10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması"

Transkript

1 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1

2 Laplace Devre Çözümleri Aşağıdaki devrenin analizi Laplace dönüşümü kullanılarak gerçekleşsrilebilir. İndüktörün bağlangıç akım değeri i(0)=0 ise, olur. ise 2

3 Laplace Devre Çözümleri Bu ifadenin ters Laplace dönüşümü hesaplanarak akımın zaman domenindeki ifadesi elde edilebilir. Eleman değerlerinin yerine yazılması ile aşağıdaki sonuç elde edilir. 3

4 Devre Eleman Modelleri Direnç, kondansatör ve indüktörün s- domenindeki ifadeleri elde edilerek devrelerin analizi gerçekleşsrilebilir. Zaman düzleminde direnç için akım gerilim bağın^sı ν(t)=ri(t) şeklindedir. Bu bağın^ Laplace dönüşümü kullanılarak s-düzleminde V(s)=RI(s) şeklinde yazılır. Dolayısıyla bir direnç için zaman domeni ve karmaşık frekans (s) domeni gösterimleri aşağıdaki şekildeki gibidir. 4

5 Devre Eleman Modelleri Bir kondansatörün zaman domeni bağın^ları şu biçimdedir. Bu ifadelerin Laplace dönüşümleri aşağıdaki gibidir. Dolayısıyla kondansatörün zaman ve s domeni ifadeleri aşağıdaki gibidir. 5

6 Devre Eleman Modelleri Bir indüktör için gerilim-akım bağın^ları aşağıdaki gibidir. Bu ifadelerin Laplace dönüşümleri aşağıdaki gibidir. Dolayısıyla indüktörün s-domeni gösterimi aşağıdaki gibi olur. 6

7 Devre Eleman Modelleri Şekilde gösterilen manyesk bağlaşımlı indüktörlerin gerilim-akım bağın^ları aşağıdaki gibi yazılabilir. Bu ifadelerin s-domenindeki gösterimleri aşağıdaki gibi elde edilir. 7

8 Devre Eleman Modelleri Dolayısıyla manyesk bağlaşımlı indüktörlerin gösterimi aşağıdaki şekilde gösterildiği gibi olur. Bağımlı ve bağımsız gerilim ve akım kaynaklarının Laplace dönüşümü aşağıdaki gibidir. 8

9 Devre Eleman Modelleri ν 1 (t)=ai 2 (t) şeklideki akım bağımı gerilim kaynağının Laplace dönüşümü ise V 1 (s)=ai 2 (s) şeklinde olur. Dönüştürülmüş devredeki gerilim kaynakları ve akım kaynakları, kondansatörün ve indüktörün başlangıç koşullarının bir sonucudur. Başlangıç akımını yönü veya başlangıç geriliminin polaritesi ters çevrilmişse, dönüşüm sonucu elde edilen devrede, başlangıç koşulları nedeniyle oluşan kaynaklar da ters çevrilmelidir. 9

10 Devre Eleman Modelleri Açıklama: s-domeninde işlem yapılırken göz analizi, düğüm analizi, süper pozisyon, kaynak dönüşümü, Thevenin teoremi ve Norton teoremi gibi yöntemler kullanılabilir. Örnek: Şekildeki devrenin s-domenindeki eşdeğer devresini elde ediniz ve çıkış gerilimini s ve zaman domeninde hesaplayınız. 10

11 Devre Eleman Modelleri 11

12 Devre Eleman Modelleri Örnek: Şekildeki devrenin s-domenindeki göz denklemlerini yazınız. 12

13 Devre Eleman Modelleri 13

14 Devre Eleman Modelleri Örnek: Şekildeki devrenin s-domenindeki düğüm denklemlerini yazınız. 14

15 Devre Eleman Modelleri 15

16 Devre Eleman Modelleri Örnek: Şekildeki devrede ν 0 (t) gerilimini hesaplayınız. 16

17 Devre Eleman Modelleri 17

18 Devre Eleman Modelleri Açıklama: s-domeninde işlem yapılırken göz analizi, düğüm analizi, süper pozisyon, kaynak dönüşümü, Thevenin teoremi ve Norton teoremi gibi yöntemler kullanılabilir. 18

19 Devre Eleman Modelleri 19

20 Devre Eleman Modelleri Açıklama: Daha önceki bölümlerde belirsldiği gibi devrelerin geçici durum analizinde Laplace dönüşümü kullanılabilir. Örnek: Aşağıda gösterilen devrenin t>0 için çıkış gerilimini hesaplayınız. 20

21 Devre Eleman Modelleri 21

22 Transfer Fonksiyonu Transfer fonksiyonu hesaplanırken tüm başlangıç koşulları sıira ayarlanır. Ayrıca devrenin çıkış büyüklüğü birden fazla kaynak taraindan üresliyorsa süper pozisyon tekniği kullanılarak her bir giriş için ayrı bir transfer fonksiyonu üreslir. Bu durumu incelemek için doğrusal bir devrenin giriş/çıkış bağın^sının aşağıdaki gibi olduğunu düşünelim. 22

23 Transfer Fonksiyonu Eğer tüm başlanğıç koşulları sıir ise bu denklemin Laplace dönüşümü aşağıdaki gibi elde edilir. Y o (s) nin X i (s) ye oranı H(s) olarak gösterilir ve transfer veya devre fonksiyonu olarak adlandırılır. Yani; ve olur. 23

24 Transfer Fonksiyonu x i (t)=δ(t) yani birim dürtü olması durumunda X i (s)=1 olur ev dolayısıyla Y o (s)=h(s) olur. Bir devrenin dürtü tepkisi biliniyorsa başka girişler için de devrenin çıkışı kolaylıkla hesaplanabilir. Sadece bir enerji depolayan elaman bulunduran birinci mertebeden devrenin doğal tepkisi x(t)=x o e -t/τ şeklindir. Burada x(t), akım veya gerilim olabilir ve X o, x(t) nin başlangıç koşulu ve τ devrenin zaman sabisdir. İkinci mertebeden bir devrenin doğal tepkisi ise karakterissk denklemin kökleri ile belirlenir. KarakterisSk denklemin yapısı aşağıdaki gibidir. Burada ζ sönüm katsayısıdır ve ω o sönümsüz doğal frekans^r. 24

25 Transfer Fonksiyonu Daha önce açıklandığı gibi bu denklemin köklerine göre üç farklı durum ortaya çıkmaktadır. 1. Durum: ζ>1 ise, aşırı sönümlü devre (denklemin kökleri gerçel ve farklıdır), 2. Durum: ζ<1 ise, eksik sönümlü devre (denklemin kökleri kompleks ve eşleniksr), 3. Durum: ζ=1 ise, krisk sönümlü devre (kökler gerçel ve aynıdır) olur. 25

26 Transfer Fonksiyonu Grafiksel formda devrenin kutup ve sıirları karmaşık düzlem veya s-düzlemi üzerine yapılan çizimler kullanarak gerçekleşsrilebilir. Karmaşık düzlemde yatay eksen σ ve düşey eksen jω dır. Bu çizimlerde sıirlar 0 ile kutuplar ise X ile gösterilir. Rasyonel bir fonksiyonda aynı sayıda sıir ve kutup bulunmaktadır. n>m ise sonsuzda n-m sıir olduğu söylenir. n<m ise sonsuzda m-n kutup olduğu söylenir. Bir devrenin kutup konumlarının, devrenin doğal tepkisini nasıl etkilediği aşağıdaki çizimlerden kolaylıkla görülebilir. 26

27 Transfer Fonksiyonu İkinci mertebeden bir devrenin bu üç farklı durumu için kutupları ve doğal tepkisi aşağıdaki gibidir. Aşırı sönümlü Eksik sönümlü KriSk sönümlü 27

28 Transfer Fonksiyonu Açıklama: Aşağıda ikinci mertebeden bir devrenin karakterissk denkleminin köklerinin kompleks düzlemde çizimleri gösterilmektedir. 28

29 Transfer Fonksiyonu Örnek: Bir devrenin dürtü tepkisi h(t)=e -t şeklindedir. v i (t)=10e -2t u(t) V giriş gerilimi için v o (t) çıkış gerilimini hesaplayınız. 29

30 Kutup-Sıir Çizimi/Bode Çizimi Bağın^sı Yüksek geçiren RLC filtresinin transfer fonksiyonu aşağıdaki gibidir. Yandakidevrede gösterilen değerler kullanılarak bu denklem şu şekilde yazılır. 30

31 Kutup-Sıir Çizimi/Bode Çizimi Bağın^sı Bu fonksiyonun standart kutupsıir çizimi yandaki gibidir. Ayrıca G v (s) genliğinin üç boyutlu s-düzlemi çizimi sonraki sayfada gösterilmektedir. Bu çizimden s=0 için G v (s)=0 ve s=-1±j2 için G v (s)= olduğu görülebilir. 31

32 Kutup-Sıir Çizimi/Bode Çizimi Bağın^sı 32

33 Kutup-Sıir Çizimi/Bode Çizimi Bağın^sı Bir transfer fonksiyonunun genliğinin Bode çizimi, s=jω ile tanımlanan frekans düzlemidir.yani s nin gerçel kısmı olan σ sıir alınmaktadır. Yandaki şekilde bu durum görülmektedir. 33

34 Kutup-Sıir Çizimi/Bode Çizimi Bağın^sı Yukarıda çizimin simetrik olduğu görülür dolayısıyla bilgi kaybı olmadan yalnızca pozisf frekanslar kullanılabilir. Bu çizimin daha ayrın^lı hali aşağıda gösterilmektedir. 34

35 Kutup-Sıir Çizimi/Bode Çizimi Bağın^sı Bu şekilden transfer fonksiyonunun maksimum değerinin, karmaşık kutup frekansının genliği olan ω= 5=2.24rad/s= de oluştuğu görülür. Bu Sp çizimlerde frekans birimi olarak rad/s yerine genellikle Hz tercih edilir. Ayrıca genellikle transfer fonksiyonun genliği db cinsinde yazılır ve frekans için logaritmik eksen kullanılır (yukarıdaki çizimlerde frekans birimi olarak rad/s birimi kullanılmış^r). 35

36 Kalıcı Durum Tepkisi Bir devrenin tam tepkisi t= için kaybolan geçici durum terimlerinden ve her zaman mevcut olan kalıcı durum terimlerinden oluşur. Bir devrenin kalıcı durum tepkisi doğrudan hesaplanabilir. Y(s)=H(s)X(s) olarak yazılabildiği daha önce açıklanmış^. Bu ifadede X(s) giriş fonksiyonu (zorlayan fonksiyon) ve H(s) ise devre fonksiyonudur. 36

37 Kalıcı Durum Tepkisi Y(s) tepkisinin geçici durum kısmı H(s) nin kutuplarından, tepkinin kalıcı kısmı ise giriş (veya zorlayan) fonksiyonunun kutuplarından kaynaklanır. x(t)=x M e jωo olduğunu düşündüğümüzde y(t) nin kalıcı durum tepkisi aşağıdaki ifade ile elde edilebilir. Giriş fonksiyonunun bir θ faz açısına sahip olması durumunda Φ(jω o ) a θ eklenir ve tepkinin fazı Φ(jω o )+θ olur 37

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler

2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler 2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Geçici analizden kastedilen bir anahtarın

Detaylı

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 11. Sunum: İki Kapılı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş İki kapılı devreler giriş akımları ve gerilimleri ve çıkış akımları

Detaylı

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 6. Sunum: Manye-k Bağlaşımlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Bu ders kapsamında ilgilendiğimiz bütün devre elamanlarının ideal

Detaylı

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

7. Sunum: Çok Fazlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 7. Sunum: Çok Fazlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Üç Fazlı Devreler Üç fazlı devreler bünyesinde üç fazlı gerilim içeren devrelerdir.

Detaylı

Problemler: Devre Analizi-II

Problemler: Devre Analizi-II Problemler: Devre Analizi-II P.7.1 Grafiği verilen sinüsoidalin hem sinüs hem de kosinüs cinsinden ifadesini yazınız. v(t) 5 4 3 2 1 0-1 t(saniye) -2-3 -4-5 0 1 2 3 4 5 6 7 8 9 10 P.7.2 v1(t) 60Cos( 100

Detaylı

5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

5. Sunum: Kalıcı Durum Güç Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 5. Sunum: Kalıcı Durum Güç Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Bu bölümde AC devrelerde güç hesabı ele alınacakqr. Ayrıca güç

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1 THEVENIN VE NORTON TEOREMLERİ Bu teoremler en güçlü analiz tekniklerindendir EBE-25, Ö.F.BAY THEVENIN EŞDEĞER TEOREMİ DOĞRUSAL DEVRE Bağımsız ve bağımlı kaynaklar içerebilir DEVRE A v O _ a + i Bağımsız

Detaylı

1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS

1. Sunum: Kapasitans ve İndüktans. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS 1. Sunum: Kapasitans ve İndüktans Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS Kapasitans ve İndüktans Kondansatörler elektrik alanlarında, indüktörler ise manyejk alanlarında

Detaylı

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi DENEY 8: PASİF FİLTRELER Deneyin Amaçları Pasif filtre devrelerinin çalışma mantığını anlamak. Deney Malzemeleri Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop.

Detaylı

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2 ELEKTRİK DEVRE TEMELLERİ 06.05.2015 ÖDEV-2 1. Aşağıdaki şekilde verilen devrenin; a) a-b uçlarının solunda kalan kısmının Thevenin eşdeğerini bulunuz. b) Bu eşdeğerden faydalanarak R L =4 luk yük direncinde

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DENEY 5: FREKANS CEVABI VE BODE GRAFİĞİ

DENEY 5: FREKANS CEVABI VE BODE GRAFİĞİ DENEY 5: FREKANS CEVABI VE BODE GRAFİĞİ 1 AMAÇ Bu deneyin temel amacı; bant geçiren ve alçak geçiren seri RLC filtrelerin cevabını incelemektir. Ayrıca frekans cevabı deneyi neticesinde elde edilen verileri

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sistemleri Tasarımı Giriş ve Temel Kavramlar Prof. Dr. Bülent E. Platin Giriş Çalıştay İçeriği: Giriş ve Temel Kavramlar Açık Çevrim Kontrol Kapalı Çevrim Kontrol Kök Yer Eğrileri ve Yöntemleri

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 4 @ysevim61 https://www.facebook.com/groups/ktuemt/ Elektrik Mühendisliğinin TemelleriYrd. Doç. Dr. Yusuf SEVİM 1 Thevenin (Gerilim) ve Norton (kım) Eşdeğeri macı : Devreyi

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L

Detaylı

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER

SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER SAYISAL İŞARET İŞLEME LABORATUARI LAB 5: SONSUZ DÜRTÜ YANITLI (IIR) FİLTRELER Bu bölümde aşağıdaki başlıklar ele alınacaktır. Sonsuz dürtü yanıtlı filtre yapıları: Direkt Şekil-1, Direkt Şekil-II, Kaskad

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 3 Seçme Sorular ve Çözümleri

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2024 Elektrik Devreleri Laboratuarı II 2013-2014 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT DENEY 3 SERİ VE PARALEL RLC DEVRELERİ Malzeme Listesi: 1 adet 100mH, 1 adet 1.5 mh, 1 adet 100mH ve 1 adet 100 uh Bobin 1 adet 820nF, 1 adet 200 nf, 1 adet 100pF ve 1 adet 100 nf Kondansatör 1 adet 100

Detaylı

8. Sunum: Değişken Frekanslı Devrelerin Performansı. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

8. Sunum: Değişken Frekanslı Devrelerin Performansı. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 8. Sunum: Değişken Frekanslı Devrelerin Performansı Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Değişken Frekans Tepki Analizi Bu bölümde direnç,

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Devre Teorisi 2 EEE

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Devre Teorisi 2 EEE DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Devre Teorisi 2 EEE224 4 6 5 6 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin Koordinatörü

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE Kontrol Sistemleri I Final Sınavı 9 Ağustos 24 Adı ve Soyadı: Bölüm: No: Sınav süresi 2 dakikadır.

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI Giriş Temel güç kuvvetlendiricisi yapılarından olan B sınıfı ve AB sınıfı kuvvetlendiricilerin çalışma mantığını kavrayarak, bu kuvvetlendiricileri verim

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır.

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır. DENEY 1: RC DEVRESİ GEÇİCİ HAL DURUMU Deneyin Amaçları RC devresini geçici hal durumunu incelemek Kondansatörün geçici hal eğrilerini (şarj ve deşarj) elde etmek, Zaman sabitini kavramını gerçek devrede

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

3.5. Devre Parametreleri

3.5. Devre Parametreleri 3..3 3.5. Devre Parametreleri 3.5. Devre Parametreleri Mikrodalga mühendisliğinde doğrusal mikrodalga devrelerini karakterize etmek için dört tip devre parametreleri kullanılır: açılma parametreleri (parametreleri)

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 5 Seçme Sorular ve Çözümleri

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ

25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ 25. KARARLILIK KAPALI ÇEVRİM SİSTEMLERİNİN KARARLILIK İNCELENMESİ a-) Routh Hurwitz Kararlılık Ölçütü b-) Kök Yer Eğrileri Yöntemi c-) Nyquist Yöntemi d-) Bode Yöntemi 1 2 3 4 a) Routh Hurwitz Kararlılık

Detaylı

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1.

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1. KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I THEENİN ve NORTON TEOREMLERİ Bir veya daha fazla sayıda Elektro Motor Kuvvet kaynağı bulunduran lineer bir devre tek

Detaylı

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER BÖLÜM İKİNİ DEEEDEN FİLTELE. AMAÇ. Filtrelerin karakteristiklerinin anlaşılması.. Aktif filtrelerin avantajlarının anlaşılması.. İntegratör devresi ile ikinci dereceden filtrelerin gerçeklenmesi. TEMEL

Detaylı

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere

Detaylı

3.4. ÇEVRE AKIMLAR YÖNTEMİ

3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKıMLAR YÖNTEMI (Ç.A.Y): Bu yöntemde düğümlerdeki akımlar yerine, çevredeki akımlar ele alınarak devrenin analizi yapılır. Yöntemin temel prensibi her bir bağımsız

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYİN ADI : DENEY TARİHİ : DENEYİ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

Adı Soyadı: Öğrenci No: DENEY 3 ÖN HAZIRLIK SORULARI. 1) Aşağıdaki verilen devrenin A-B uçlarındaki Thevenin eşdeğerini elde ediniz.

Adı Soyadı: Öğrenci No: DENEY 3 ÖN HAZIRLIK SORULARI. 1) Aşağıdaki verilen devrenin A-B uçlarındaki Thevenin eşdeğerini elde ediniz. dı Soyadı: Öğrenci No: DENEY 3 ÖN HZIRLIK SORULRI 1) şağıdaki verilen devrenin - uçlarındaki Thevenin eşdeğerini elde ediniz. 3 10 Ω 16 Ω 10 Ω 24 V 5 Ω 2) şağıda verilen devrenin Norton eşdeğerini bulunuz.

Detaylı

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1 ELEKTRİK-ELEKTRONİK DERSİ FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ Şekiller üzerindeki renkli işaretlemeler soruya değil çözüme aittir: Maviler ilk aşamada asgari bağımsız denklem çözmek için yapılan tanımları,

Detaylı

SÜPER POZİSYON TEOREMİ

SÜPER POZİSYON TEOREMİ SÜPER POZİSYON TEOREMİ Süper pozisyon yöntemi birden fazla kaynak içeren devrelerde uygulanır. Herhangi bir elemana ilişkin akım değeri bulunmak istendiğinde, devredeki bir kaynak korunup diğer tüm kaynaklar

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

Süperpozisyon/Thevenin-Norton Deney 5-6

Süperpozisyon/Thevenin-Norton Deney 5-6 Süperpozisyon/Thevenin-Norton Deney 5-6 DENEY 2-3 Süperpozisyon, Thevenin ve Norton Teoremleri DENEYİN AMACI 1. Süperpozisyon teoremini doğrulamak. 2. Thevenin teoremini doğrulamak. 3. Norton teoremini

Detaylı

Devre Analizi I (EE 209) Ders Detayları

Devre Analizi I (EE 209) Ders Detayları Devre Analizi I (EE 209) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Devre Analizi I EE 209 Güz 3 2 2 4 8.5 Ön Koşul Ders(ler)i MATH 157 Dersin Dili Dersin

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı

SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH.

SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. EM 420 Yüksek Gerilim Tekniği DÜZLEMSEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM2104 Elektrik Devreleri Laboratuarı II 2014-2015 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kotrol Sistemleri Tasarımı Frekas Yaıtı Prof. Dr. Bület E. Plati 3 Ağustos 0 Eylül 06 Taım Kararlı bir sistemi siüs girdisie sürekli rejim yaıtı Bu taımda 3 temel boyut bulumaktadır:. Kararlı bir sistem

Detaylı

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR

Sinüsoidal Gerilim ve Akım ALIŞTIRMALAR Sinüsoidal Gerilim ve Akım 65 2.7. ALŞTRMALAR Soru 2.1 : 4 kutuplu bir generatörde rotor (hareketli kısım) 3000 devir/dk ile döndüğüne göre, üretilen gerilimin frekansını bulunuz. (Cevap : f=100hz) Soru

Detaylı

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM)

İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL oda no: 303 (T4 / EEM) İşaret ve Sistemler İŞARET ve SİSTEMLER (SIGNALS and SYSTEMS) Dr. Akif AKGÜL aakgul@sakarya.edu.tr oda no: 303 (T4 / EEM) Kaynaklar: 1. Signals and Systems, Oppenheim. (Türkçe versiyonu: Akademi Yayıncılık)

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu ROOT-LOCUS TEKNİĞİ Lineer kontrol sistemlerinde en önemli kontrollerden biri belirli bir sistem parametresi değişirken karakteristik denklem köklerinin nasıl bir yörünge izlediğinin araştırılmasıdır. Kapalı

Detaylı

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Uygulama -1: Dirençlerin Seri Bağlanması Uygulama -2: Dirençlerin Paralel Bağlanması Uygulama -3: Dirençlerin Karma Bağlanması Uygulama

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

EEM 202 DENEY 11. Tablo 11.1 Deney 11 de kullanılan devre elemanları ve malzeme listesi. Devre Elemanları Ω Direnç (2 W)

EEM 202 DENEY 11. Tablo 11.1 Deney 11 de kullanılan devre elemanları ve malzeme listesi. Devre Elemanları Ω Direnç (2 W) N: EEM DENEY SEİ EZONANS DEESİ. Amaçlar Değişen frekanslı seri C devresinde empedansın ölçülmesi ve çizilmesi Seri C devresinde akım değişiminin frekansın değişimine göre incelenmesi Seri C devresinin

Detaylı

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır.

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır. DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır. Akımın yönü okla gösterilir. Gerilimin akım gibi gösterilen

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ Modelleme Önceki bölümlerde blok diyagramları ve işaret akış diyagramlarında yer alan transfer fonksiyonlarındaki kazançlar rastgele

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI THEVENIN VE NORTON TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Sertaç SAVAŞ MART

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 3 Kontrol Sistemleri I Ara Sınav 8 Haziran 4 Adı ve Soyadı: Bölüm: No: Sınav süresi dakikadır.

Detaylı

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI LAPLACE DÖNÜŞÜMÜNÜN DERE ANALİZİNE UYGULANMAS ÖĞRENME HEDEFLERİ Laplace ile devre çözümleri Laplace dönüşümünün kullanışlılığını göerme Devre Elemanı Mdelleri Devrelerin Laplace düzlemine dönüşürülmei

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI. Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DENETİM SİSTEMLERİ LABORATUVARI DENEY RAPORU Deney No:2 Birinci-İkinci Dereceden Denklemler Açık-Kapalı Çevrim Sistemler Öğr. Gör. Cenk GEZEGİN Arş.

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü GEÇİCİ OLAYLARIN İNCELENMESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü GEÇİCİ OLAYLARIN İNCELENMESİ KARAENİZ TEKNİK ÜNİVERSİTESİ ELK008 EVRELER II LABORATUARI HAZIRLIK ÇALIŞMALARI GEÇİİ OLAYLARIN İNELENMESİ. Geçici olay ve Sürekli olay nedir? Kısaca açıklayınız.. Kondansatör ve Endüktans elemanlarına

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

Doğru Akım Devreleri

Doğru Akım Devreleri Doğru Akım Devreleri ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için elektromotor kuvvet (emk) adı verilen bir enerji kaynağına ihtiyaç duyulmaktadır. Şekilde devreye elektromotor

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( )

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( ) Ders Tanıtım Formu Dersin Adı Öğretim Dili Temel elektronik Türkçe Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (X ) Uzaktan Öğretim(

Detaylı

Sayısal Kontrol - HAVA HARP OKULU

Sayısal Kontrol - HAVA HARP OKULU Sayısal Kontrol - HAVA HARP OKULU İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 50 Bu bölümde aşağıdaki konular incelenecektir: Sürekli ve Ayrık Kontrol Problemlerinin Tanımı Ayrık Zamanlı

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Devre Teorisi EEE221 3 6+0 5 6

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Devre Teorisi EEE221 3 6+0 5 6 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Devre Teorisi EEE221 3 6+0 5 6 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin Koordinatörü

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı