Yazım hatalari olabilir. Yeni sorular eklenecek. 1 Sunday 12 th January, :17

Save this PDF as:
Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Yazım hatalari olabilir. Yeni sorular eklenecek. 1 Sunday 12 th January, :17"

Transkript

1 Prof. Dr. İsmail Kömbe Matematik Analiz III/Final çalışma soruları Sonbahar 3 SORU Lütfen çözümlerinizi basamak basamak ve net bir şekilde yaziniz. n ( n + )n3/ serisinin yakinsak olup olmadigini inceleyiniz. SORU }{{} n tane toplamını bulunuz. SORU 3 pozitif terimli iraksak bir seri olsun. Bu durumda SORU 6 ( lim n n + n + + n ) n limitini hesaplayınız. SORU 7 Kenar uzunlukları 8 birim olan karenin kenarlarının ortoktalarını köṣe kabul eden ikinci bir kare çiziliyor.bu şekilde içiçe çizilen sonsuz sayıda karenin. alanlarının toplamını. çevrelerinin toplamını seri olarak ifade ediniz. Bu serilerin kısmi toplamlar dizisini bulunuz ve bu kısmi toplamlar dizisinin limitini bulunuz. D C + n serisinin yakinsak olup olmadigini inceleyiniz. SORU seri toplamını bulunuz. SORU 5 n n + n + (a) f(x) = arctan(x) fonksiyonun x = noktasinda MacLaurin serisini ve bu serinin yakinsaklik yaricapi ve araligini bulunuz. (b) Yukaridaki seri acilimini kullanarak asadaki toplamin: n= ( ) n n + = A E B F SORU 8 y = x ve x = 6 dogruları ile x eksenin tarafından sınırlanan alanı serilerden faydalanarak bulunuz. SORU toplamını bulunuz. SORU Aşa gıdaki serinin Yazım hatalari olabilir. Yeni sorular eklenecek. Sunday th January, 7:7

2 Prof. Dr. İsmail Kömbe Matematik Analiz III/Final çalışma soruları Sonbahar 3 mutlak yakınsak oldu gunu gösteriniz. SORU serisinin toplamini bulunuz.! 3!! 5! SORU (a) f(x) = x fonksiyonuna a = noktasi civarinda derecesi 3 olan Taylor polinomunu yaklaşımını bulunuz. (b) Yukaridaki polinom yaklaşımı kullanarak 6 hesaplayınız. SORU 3 f(x) = SORU 5x (+5x) fonksiyonunun Maclaurin serisini bulunuz. k= sin(k) k3 + serisinin yakinsak SORU 5 k + + k k= serisinin iraksak SORU 6 Sayılar teorisinde önemli bir yere sahip olan ζ (x) = Riemann zeta-fonksiyonunun tanım kümesini bulunuz. SORU 7 Alterne Seri Testini ifade ediniz ve bir ornekle aciklayiniz. SORU 8 Integral Testini ifade ediniz ve bir ornekle aciklayiniz. SORU 9 n x ( x n ) n + şeklinde tanımlanan serinin yakınsak olabilmesi için x degeri ne olmalıdır? SORU x [, ] icin f n (x) = ve g +n x n (x) = nx( x) n olsun. f n ve g n fonksyon dizilerinin noktasal yaknsak oldugunu ama duzgun yakinsak olmadigini ispat ediniz. SORU f(x) = x fonksyonunun [, ) araliginda duzgun surekli SORU f(x) = x 3 fonksyonunun R duzgun surekli olmadigini SORU f(x) = x fonksyonunun [, ] araligi uzerinde duzgun surekli SORU 5 R de bir seri olsun. Eger mutlak yakinsak ise () yakinsaktir. SORU 6 f(x) = x olsun.. [, ) araligi uzerinde f(x) fonksiyonu duzgun surekli oldugunu. f(x) fonksiyonu (, ] araligi uzerinde duzgun surekli olmadigini SORU 3 f(x) = x fonksyonunun R duzgun surekli olmadigini SORU 7 < x <, n =,,... olmak uzere, f n (x) = seklinde verilsin. Ispat edinizki {f n } fonksiyon dizisi (, ) araligi uzerinde nx+ noktasal yakinsak iken duzgun yakinsak degildir. SORU 8 < x <, n =,,... olmak uzere, f n (x) = x seklinde nx+ verilsin. Ispat edinizki {f n } fonksiyon dizisi (, ) araligi uzerinde f = a duzgun yakinsaktir. SORU 9 Kabul edelimki mutlak yakinsak bir seri olsun. Her n N icin g n : [, ] R fonksiyon dizisi g n (x) = x n seklinde tanimlansin. Bu taktirde g n serisinin duzgun yakinsak oldugunu Yazım hatalari olabilir. Yeni sorular eklenecek. Sunday th January, 7:7

3 Prof. Dr. İsmail Kömbe Matematik Analiz III/Final çalışma soruları Sonbahar 3 SORU 3 A R (bos kume olmasin) ve A [, ) tanimli fonksiyonlarin serisi f n ve g n olsun. Kabul edelimki bir N N vardir ve oyleki n N ve n N icin f n (x) g n (x) olsun. Eger g n duzgun yakinsak ise f n serisi de duzgun yakinsaktir. SORU 3 { } ve {b n } pozitif terimli diziler ve raksak olsun. +b n serisi de raksak olmak zorundami? ve SORU 3 Eger mutlak yakinsak bir seri ise asagidaki ifadeyi ispat edin:. SORU 33 Kabul edelimki serisi yakinsak olsun. Ispat edinizki serisi β > / icin yakinsaktir. SORU 3 n β. Gosterinizki [, ] araligi uzerinde f n (x) = n xe nx fonksiyon dizisi f = yakinsamasina ragmen f ndx dir.. f n fonksiyon dizisi duzgun yakinsakmidir? SORU 35 f n (x) = zerinde dzgn yaknsakln inceleyiniz. SORU 36 Bir A kmesi zerinde bir Cauchy dizisi ve f de dzgn srekli fonksiyon olsun. Gosterinizki f( ) de bir Cauch dizisidir. SORU 37 n ve n b n iki iraksak seri olmasna ragmen n b n serisinin yakinsak olabilecegini gsterin. x eklinde verilen fonksiyon dizisinin [, ) aral +x n SORU 38 positif terimli yaknsak bir seri ise her x R icin x n seriside yaknsakmdr? b n SORU 39 ( x ) araligi uzerinde f(x) = x fonksiyonunun Fourier serisi acilimini bulunuz. Dikkat ederseniz f çift bir fonksiyondur ve böylece her n icin b n = dir. a = f = fonksiyonunun grafi ginin altında kalan = f(x) cos nx dx = ( x) cos nx dx = ( cos nx x cos nx) dx = [ ] sin nx sin nx cos nx x n n n = [ cos n + ] = n n n ( ( )n ) Böylece f fonksiyonunun Fourier Serisi: SORU 39 + n ( ( )n ) cos nx Asagida verilen fonksiyonun Fourier seriesini bulunuz. f (x) = { < x < < x < Yazım hatalari olabilir. Yeni sorular eklenecek. 3 Sunday th January, 7:7

4 Prof. Dr. İsmail Kömbe Matematik Analiz III/Final çalışma soruları Sonbahar 3 L = = L = a = = f (x) dx = dx = f (x) cos nx dx = cos nxdx = sin nx = n b n = sin nx dx = cos nx n = [cos n cos ], n =,,... n b n = + n tek ise n [( )n ] = n n cift ise Boylece f fonksiyonun Fourier serisi: f (x) = + [sin x + 3 sin 6x + 5 sin x +... ] SORU Kabul edelimki f diferansiyellebilir fonksiyon ve [, ] araligi uzerinde cos x fonksiyonuna dik olsun. Bu taktirde f = df türev dx fonksiyonuda [, ] araligi uzerinde sin x fonksiyonuna dik oldu gunu ispat ediniz. Soru e x sin x dx x 3/ integralinin yakinsak Soru I = e x dx belirsiz integrali veriliyor. / < I < +x Soru 3 x sin x dx integralinin yakınsak oldu gunu gösteriniz. (YG: x = t de gişken de giştirmesi yapınız) Soru ln x ( + x) dx belirsiz integralininin yakınsak oldu gunu gösteriniz ve de gerini bulunuz. (YG: kısmi integral uygulayınız) Soru 5 n N, olmak üzere, f n (x) = x aralı gında düzgün yakınsak olmadıgını gösteriniz. Soru 6 şeklinde tanımlansın. oldu gunu gösteriniz. Soru 7 fonksiyon serisinin S(x) = n x fonksiyon dizisinin +n x sin nx n 3 S(x)dx = 8 ( ln x ) n x x < Yazım hatalari olabilir. Yeni sorular eklenecek. Sunday th January, 7:7

5 Prof. Dr. İsmail Kömbe Matematik Analiz III/Final çalışma soruları Sonbahar 3 aralıgı üzerinde düzgün yakınsak oldu gunu gösteriniz. Soru 8 fonksiyon serisinin n sin x n x aralı gi üzerinde düzgün yakınsak oldu gunu gösteriniz. Soru 9 cos nx n fonksiyon serisinin her x R için düzgün yakınsak oldu gunu gösteriniz. Yeni sorular eklenecek. Günün sözü: We must know-we will know! (David Hilbert) Çözümler Soru 5 ( ln x ) n x fonksiyon serisinin x < aralıgı üzerinde düzgün yakınsak oldu gunu gösteriniz. Soru 5 f n (x) = n x + n x fonksiyon dizisi x aralı gında düzgün yakınsak olmamasına ra gmen terim terime integre edilebilece gini gösterin. Yani dir. Soru 5 lim n f n (x)dx = lim f n(x)dx n f n (x) = ln( + n3 x ) n fonksiyon dizisinin x aral g üzerinde düzgün yakınsak oldu gunu gösteriniz. Yazım hatalari olabilir. Yeni sorular eklenecek. 5 Sunday th January, 7:7

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

; k = 1; 2; ::: a (k)

; k = 1; 2; ::: a (k) Analiz III Ara S nav 2 Kas m 2 x k = ; 2 ; :::; ; k = ; 2; ::: olmak üzere (x k ) R dizisi veriliyor. ; dizi ise (x k ) dizisi de yak nsak olur. Ispatlay n z. 2 ; :::; 2 A; B R olsun. A B ise A B olur

Detaylı

Sonsuz Diziler ve Seriler

Sonsuz Diziler ve Seriler Sonsuz Diziler ve Seriler İki veya birden çok sonlu sayıdaki sayının nasıl toplanacağını herkes bilir. Peki sonsuz tane sayıyı nasıl toplarız? Bu sorunun cevabını bu bölümde vermeye çalışacağız. Diziler

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

ANAL IZ III Aras nav Sorular

ANAL IZ III Aras nav Sorular Ad ve Soyad : Numaras : ANAL IZ III Aras nav Sorular 26.11.27 1. x 1 = p 3 ve x n+1 = p 3 + x n ; n = 1; 2; ::: biçiminde tan mlanan (x n ) dizisinin yak nsak oldu¼gunu gösteriniz ve limitini bulunuz.(2)

Detaylı

Çözümlü Yüksek Matematik Problemleri. Doç. Dr. Erhan Pişkin

Çözümlü Yüksek Matematik Problemleri. Doç. Dr. Erhan Pişkin Çözümlü Yüksek Matematik Problemleri Doç. Dr. Erhan Pişkin Doç. Dr. Erhan PİŞKİN ÇÖZÜMLÜ YÜKSEK MATEMATİK PROBLEMLERİ ISBN 978-605-38-45-5 Kitap içeriğinin tüm sorumluluğu yazarına aittir. 06, Pegem Akademi

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b. Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

01/U UYGULAMA. MATEMATİK 2 - FÖY İZLEME TESTLERİ ÜNİTE 1: MANTIK Önermeler - I. 1. p: "Ω 3 R" 4. (p' q)' r p. 5. I. p p' 6. I.

01/U UYGULAMA. MATEMATİK 2 - FÖY İZLEME TESTLERİ ÜNİTE 1: MANTIK Önermeler - I. 1. p: Ω 3 R 4. (p' q)' r p. 5. I. p p' 6. I. MATEMATİK - FÖY İZLEME TESTLERİ ÜNİTE : MANTIK Önermeler - I /U UYGULAMA. p: "Ω R" q: "iki basamaklı en küçük tam sayı dur." r: " " + = + 9 önermelerinden hangilerinin doğruluk değeri dir? A) Yalnız I

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

BMET116 Final Test -Soru B-

BMET116 Final Test -Soru B- Bölüm 1 BMET116 Final Test -Soru B- 1. Birim matris hangisidir? (a) bütün öğeleri 1 olan matristir. (b) Asal köşegen üstündeki öğeleri 1 olan matristir. (c) Yedek asal hem yedek köşegen üstündeki öğeleri

Detaylı

BMET116 Final Test. 1. (2+3i)+(3+i) işleminin sonucu nedir? (a) (6 + i) (b) (6+5i) (c) (5 + 3i) (d) 5 + 4i (e) Hiçbiri

BMET116 Final Test. 1. (2+3i)+(3+i) işleminin sonucu nedir? (a) (6 + i) (b) (6+5i) (c) (5 + 3i) (d) 5 + 4i (e) Hiçbiri Bölüm 1 BMET116 Final Test 1. (2+3i)+(3+i) işleminin sonucu nedir? (a) (6 + i) (b) (6+5i) (c) (5 + 3i) (d) 5 + 4i (e) Hiçbiri 2. (-3+7i)-(1-2i) işleminin sonucu nedir? (a) -4 + 5i (b) 2 + 5i (c) -4 + 9i

Detaylı

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3 Matematik 1 - Alıştırma 1 A) Denklemler 1. Dereceden Denklemler 1) Verilen denklemlerdeki bilinmeyeni bulunuz (x =?). a) 4x 6 = x + 4 b) 8x + 5 = 15 x c) 7 4x = 1 6x d) 7x + = e) 5x 1 = 10x + 6 f) 0x =

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

LYS Y ĞRU MTMTİK TSTİ. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.., y reel sayılar

Detaylı

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır?

1994 ÖYS. 6. x, y, z sıfırdan büyük birer tam sayı ve 2x+3y-z=94 olduğuna göre, x in en küçük değeri kaçtır? 99 ÖYS. Üç basamaklı abc sayısının birler basamağı tür. Birler basamağı ile yüzler basamağı değiştirildiğinde oluşan yeni sayı, abc sayısından 97 küçüktür. Buna göre, abc sayısının yüzler basamağı kaçtır?.,

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK 2014 Adı Soyadı: No: İMZA: 1. 10+10 p.) 2. 15 p.) 3. 7+8 p.) 4. 15+10 p.) 5. 15+10 p.) TOPLAM 1. a) NOT: Tam

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

Çözümlü Yüksek Matematik Problemleri. Doç. Dr. Erhan Pişkin. 2. Baskı

Çözümlü Yüksek Matematik Problemleri. Doç. Dr. Erhan Pişkin. 2. Baskı Çözümlü Yüksek Matematik Problemleri Doç. Dr. Erhan Pişkin 2 2. Baskı Doç. Dr. Erhan PİŞKİN ÇÖZÜMLÜ YÜKSEK MATEMATİK PROBLEMLERİ 2 ISBN 978-605-318-451-5 DOI 10.14527/9786053184515 Kitap içeriğinin tüm

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

lim lim Soru 1: lim Soru 5: Çözüm: Çözüm: 2x tan 2 (x 1) 2 cos(2x 2) = 3 2 Soru 2: lim türev değeri kaçtır? Çözüm: Çözüm: lim Soru 3: 25 = 2 5

lim lim Soru 1: lim Soru 5: Çözüm: Çözüm: 2x tan 2 (x 1) 2 cos(2x 2) = 3 2 Soru 2: lim türev değeri kaçtır? Çözüm: Çözüm: lim Soru 3: 25 = 2 5 Soru : x +tan(x ) x sin (x ) Soru : x (x,y) (,) x +y x + + tan (x ) cos(x ) = + > it dır. Soru : sin x x cos x sin x cos x sin x. cos x = = x sin x sin x Soru 6: x + xy + y = eğrisinin P(,) noktasındaki

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB1001 Analiz I 6 Aralık 013. Yıliçi Sınavı Öğrenci Numarası: Adı Soyadı: - Talimatlar: Sınav süresi 90 dakikadır. İlk 30 dakika sınav salonunu

Detaylı

Türev Uygulamaları. 9.1 Ortalama Değer teoremi

Türev Uygulamaları. 9.1 Ortalama Değer teoremi 1 2 Bölüm 9 Türev Uygulamaları 9.1 Ortalama Değer teoremi Türevin çok farklı uygulamaları vardır. Bunlar arasında çok önemli olan bazılarını ele alacağız. Ortalama Değer Teoremi ni daha önce görmüştük.

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

f, [a, b] de sürekli bir fonksiyon olsun f nin e risi x=a, x=b do rular ve x-ekseni ile alan ; S = f(x) dx dir. Alan, x- ekseninin üstünde ise

f, [a, b] de sürekli bir fonksiyon olsun f nin e risi x=a, x=b do rular ve x-ekseni ile alan ; S = f(x) dx dir. Alan, x- ekseninin üstünde ise f, [a, b] de sürekli bir fonksiyon olsun f nin e risi x=a, x=b do rular ve x-ekseni ile alan ; S = f(x) dx dir. Alan, x- ekseninin üstünde ise x [a, b] için f(x) S = f(x) dx dir. Alan, x- ekseninin alt

Detaylı

denklemini denkleminin Cevap:f C 2 ve g C 2 tek de gişkenli fonksiyonlar olmak üzere :

denklemini denkleminin Cevap:f C 2 ve g C 2 tek de gişkenli fonksiyonlar olmak üzere : S1 denklemini Kısmi Türevli Denklemler Problem Seti-II kosulu altinda cozumunu bulunuz. S2 deklemini koşulu altında çözünuz. S3 u t u x = 0 u(0, t) = e t2 u(x, t) = e (x+t)2 xu x + u y = y u(x, 0) = x

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

) dizisinin kaçıncı terimi 4 tür?

) dizisinin kaçıncı terimi 4 tür? Soru : Genel terimi Diziler, değer kümelerine göre isimlendirilir. f: N + R ye tanımlı f fonksiyonuna reel sayı dizisi denir. 4n + 1, n 0 (mod ) (a n ) = { n, n 1 (mod ) n 1, n (mod ) olan dizi için a

Detaylı

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

önce biz sorduk 50 Soruda KPSS 2017 soru ÖABT İLKÖĞRETİM MATEMATİK TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR Eğitimde 30.

önce biz sorduk 50 Soruda KPSS 2017 soru ÖABT İLKÖĞRETİM MATEMATİK TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR Eğitimde 30. KPSS 7 önce biz sorduk 5 Soruda soru ÖABT İLKÖĞRETİM MATEMATİK TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR -4-5-6 Eğitimde. yıl Komisyon ÖABT İLKÖĞRETİM MATEMATİK TAMAMI ÇÖZÜMLÜ ÇIKMIŞ SORULAR ISBN 978-65-8-79-6 Kitapta

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

Analiz III Ara S nav Sorular 24 Kas m 2010

Analiz III Ara S nav Sorular 24 Kas m 2010 Analiz III Ara S nav Sorular 24 Kas m 2010 1 Aşa¼g daki ifadelerin do¼gru olup olmad klar n nedenlerini aç klayarak yaz n z. (a) R n uzay n n aç k olmayan her alt kümesi kapal d r. (b) A = fx 2 [0; 1]

Detaylı

T A R A M A T E S T İ ~ 3

T A R A M A T E S T İ ~ 3 T A R A M A T E S T İ ~ 5. y y f(). a, f() 6, a, şeklinde tanımlanan fonksiyon için, f() L olduğuna göre, LR sayısı A) 8 B) 6 C) 8 D) E) 0 Yukarıdaki grafiği verilen f() fonksiyonunun,,, değerlerinden

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

8 LAURENT SER I GÖSTER IMLER I

8 LAURENT SER I GÖSTER IMLER I 8 LAURENT SER I GÖSTER IMLER I Tan m. C n ; n 0; ; ; : : : kompleks sabitler olmak üere serisine Laurent serisi denir. Burada n X C n ( X X X C n ( 0 ) n a n ( 0 ) n b n + ( 0 ) n 0 ) n dir. Teore8.. (Laurent

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Liselerarası Matematik Bilgi. 13 Nisan 2019

Liselerarası Matematik Bilgi. 13 Nisan 2019 ÇANKAYA ÜNİVERSİTESİ Matematik Bölümü Liselerarası Matematik Bilgi Yarışması - 1. Aşama 13 Nisan 2019 Soru Not Soru Not 1 11 2 12 Ad-Soyad: İmza: Okul: Süre: 100 dakika 3 13 4 14 5 15 6 16 7 17 8 18 9

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I Bölüm 5 ANALOG İŞARETLERİN SPEKTRUM ANALİZİ 10 Bölüm 5. Analog İşaretlerin Spektrum Analizi 5.1 Fourier Serisi Sınırlı (t 1, t 2 ) aralığında tanımlanan f(t) fonksiyonunun sonlu Fourier serisi açılımı

Detaylı

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI

;] u Y hb* p(a/ > V aaa!a!a!a!!!!!a! BASIN KİTAPÇIĞI BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31 SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.

2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4. 04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?

Detaylı

BASIN KİTAPÇIĞI ÖSYM

BASIN KİTAPÇIĞI ÖSYM BASIN KİTAPÇIĞI 00000000 AÇIKLAMA 1. Bu kitapç kta Lisans Yerle tirme S nav -1 Matematik Testi bulunmaktad r. 2. Bu test için verilen toplam cevaplama süresi 75 dakikadır. 3. Bu kitapç ktaki testlerde

Detaylı

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 14.Konu Reel sayılarının topolojisi 1.Teorem: cismi tamdır. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 2.Tanım: ve verilsin. nın her komşuluğunda

Detaylı

Bir I aralığındaki her x için F (x) = f(x) ise F fonksiyonuna I üzerinde f nin ilkeli denir.

Bir I aralığındaki her x için F (x) = f(x) ise F fonksiyonuna I üzerinde f nin ilkeli denir. Bir Fonksiyonun İlkeli Bir Fonksiyonun İlkeli Tanım 1 Bir I aralığındaki her x için F (x) = f(x) ise F fonksiyonuna I üzerinde f nin ilkeli denir. Örneğin, f(x) = x 2 olsun. Kuvvet kuralını aklımızda tutarsak

Detaylı

Mat Matematik II / Calculus II

Mat Matematik II / Calculus II Mat - Matematik II / Calculus II Çalışma Soruları Çok Değişkenli Fonksiyonlar: Seviye eğri ve yüzeyler, Limit ve süreklilik wolframalpha.com uygulamasında bir fonksiyonun tanım kümesini bulmak için: x

Detaylı

2000 Birinci Aşama Sınav Soruları

2000 Birinci Aşama Sınav Soruları 2000 irinci şama Sınav Soruları Lise 1 Soruları 1 369 sayısı bir kaç ardışık doğal sayının toplamı olarak kaç farklı biçimde yazılabilir? )2 )3 )4 )5 )7 2 ve sayıları 2000 sayısının pozitif bölenleri olmak

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

Kompleks Değişkenli Fonksiyonlar Teorisi

Kompleks Değişkenli Fonksiyonlar Teorisi Kompleks Değişkenli Fonksiyonlar Teorisi Ders Notları Dr. Serkan Aksoy 2016 http://www.gyte.edu.tr/dosya/102/~saksoy/ana.html 1 Gelecek önerileri için, lütfen Dr. Serkan Aksoy (saksoy@gyte.edu.tr) ile

Detaylı

Matematiksel Analiz II (MATH136) Ders Detayları

Matematiksel Analiz II (MATH136) Ders Detayları Matematiksel Analiz II (MATH136) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Matematiksel Analiz II MATH136 Bahar 4 2 0 5 8.5 Ön Koşul Ders(ler)i Math

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

2019-AYT/Matematik MATEMATİK TESTİ. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.

2019-AYT/Matematik MATEMATİK TESTİ. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. 1. Karmaşık sayılar kümesinde işleminin sonucu kaçtır? A) 15 B) 12 C)

Detaylı

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

3. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 3. HAFTA SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi TAYLOR TEOREMİ Eğer f C n [a,b] ve f n+1 [a,b] de mevcut ise, x

Detaylı

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR.

MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 19 HAZİRAN 2010 BU SORU KİTAPÇIĞI 19 HAZİRAN 2010 LYS 1 MATEMATİK TESTİ SORULARINI İÇERMEKTEDİR. Ö S Y M T.C. YÜKSEKÖĞRETİM KURULU ÖĞRENCİ SEÇME VE YERLEŞTİRME MERKEZİ LİSANS YERLEŞTİRME SINAVI MATEMATİK SINAVI MATEMATİK TESTİ SORU KİTAPÇIĞI 9 HAZİRAN 00 BU SORU KİTAPÇIĞI 9 HAZİRAN 00 LYS MATEMATİK

Detaylı

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Giriş ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Sayısal Analiz Nedir? Mühendislikte ve bilimde, herhangi bir süreci tanımlayan karmaşık denklemlerin

Detaylı

MATEMATİK (LİSE) ÖĞRETMENLİĞİ

MATEMATİK (LİSE) ÖĞRETMENLİĞİ KAMU PERONEL EÇME INAVI MATEMATİK (LİE) ÖĞRETMENLİĞİ TÜRKİYE GENELİ ÇÖZÜMLER 8 MATEMATİK (LİE) ÖĞRETMENLİĞİ. E 6. C. D 7. D. B 8. E 4. A 9. A 5. E. B 6. A. C 7. D. A 8. D. C 9. C 4. E. A 5. B. D 6. B.

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Name: Diferensiyel Geometri Spring 2014

Name: Diferensiyel Geometri Spring 2014 Çalışma soruları Tanim [Basit egri] α : (a, b) R 3 egrisi verilsin. Farkli t 1, t 2 (a, b) noktalari icin α(t 1 ) α(t 2 ) oluyorsa α egrisine basit egri adi verilir (kendisini kesmeyen egriye basit egri

Detaylı

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz.

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2. Fonksiyonlarda Limit Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2.1. Değişkenin Limiti Sonsuz sayıda değer alabilen bir x değişkeninin

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ KASIM EKİM 2017-2018 EĞİTİM-ÖĞRETİM YILI 12. SINIF İLERİ DÜZEL MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ 1 4 TÜREV 12.1.1.1. Bir fonksiyonun bir noktadaki limiti, soldan limiti

Detaylı

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ FİNAL SORULARI 25-26 GÜZ DÖNEMİ ADI SOYADI :... NO :... SINAV TARİHİ VE SAATİ : A A A A A A A Bu sınav 4 sorudan oluşmaktadır ve sınav süresi 9 dakikadır.

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim LİMİT I. TANIM:, a yakınındaki değerleri için tanımlı bir onksiyon olsun. Alınan ε> sayısına karşılık -L < ε olacak şekilde -a < δ koşulunu sağlayan δ > sayısı bulunabiliyorsa ;, a ya yaklaşırken, L ye

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS MATEMATİK-II FEB-121 1/ 2. YY 5+0+0 5 5 Dersin Dili Dersin Seviyesi : Türkçe

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

MB5002 NÜMERİK ANALİZ

MB5002 NÜMERİK ANALİZ MB500 NÜMERİK ANALİZ Ders Notları Yrd. Doç. Dr. Emel YAVUZ DUMAN İstanbul Kültür Üniversitesi Matematik-Bilgisayar Bölümü c 01, Emel Yavuz Duman Tüm hakkı saklıdır. Bu notlar Örgün Öğretimde Uzaktan Öğretim

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Ad ve Soyad : Numaras : Analiz III Aras nav Sorular

Ad ve Soyad : Numaras : Analiz III Aras nav Sorular Analiz III Aras nav Sorular 30. 11. 2006 1. (a) A = fx 2 R : x 2 4x 5 < 0g ise sup A =? (b) A R boş olmayan ve üstten s n rl bir küme olsun. > 0 ise sup(a) = sup A oldu¼gunu gösteriniz. 2. A = f(x; y)

Detaylı

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 203-204 BAHAR YARIYILI D IFERANS IYEL DENKLEMLER II ARA SINAV 2 Nisan 204 Süre: 90 dakika CEVAP ANAHTARI. (5p) Belirsiz katsay lar yöntemini

Detaylı

fonksiyonu, her x 6= 1 reel say s için tan ml d r. (x 1)(x+1) = = x + 1 yaz labilir. Bu da; f (x) = L

fonksiyonu, her x 6= 1 reel say s için tan ml d r. (x 1)(x+1) = = x + 1 yaz labilir. Bu da; f (x) = L Limit Bu bölümde, matematik analizde temel bir görevi olan it kavram incelenecektir. Analizdeki bir çok problemin çözümünde it kavram na gereksinim duyulmaktad r. Bunlardan baz lar ; bir noktada bir e¼griye

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33 -B TEST Polinomlar -. Py _, i= y- y + 5y- olduğuna göre P( -, y + ) polinomunun katsayılar toplamı. - 6 = A - 5 + - + B - olduğuna göre A B 78 B) 7 6 D 58 E) B) D) - E) -. -a- b = _ + -5i_ -ci eşitliğine

Detaylı