

4. Sonlu elemanlar yer değiştirme metodu, modelleme, tanımlar

4. Sonlu elemanlar yer değiştirme metodu, modelleme, tanımlar 4. Sonlu Elemanlar Yer Değiştirme Metodu modelleme tanımlar 4. Sonlu elemanlar yer değiştirme metodu modelleme tanımlar. bölümde örneklerle açıklanan RITZ metodu.5. ve.5 bağıntıları yerine kullanılabilen

Detaylı

R 1Y kn R 1X R 1Z R 4Y R 3Y 4 R 4X R 3Z R 3X R 4Z. -90 kn. 80 kn 80 kn R 1Y =10 R 1X =-10 R 4Y =10 R 1Z =0 R 3Y =70 4 R 3X =-70 R 4X =0

R 1Y kn R 1X R 1Z R 4Y R 3Y 4 R 4X R 3Z R 3X R 4Z. -90 kn. 80 kn 80 kn R 1Y =10 R 1X =-10 R 4Y =10 R 1Z =0 R 3Y =70 4 R 3X =-70 R 4X =0 27. Uzay kafes örnek çözümleri Örnek 27.: Şekil 27. de verilen uzay kafes sistem çelik borulardan imal edilecektir. a noktasındaki dış yüklerden oluşan eleman kuvvetleri, reaksiyonlar, gerilmeler ve düğüm

Detaylı

28. Sürekli kiriş örnek çözümleri

28. Sürekli kiriş örnek çözümleri 28. Sürekli kiriş örnek çözümleri SEM2015 programında sürekli kiriş için tanımlanmış özel bir eleman yoktur. Düzlem çerçeve eleman kullanılarak sürekli kirişler çözülebilir. Ancak kiriş mutlaka X-Y düzleminde

Detaylı

29. Düzlem çerçeve örnek çözümleri

29. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri 9. Düzlem çerçeve örnek çözümleri Örnek 9.: NPI00 profili ile imal edilecek olan sağdaki düzlem çerçeveni normal, kesme ve moment diyagramları çizilecektir. Yapı çeliği

Detaylı

23. Sistem denge denklemlerinin direkt kurulması

23. Sistem denge denklemlerinin direkt kurulması . Sistem denge denklemlerinin direkt kurulması. Sistem denge denklemlerinin direkt kurulması Sonlu elemanlar metodu el hesapları için değil, bilgisayarda yazılımlar ile kullanılması için geliştirilmiştir.

Detaylı

33. Üçgen levha-düzlem gerilme örnek çözümleri

33. Üçgen levha-düzlem gerilme örnek çözümleri 33. Üçgen levha-düzlem gerilme örnek çözümleri Örnek 33.1: Şekil 33.1 deki, kalınlığı 20 cm olan betonarme perdenin malzemesi C25/30 betonudur. Tepe noktasında 1000 kn yatay yük etkimektedir. a) 1 noktasındaki

Detaylı

34. Dörtgen plak örnek çözümleri

34. Dörtgen plak örnek çözümleri 34. Dörtgen plak örnek çözümleri Örnek 34.1: Teorik çözümü Timoshenko 1 tarafından verilen dört tarafından ankastre ve merkezinde P=100 kn tekil yükü olan kare plağın(şekil 34.1) çözümü 4 farklı model

Detaylı

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ

İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ İKİ BOYUTLU ÇUBUK SİSTEMLER İÇİN YAPI ANALİZ PROGRAM YAZMA SİSTEMATİĞİ Yapı Statiği nde incelenen sistemler çerçeve sistemlerdir. Buna ek olarak incelenen kafes ve karma sistemler de aslında çerçeve sistemlerin

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 2 Laminanın Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 2 Laminanın Makromekanik

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 2 Laminanın Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 2 Laminanın Makromekanik

Detaylı

25. SEM2015 programı kullanımı

25. SEM2015 programı kullanımı 25. SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Program kısaca tanıtılacak, sonraki bölümlerde bu program ile

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

36. Basit kuvvet metodu

36. Basit kuvvet metodu 36. Basit kuvvet metodu Basit kuvvet metodu hakkında çok kısa bilgi verilecektir. Basit kuvvet metodunda hiperstatik bilinmeyenlerinin hesaplanmasına, dolayısıyla buna ait denklem sisteminin kurulmasına

Detaylı

25. SEM2015 programı ve kullanımı

25. SEM2015 programı ve kullanımı 25. SEM2015 programı ve kullanımı Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Program kısaca tanıtılacak, sonraki bölümlerde bu program ile

Detaylı

SEM2015 programı kullanımı

SEM2015 programı kullanımı SEM2015 programı kullanımı Basit Kuvvet metodu kullanılarak yazılmış, öğretim amaçlı, basit bir sonlu elemanlar statik analiz programdır. Çözebileceği sistemler: Düzlem/uzay kafes: Evet Düzlem/uzay çerçeve:

Detaylı

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları-

Mukavemet 1. Fatih ALİBEYOĞLU. -Çalışma Soruları- 1 Mukavemet 1 Fatih ALİBEYOĞLU -Çalışma Soruları- Soru 1 AB ve BC silindirik çubukları şekilde gösterildiği gibi, B de kaynak edilmiş ve yüklenmiştir. P kuvvetinin büyüklüğünü, AB çubuğundaki çekme gerilmesiyle

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Hiperstatik sistemlerin çözümünde, yer değiştirmelerin küçük olduğu ve gerilme - şekil değiştirme bağıntılarının lineer olduğu kabul edilmektedir.

Hiperstatik sistemlerin çözümünde, yer değiştirmelerin küçük olduğu ve gerilme - şekil değiştirme bağıntılarının lineer olduğu kabul edilmektedir. 1. HİPERSTATİK SİSTEMLER 1.1. Giriş Bir sistemin hesabının amacı, dış etkilerden meydana gelen kesit tesirlerini, şekil değiştirmelerini ve yer değiştirmelerini belirlemektir. İzostatik sistemlerde, yalnız

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

SONLU ELEMANLAR YÖNTEMİ

SONLU ELEMANLAR YÖNTEMİ SONLU ELEMANLAR YÖNTEMİ Kurs Kapsamı SONLU ELEMANLAR KAVRAMI SONLU ELEMANLAR FORMULASYONU UYGULAMALARI Sonlu Elemanlar Çözümleri Rijitlik Metodu Esneklik Metodu Karışık Kullanımlar Rijitlik Metodu Kullanılarak

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS T E CHAPTER 2 Eksenel MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Yükleme Fatih Alibeyoğlu Eksenel Yükleme Bir önceki bölümde, uygulanan yükler neticesinde ortaya çıkan

Detaylı

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Özel Laboratuvar Dersi Strain Gauge Deneyi Çalışma Notu Laboratuar Yeri: B Blok en alt kat Mekanik Laboratuarı Laboratuar Adı: Strain Gauge Deneyi Konu:

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ BURSA - 2016 1. GİRİŞ Eğilme deneyi malzemenin mukavemeti hakkında tasarım

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

İki Boyutlu Yapılar için Doğrudan Rijitlik Metodu (Direct Stiffness Method) (İleri Yapı Statiği II. Kısım)

İki Boyutlu Yapılar için Doğrudan Rijitlik Metodu (Direct Stiffness Method) (İleri Yapı Statiği II. Kısım) İki Boyutlu Yapılar için Doğrudan Rijitlik Metodu (Direct Stiffness Method) (İleri Yapı Statiği II. Kısım) Doç. Dr. Özgür Özçelik Dokuz Eylül Üniversitesi, Müh. Fak., İnşaat Müh. Böl. Genel Genel Genel

Detaylı

ENDÜSTRİYEL UYGULAMALARLA BİLGİSAYAR DESTEKLİ MÜHENDİSLİK. Sonlu Elemanlar Yöntemine Kısaca Bir Bakış

ENDÜSTRİYEL UYGULAMALARLA BİLGİSAYAR DESTEKLİ MÜHENDİSLİK. Sonlu Elemanlar Yöntemine Kısaca Bir Bakış Sonlu Elemanlar Yöntemine Kısaca Bir Bakış Teorik hesaplar genelde düzgün ve basit geometrideki elemanlar için geliştirilmiştir. Geometrinin, malzeme sayısının vb. parametrelerin farklılaşması sebebiyle

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019

KOÜ. Mühendislik Fakültesi Makine Mühendisliği Bölümü (1. ve 2.Öğretim / B Şubesi) MMK208 Mukavemet II Dersi - 1. Çalışma Soruları 23 Şubat 2019 SORU-1) Aynı anda hem basit eğilme hem de burulma etkisi altında bulunan yarıçapı R veya çapı D = 2R olan dairesel kesitli millerde, oluşan (meydana gelen) en büyük normal gerilmenin ( ), eğilme momenti

Detaylı

30. Uzay çerçeve örnek çözümleri

30. Uzay çerçeve örnek çözümleri . Ua çerçeve örnek çöümleri. Ua çerçeve örnek çöümleri Ua çerçeve eleman sonlu elemanlar metodunun en karmaşık elemanıdır. Bunun nedenleri: ) Her eleman için erel eksen takımı seçilmesi gerekir. Elemanın

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v İÇİNDEKİLER ÖNSÖZ... iii İÇİNDEKİLER... v BÖLÜM 1.... 1 1.1. GİRİŞ VE TEMEL KAVRAMLAR... 1 1.2. LİNEER ELASTİSİTE TEORİSİNDE YAPILAN KABULLER... 3 1.3. GERİLME VE GENLEME... 4 1.3.1. Kartezyen Koordinatlarda

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı Yapı Sistemlerinin Hesabı İçin Matris Metotları 05-06 Bahar Yarıyılı Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL BÖLÜM VIII HAREKET DENKLEMİ ZORLANMIŞ TİTREŞİMLER SERBEST TİTREŞİMLER Bu bölümün hazırlanmasında

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir.

Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir. Gerilme ve şekil değiştirme kavramları: Uygulanan dış yüklemelere karşı katı cisimlerin birim alanlarında sergiledikleri tepkiye «Gerilme» denir. Bir mühendislik sistemine çok farklı karakterlerde dış

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 3 Laminanın Mikromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 3 Laminanın Mikromekanik

Detaylı

Fotogrametrinin Optik ve Matematik Temelleri

Fotogrametrinin Optik ve Matematik Temelleri Fotogrametrinin Optik ve Matematik Temelleri Resim düzlemi O : İzdüşüm (projeksiyon ) merkezi P : Arazi noktası H : Asal nokta N : Nadir noktası c : Asal uzaklık H OH : Asal eksen (Alım ekseni) P OP :

Detaylı

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ

MUKAVEMET Öğr. Gör. Fatih KURTULUŞ www.sakarya.edu.tr MUKAVEMET Öğr. Gör. Fatih KURTULUŞ www.sakarya.edu.tr 1. DÜŞEY YÜKLÜ KİRİŞLER Cisimlerin mukavemeti konusunun esas problemi, herhangi bir yapıya uygulanan bir kuvvetin oluşturacağı gerilme

Detaylı

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3

= ε s = 0,003*( ,3979)/185,3979 = 6,2234*10-3 1) Şekilde verilen kirişte sehim denetimi gerektirmeyen donatı sınırı kadar donatı altında moment taşıma kapasitesi M r = 274,18 knm ise b w kiriş genişliğini hesaplayınız. d=57 cm Malzeme: C25/S420 b

Detaylı

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi

Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Bina Türü Yapı Sistemlerinin Analizi Üzerine Rijit Döşeme ve Sınır Şartları ile İlgili Varsayımların Etkisi Rasim Temür İstanbul Üniversitesi İnşaat Mühendisliği Anabilim Dalı Sunum Planı Giriş Rijit Döşeme

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

Elastisite modülü çerçevesi ve deneyi: σmaks

Elastisite modülü çerçevesi ve deneyi: σmaks d) Betonda Elastisite modülü deneyi: Elastisite modülü, malzemelerin normal gerilme (basınç, çekme) altında elastik şekil değiştirmesinin ölçüsüdür. Diğer bir ifadeyle malzemenin sekil değiştirmeye karşı

Detaylı

Transformasyonlar (İleri Yapı Statiği)

Transformasyonlar (İleri Yapı Statiği) (İleri Yapı Statiği) Doç. Dr. Özgür Özçelik Dokuz Eylül Üniversitesi, Müh. Fak., İnşaat Müh. Böl. Sunum Ana Hattı Transformasyonlar Rijit uç bölgesi transformasyonu Global Lokal eksen transformasyonu Temel

Detaylı

UYGULAMALI ELASTİSİTE TEORİSİ

UYGULAMALI ELASTİSİTE TEORİSİ KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI ELASTİSİTE TEORİSİ Prof.Dr. Paşa YAYLA 2010 ÖNSÖZ Bu kitabın amacı öğrencilere elastisite teorisi ile ilgili teori ve formülasyonu

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEKİLLİK İÇEREN REISSNER PLAKLARININ SONLU ELEMAN ÇÖZÜMÜNDE GEÇİŞ ELEMANLARI KULLANILARAK AĞ SIKLAŞTIRMASI YÜKSEK LİSANS TEZİ İnş. Müh. Tuğrul ÇELİK

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü E-Posta: oguahmettopcu@gmailcom We: http://mmf2oguedutr/atopcu Bilgisayar Destekli Nümerik Analiz Ders notları

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis. Reza SHIRZAD REZAEI

SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis. Reza SHIRZAD REZAEI SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis Reza SHIRZAD REZAEI SONLU ELEMANLAR YÖNTEMİ Sonlu Elemanlar (SE)Yöntemi, çesitli mühendislik problemlerine kabul edilebilir bir yaklasımla

Detaylı

Doç. Dr. Bilge DORAN

Doç. Dr. Bilge DORAN Doç. Dr. Bilge DORAN Bilgisayar teknolojisinin ilerlemesi doğal olarak Yapı Mühendisliğinin bir bölümü olarak tanımlanabilecek sistem analizi (hesabı) kısmına yansımıştır. Mühendislik biliminde bilindiği

Detaylı

DÜZLEM ÇUBUK ELEMAN RİJİTLİK MATRİSİNİN DENEYSEL OLARAK BELİRLENMESİ

DÜZLEM ÇUBUK ELEMAN RİJİTLİK MATRİSİNİN DENEYSEL OLARAK BELİRLENMESİ XIX. ULUSAL MEKANİK KONGRESİ 24-28 Ağustos 2015, Karadeniz Teknik Üniversitesi, Trabzon DÜZLEM ÇUBUK ELEMAN RİJİTLİK MATRİSİNİN DENEYSEL OLARAK BELİRLENMESİ Orhan Yapıcı 1, Emre Karaman 2, Sezer Öztürk

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş

Mukavemet-I. Yrd.Doç.Dr. Akın Ataş Mukavemet-I Yrd.Doç.Dr. Akın Ataş Bölüm 5 Eğilmede Kirişlerin Analizi ve Tasarımı Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N

Ödev 1. Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N Ödev 1 Ödev1: 600N luk kuvveti u ve v eksenlerinde bileşenlerine ayırınız. 600 N 1 600 N 600 N 600 N u sin120 600 N sin 30 u 1039N v sin 30 600 N sin 30 v 600N 2 Ödev 2 Ödev2: 2 kuvvetinin şiddetini, yönünü

Detaylı

35. Karma sistem örnek çözümleri

35. Karma sistem örnek çözümleri 35. Karma sistem örnek çözümleri SEM2025 de düzlem kafes ve düzlem çerçeve karma sistem çözülebilir. Bunun dışında, örneğin, aynı sistemde plak, levha veya çerçeve eleman içeren karma sistem çözümü programda

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 11 Enerji Yöntemleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok. 11.1 Giriş Önceki bölümlerde

Detaylı

MUKAVEMET TEMEL İLKELER

MUKAVEMET TEMEL İLKELER MUKAVEMET TEMEL İLKELER Temel İlkeler Mukavemet, yük etkisi altındaki cisimlerin gerilme ve şekil değiştirme durumlarının, iç davranışlarının incelendiği uygulamalı mekaniğin bir dalıdır. Buradaki cisim

Detaylı

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor

BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 3 BURULMA (TORSİON) Dairesel Kesitli Çubukların (Millerin) Burulması 1.1.018 MUKAVEMET - Ders Notları - Prof.Dr. Mehmet Zor 1 3. Burulma Genel Bilgiler Burulma (Torsion): Dairesel Kesitli Millerde Gerilme

Detaylı

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli

BETONARME-I 3. Hafta. Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli BETONARME-I 3. Hafta Onur ONAT Munzur Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Tunceli 1 Betonun Nitelik Denetimi ile İlgili Soru Bir şantiyede imal edilen betonlardan alınan numunelerin

Detaylı

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU

Mesleki Terminoloji. Sayısal Analiz DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK MEHMET EMRE ÖNDER DOĞAÇ CEM İŞOĞLU Mesleki Terminoloji DERSİ VEREN: ARŞ. GRV. DR. GÖKSEL BİRİCİK Sayısal Analiz MEHMET EMRE ÖNDER - 12011061 DOĞAÇ CEM İŞOĞLU - 11011074 Sayısal Analiz Nedir? Sayısal analiz, yada diğer adıyla numerik analiz,

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması

Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması 1 Hibrit ve Çelik Kablolu Köprülerin Dinamik Davranışlarının Karşılaştırılması Arş. Gör. Murat Günaydın 1 Doç. Dr. Süleyman Adanur 2 Doç. Dr. Ahmet Can Altunışık 2 Doç. Dr. Mehmet Akköse 2 1-Gümüşhane

Detaylı

Elemanlardaki İç Kuvvetler

Elemanlardaki İç Kuvvetler Elemanlardaki İç Kuvvetler Bölüm Öğrenme Çıktıları Yapı elemanlarında oluşan iç kuvvetler. Eksenel kuvvet, Kesme kuvvet ve Eğilme Momenti Denklemleri ve Diyagramları. Bölüm Öğrenme Çıktıları Elemanlarda

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Genel Laboratuvar Dersi Eğilme Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Genel Laboratuvar Dersi Eğilme Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Genel Laboratuvar Dersi Eğilme Deneyi Çalışma Notu Laboratuar Yeri: B Blok en alt kat Mekanik Laboratuarı Laboratuar Adı: Eğilme Deneyi Konu: Elastik

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bubölümdebirnoktayaetkiyen vebelli bir koordinat ekseni/düzlemi ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi/başka bir düzlem ile ilişkili

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

ii) S 2LW 2WH 2LW 2WH S 2WH 2LW S 3( x 1) 5( x 2) 5 3x 3 5x x Maliye Bölümü EKON 103 Matematik I / Mart 2018 Proje 2 CEVAPLAR C.1) C.

ii) S 2LW 2WH 2LW 2WH S 2WH 2LW S 3( x 1) 5( x 2) 5 3x 3 5x x Maliye Bölümü EKON 103 Matematik I / Mart 2018 Proje 2 CEVAPLAR C.1) C. C.1) x1 x 1 4 4( x1) x 6 4x 4 x 6 x 46 x Maliye Bölümü EKON 10 Matematik I / Mart 018 Proje CEVAPLAR C.) i) S LW WH LW WH S LW WH S W W W S L H W ii) S LW WH WH LW S WH LW S W W W S H L W C.) ( x1) 5(

Detaylı

Yapisal Analiz Programi SAP2000 Bilgi Aktarimi ve Kullanimi

Yapisal Analiz Programi SAP2000 Bilgi Aktarimi ve Kullanimi Yapisal Analiz Programi SAP2000 Bilgi Aktarimi ve Kullanimi Dr. Bilge DORAN Dr. Sema NOYAN ALACALI ÖNSÖZ Günümüzde bilgisayar teknolojisinin hizla ilerlemesinin dogal bir sonucu olarak insaat mühendisligi

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 5 Ağırlık merkezi STATİK Bir cisim moleküllerden meydana gelir. Bu moleküllerin her birine yer çekimi kuvveti etki eder. Bu yer çekimi kuvvetlerinin cismi meydana getiren

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Makine Mühendisliği Bölümü MM 1000 STATİK ÖDEV II Son teslim tarihi: 13 Mayıs Cuma 10:00 (I, II. Öğretim Grupları) Soru Çözümü: 13 Mayıs Cuma 14:00,

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

Üç yol için P1 tablosu önerilen ders taslaklarını verir. Listenin sol üç kolonu her yol için önerilen kısımlardır.

Üç yol için P1 tablosu önerilen ders taslaklarını verir. Listenin sol üç kolonu her yol için önerilen kısımlardır. Ön Söz Bu kitap lisans ve yüksek lisans düzeyinde tanıtıcı nitelikte, her bölümün sonunda görünen daha gelişmiş konulara bağlı olarak ele alınan bir ders kitabı olarak yazılır. Gelişmiş konular olmadan

Detaylı

MAKİNE ELEMANLARI 1 GENEL ÇALIŞMA SORULARI 1) Verilen kuvvet değerlerini yükleme türlerini yazınız.

MAKİNE ELEMANLARI 1 GENEL ÇALIŞMA SORULARI 1) Verilen kuvvet değerlerini yükleme türlerini yazınız. MAKİNE ELEMANLARI 1 GENEL ÇALIŞMA SORULARI 1) Verilen kuvvet değerlerini yükleme türlerini yazınız. F = 2000 ± 1900 N F = ± 160 N F = 150 ± 150 N F = 100 ± 90 N F = ± 50 N F = 16,16 N F = 333,33 N F =

Detaylı

1. Giriş, amaç. Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 2015, http://mmf2.ogu.edu.

1. Giriş, amaç. Ahmet TOPÇU, Sonlu Elemanlar Metodu, Eskişehir Osmangazi Üniversitesi, 2015, http://mmf2.ogu.edu. 1. Giriş, amaç Sonlu elemanlar metodu(sem) 1 yapıların statik-dinamik analizini profesyonel yazılımlar ile, dolayısıyla bilgisayarda, sayısal olarak yapar. Mezun olan ve yapı tasarımı(proje) yapacak her

Detaylı

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ ÖRNEKLER. 05-5a. M. Güven KUTAY. 05-5a-ornekler.doc

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ ÖRNEKLER. 05-5a. M. Güven KUTAY. 05-5a-ornekler.doc 2009 Kasım MUKAVEMET DEĞERLERİ ÖRNEKLER 05-5a M. Güven KUTAY 05-5a-ornekler.doc İ Ç İ N D E K İ L E R 5. MUKAVEMET HESAPLARI İÇİN ÖRNEKLER...5.3 5.1. 1. Grup örnekler...5.3 5.1.1. Örnek 1, aturalı mil

Detaylı

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31 SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı