ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ"

Transkript

1 ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ DOĞRU-AKIM ÖZDİRENÇ YÖNTEMİNDE SONLU-ELEMANLAR METODU İLE İKİ-BOYUTLU DÜZ-ÇÖZÜME TOPOĞRAFYA ETKİSİNİN EKLENMESİ Erhan ERDOĞAN Bitirme Tezi ANKARA 2006

2 ÖZET Bitirme Tezi DOĞRU-AKIM ÖZDİRENÇ YÖNTEMİNDE İKİ-BOYUTLU DÜZ-ÇÖZÜME SONLU-ELEMANLAR İLE TOPOĞRAFYA ETKİSİNİN EKLENMESİ Erhan ERDOĞAN Ankara Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği Anabilim Dalı Danışman: Dr. Mehmet Emin CANDANSAYAR Doğru akım özdirenç yöntemi kullanılarak yapılan yer araştırmalarında, araştırılan alanın yüzey topoğrafyasındaki değişimin yer içindeki özdirenç dağılımının belirlenmesine etkisi sıkça karşılaşılan bir sorundur. Topoğrafyanın değişim gösterdiği alanlarda yapılan yer araştırmalarında daha verimli bir sonuç elde etmek ve daha doğru yorum yapabilmek için yüzey topoğrafyasındaki değişim de göz önüne alınarak modelleme yapılmalı ve topografya etkisi ters-çözüme dahil edilmelidir. Doğru akım özdirenç yönteminde iki-boyutlu düz-çözüm genel olarak Sonlu-Farklar (Finite- Difference) ve Sonlu-Elemanlar (Finite-Element) yöntemleri kullanılarak yapılmaktadır. Sonlu-Farklar yönteminin formülasyonu programlama açısından daha kolaydır, Sonlu- Elemanlar Yönteminin formülasyonu ise programlama açısından daha zordur ancak alan istenilen şekillere bölünebilir. Sonlu-Elemanlar Yönteminin en büyük avantajı ise modele topoğrafya etkisinin eklenebilmesidir. Bu tez çalışmasında Doğru-Akım Özdirenç yönteminde Sonlu-Elemanlar Metodu ile yapılan iki-boyutlu düz-çözüme topoğrafya etkisinin eklenmesi anlatılacak ve oluşturulan modeller incelenecektir. ANAHTAR KELİMELER: Doğru-Akım Özdirenç, 2-B Modelleme,Sonlu-Elemanlar Yöntemi, Sonlu-Farklar Yöntemi, Topoğrafya ii

3 ABSTRACT Graduating Thesis INCORPARATION OF TOPOGRAPHY EFFECT INTO TWO-DIMENSIONAL DC RESISTIVITY MODELLING BY USING FINITE-ELEMENT METHOD Erhan ERDOGAN University of Ankara Department of Geophysical Engineering Supervisor:Dr.Mehmet Emin CANDANSAYAR In earth investigation done by using the direct current resistivity technique, impact of the change in the examined surface topography on determining the resistivity distrubition in the earth has been a frequently faced question. In order to get more fruitful results and make more correct interpretetions in earth surveying carried on the areas where topographical changes occur, modelling should be done by taking the change in surface topography into account and topography effect should be included into inversion. In direct current resistivity technique, two-dimensional forward modeling is generally done using Finite-difference and finite element methods. Formulation of finite-difference method is rather easier in the aspect of programming, whereas formulation of finite-elements method is more difficult for programming, however the area can be divided into the desired figures. The most important advantage of finite-element method is that topography effect can be incorporate into the model. In this study, incorporation of topography effect into two-dimensional resitivity modelling which is done using finite-element method will be explained and the models created will be examined. Key Words:2-D Modelling, Finite-Elements, Topography, Direct-Current Resistivity. iii

4 ŞEKİLLER DİZİNİ Şekil Sonlu Elemanlar Model Ağı 3 Şekil 3.1.a 30 Derece Eğimli Yamaç Modeli 4 Şekil 3.1.b 30 Derce Eğimli Yamaç Topoğrafyasına Göre Yalnızca Yüzey Düğüm Noktaları Kaydırılmış Sonlu Elemanlar Ağı..4 Şekil 3.2 Tüm Düğüm Noktaları Yüzeydeki düğüm Noktası Kadar Kaydırılmış Sonlu Elemanlar Model Ağı.5 Şekil 3.3 Sönümlenen Düğüm Noktalarındaki Kayma Mikatarları(k=1).6 Şekil 3.4 Sönümlenen Düğüm Noktalarındaki Kayma Mikatarları(k=3).6 Şekil 3.5 Yüzeyden Derine Sönümlenen Kayma Miktarları ile Oluşturulan Sonlu Elemanlar Model Ağı(k=1)...7 Şekil 3.6 Yüzeyden Derine Sönümlenen Kayma Miktarları ile Oluşturulan Sonlu Elemanlar Model Ağı(k=3)...7 Şekil 4.1.a 30 Derecelik Yükselti modeli 50 ohm luk homogen ortam içinde 100 ohm luk blok... 8 Şekil 4.1.b Topoğrafya Etkisi Katılmış 2-D Model Yapma-Kesiti Şekil 4.1.c Topoğrafya Etkisi Katılmamış 2-D Model Yapma Kesiti (Topoğrafya ile çizdirilmiş) Şekil 4.1.d Topoğrafya Etkisi Katılmamış 2-D Model Yapma Kesiti (Topoğrafyasız çizdirilmiş) Şekil 4.2.a 15 Derecelik Yamaç modeli 50 ohm luk homogen ortam içinde 100 ohm luk blok... 9 Şekil 4.2.b Topoğrafya Etkisi Katılmış 2-D Model Yapma-Kesiti....9 Şekil 4.2.c Topoğrafya Etkisi Katılmamış 2-D Model Yapma Kesiti (Topoğrafya ile çizdirilmiş) Şekil 4.1.d Topoğrafya Etkisi Katılmamış 2-D Model Yapma (Topoğrafyasız çizdirilmiş) Kesiti iv

5 İÇİNDEKİLER ÖZET...ii ABSTRACT....iii ŞEKİLLER DİZİNİ....iv 1.GİRİŞ SONLU ELEMANLAR YÖNTEMİ Sonlu Elemanlar Ağı SONLU ELEMANLAR AĞININ YÜZEY TOPOĞRAFYASINAGÖRE YENİDEN ŞEKİLLENDİRİLMESİ MODELLER SONUÇLAR 10 KAYNAKLAR TEŞEKKÜR ÖZGEÇMİŞ...13 v

6 1.GİRİŞ Doğru-Akım Özdirenç yöntemi, ölçü alımının kolay olmasının yanında son yıllarda geliştirilen veri-işlem ve yorumlama teknikleri sayesinde daha yaygın bir şekilde kullanılmaya başlamıştır. Doğru-Akım Özdirenç verileri bir, iki ve üç boyutlu yorumlanmaktadır. Son yıllarda bilgisayar teknolojisinde yaşanan gelişmeler özdirenç yönteminde 2-B ve 3-B yorumu daha tercih edilir hale getirmiştir. Özellikle yeraltı suyu, jeotermal ve maden aramalarında, arkeolojik alan çalışmalarında ve mühendislik jeofiziği uygulamalarında kullanılan özdirenç yönteminde yorumun güvenilir olması uygulanan veri-işleme yani modelleme ve ters-çözüm işlemlerine bağlıdır, bunun içinde yer içinin özdirenç dağılımının iyi bir şekilde modellenmesi gerekmektedir. Çalışılan sahanın yüzey topoğrafyası yoruma önemli bir şekilde etki etmektedir, dolayısıyla bu topoğrafya bilgisi modele dahil edilmelidir. 2-B özdirenç modeline topoğrafya etkisinin eklenmesi model ağının topoğrafya değişikliklerine uygun bir şekilde yeniden tasarlanmasıyla olur. Model ağına topoğrafya bilgisinin eklenmesi için geliştirilen çeşitli yöntemler vardır. Aynı temele dayanan bu yöntemler aynı yatay eksen koordinatında bulunan tüm düğüm noktalarının o yatay eksenin topoğrafya değerine göre aşağı veya yukarı kaydırılması esasına dayanır. 1

7 2. SONLU-ELEMANLAR YÖNTEMİ Sonlu-Elemanlar yöntemi analitik yolla çözülemeyen kısmi diferansiyel denklemleri çözmek için kullanılan sayısal bir yöntemdir. Yöntemin uygulanması aşağıdaki işlem akışıyla gerçekleşir (Candansayar,1997); 1.Verilen diferansiyel denklem integral denklemine dönüştürülür, integral denklemi tanımlanan alan için yazılır. 2.Verilen çözüm bölgesi sonlu sayıda küçük elemanlara bölünür. Burada alan doğrusal üçgen elemanlara bölünmüştür. Bu elemanlar birbirine düğüm noktaları (node) ile bağlıdır. Daha sonra sonlu elemanlar ağındaki her eleman ve düğüm noktası ayrı ayrı numaralandırılır. 3.Bilinmeyen gerilim değerleri, her eleman içinde polinom denklemi ile tanımlanır. Polinom denklemleri kullanılarak elemanın düğüm noktalarında ki gerilim değerleri tanımlanır. Daha sonra elemanın gerilim değerleri düğüm noktalarında ki gerilim değerleri cinsinden yazılır. 4. Düğüm noktalarındaki gerilim değerleri cinsinden yazılan elemanların gerilim değerleri birinci adımda elde edilen integral denklemine yerleştirilerek her eleman için doğrusal denklem takımları geliştirilir. Geliştirilen bu denklem takımları birleştirilerek, her elemana ait dizey denklemleri oluşturulur. 5. Oluşturulan eleman dizey denklemleri birleştirilerek sonlu elemanlar ağı için genel dizey denklemi elde edilir. 6.Genel dizey denkleminin çözümü ile düğüm noktalarında tanımlanan gerilim değerleri hesaplanır. 2

8 Bu tez çalışmasının konusu 2-B Doğru-Akım Özdirenç Modeline topoğrafya etkisinin eklenmesi olduğundan Sonlu-Elemanlar Yöntemi ile modelleme konusunda detaylı bilgi verilmeyecek yalnızca model ağı üzerinde durulacaktır. 2.1.Sonlu Elemanlar Model Ağı Sonlu-Elemanlar sayısal yönteminde çözülmek istenilen alan sonlu sayıda elemanlara bölünür. Elemanlar değişik şekillerde olabilir. Bu çalışmada sonlu elemanlar ağı doğrasal üçgen elemanlara bölünmüştür. Şekil de doğrusal üçgen elemanlara bölünmüş model ağı görülmektedir. x z Şekil Doğrusal Üçgen Elemanlara Bölünmüş Sonlu Elemanlar Ağı 3

9 3. SONLU ELEMANLAR AĞININ YÜZEY TOPOĞRAFYASINA GÖRE YENİDEN ŞEKİLLENDİRİLMESİ Topoğrafya etkisinin model ağına eklenmesinde kullanılan yöntemlerden birincisi yüzeydeki düğüm noktalarının, o noktalardaki topoğrafya değeri kadar aşağı veya yukarı kaydırılması ile yapılır. (a) (b) Şekil 3.1 (a) 30 o Eğimli Yamaç (b) Yamaç Topoğrafyasına göre yalnızca yüzey düğüm noktaları kaydırılarak şekillendirilmiş Sembolik Sonlu-Elemanlar Ağı (Panagiotis ve diğ, 1999) Şekil 3.1.b de model ağı topoğrafyaya göre şekillendirilirken yalnızca yüzeydeki düğüm noktaları kaydırılmıştır. Ancak topoğrafya etkisi yüzey altında da söz konusu olduğundan bu yöntem çok kullanışlı değildir, topoğrafyanın yumuşak değişimler gösterdiği alanlarda uygulanabilir. Model ağının topoğrafya etkisine göre yeniden düzenlenmesinde kullanılan ikinci bir yöntem ise aynı x koordinatı altında bulunan tüm düğüm noktalarının o noktadaki topoğrafya değeri kadar aşağı veya yukarı kaydırılmasıdır. Bu sayede yüzey altındaki topoğrafya etkisi de modellenmiş olur. Şekil 3.2 Aynı x koordinatında ki tüm düğüm noktalarının eşit olarak kaydırılmasını göstermektedir. İkinci yöntem ilkine göre daha topoğrafya etkisini daha doğru bir şekilde temsil eder. 4

10 Şekil 3.2 Aynı x koordinatı altındaki tüm düğüm noktalarının aynı topoğrafya değeri kadar kaydırılması ile oluşan model ağı (Loke, 2000) Üçüncü yöntem ise topoğrafya etkisinin yüzeyden derinlere doğru gidildikçe sönümlendiği esasına dayanır. Bu fikirden yola çıkarak yüzeydeki düğüm noktası o noktadaki topoğrafya değeri kadar aşağı kaydırılır, aynı x korrdinatı üzerindeki yüzey altında kalan düğüm noktaları ise derinlikle orantılı bir şekilde exponansiyel bir şekilde sönümlenir. Bu sönülmenmeyi sağlamak amacıyla geliştirilmiş bağıntı formül 3.1 de verilmiştir. z j =T i exp(-k.z j /(T m +H m -T i )) (3.1) T i (i) nolu x koordinatındaki yüzey topoğrafyası değeridir z j ise aynı x koordinatında bulunan yüzey altı düğüm noktasının düşeydeki kayma miktarını temsil eder, z j yüzey altı düğüm noktasının orijinal haldeki derinliğini göstermektedir. T m maximum ve minimum topoğrafya değerleri arasındaki farktır. H m ise topoğrafyanın maximum değerini tanımlar. Formülde kullanılan k sönüm faktörü olup kullanıcı tarafından belirlenir, genellikle k=1 olarak seçilir (Şekil 3.5). Bu formülün iyi sonuçlar vermesine karşılık olumsuz bir yönü bulunmaktadır. Sönüm faktörünün çok büyük seçildiği durumlarda, yöntem topoğrafyanın yükseldiği bölgelerde kalın, topoğrafya eğrilerinin düştüğü alanlarda ise ince katman modelleri üretmektedir (Şekil 3.6). Ancak optimum bir sönüm faktörü kullanıldığında topoğrafya etkisi doğru bir şekilde modellenebilir (Loke, 2000). Derinlere indikçe exponansiyel olarak küçülen kayma miktarları sönüm faktörünün 1 ve 3 olduğu durumlar için şekil 3.3 ve 3.4 de görülmektedir. 5

11 Şekil 3.3 k=1 için düğüm noktalarında hesaplanan kayma miktarları. Şekil 3.4 k=3 için düğüm noktalarında hesaplanan kayma miktarları. 6

12 Şekil 3.5 Sönüm faktörünün (k=1) olarak seçilmesi ile biçimlendirilen model ağı. Şekil 3.6 Sönüm Faktörünün (k=3) olarak seçilmesi ile biçimlendirilen modelağı. 7

13 4.MODELLER Şekil 4.1.(a) 30 Derce Eğimli Yükselti modeli,50 ohm özdirence sahip homojen ortam, 100 ohm özdirencine sahip blok.(b)topoğrafya etkisi katılmış 2-D modelleme sonucu yapma-kesit(c) Topoğrafya etkisi katılmamış 2-D modelleme sonucu oluşan yapmakesit. (Topoğrafya ile çizdirilmiş).(d) Topoğrafya etkisi katılmamış 2-D modelleme sonucu oluşan yapma-kesit (Topoğrafyasız çizdirilmiş). (Elektrod Sayısı 20, iki elektrod arası uzaklık 0.5 m, Dipole-Diplole Elektrod dizilimi) 8

14 Şekil 4.2.(a) 15 0 eğimli yamaç modeli 50 ohm özdirençli homojen ortam içinde 0 ohm özdirençli blok. (b) Topoğrafya etkisi katılmış 2-D modelleme sonucu oluşan yapmakesit.(c) Topoğrafya etkisi katılmamış 2-D modelleme sonucu oluşan yapma-kesit (Topoğrafya ile çizdirilmiş). (d) Topoğrafya etkisi katılmamış 2-D modelleme sonucu oluşan yapma-kesit(topoğrafyasız çizdirilmiş). (Elektrod Sayısı 20, iki elektrod arası uzaklık 0.5 m, Dipole-Diplole Elektrod dizilimi) Şekil 4.1 ve 4.2 (b) de görüldüğü gibi topoğrafya değişiminin etkisi modele dahil edilerek modelleme yapıldığında hedef bloğun yeri ve özdirenci gerçeğe daha yakın bir şekilde modellenebiliyor. Ancak topoğrafya etkisi dahil edilmediğinde oluşan model yapma-kesitlerinde görüldüğü gibi hedef bloğun yeri hakkında bir yorum yapmak mümkün değil ve özdirençler de topoğrafya etkisi dahil edilmiş modele göre gerçekten daha uzak bir şekilde belirleniyor. 9

15 5.SONUÇLAR Bu tez çalışmasında oluşturulan modellerde de görüldüğü gibi yüzey topoğrafyasının etkisi katılarak modelleme yapıldığında aranılan hedefin konumu, derinliği ve özdirenci daha doğru şekilde belirlenebilmektedir. Jeofizik çalışmalar da bazen hedef bölgenin yerinin tespitinde yapılan küçük bir yanlış bile büyük sorunlar doğurabildiği için yer-içi en doğru şekilde modellenmeli ve ters-çözüm yapılmalıdır. 10

16 KAYNAKLAR Candansayar,M,E,1997,Doğru-Akım Özdirenç Yönteminde Modelleme ve İki- Boyutlu Sığ Yapıların Aranmasında Elektrod Dizilimlerinin Ayrımlılıklarının Karşılaştırılması,Yüksek Lisans Tezi Ankara Üniversitesi,(Yayımlanmamış) Fox, C.R., Hohmann, G.W.,Killpack, T.J., Rijo, L., Topographic Effects in Resistivity and Induced-Polarization Surveys, Geophysics, vol.45, no. 1 (January,1980); P , 19 Figs. Loke,M.H.,Topographic Modelling in Electrical Imaging Inversion, A slightly updated version of an abstract submitted for the EAGE 62nd Conference and Technical Exhibition, Glasgow, Scotland, 29 May-2 June Tong,L.T, and Yang,C.H Incorporation of Topography Into Two-Dimensional Resistivity Inversion, Geophysiscs vol.55 no 3, (March,1990); P ,8 figs., 2 tables. Panagiotis I.T., Symanski J.E. and Tsokas,G.N The effect of Terrain Topography on Commonly Used Resistivity Arrays, Geophysics vol 64,no 5 (September-October,1999); P , 9 figs. 11

17 TEŞEKKÜR Başta güz ve bahar dönemi bitirme tezi konularımı seçmemde beni yönlendiren ve çalışmalarım sırasında her zaman bana yardımcı olan danışman hocam Dr. Emin Candansayar a sonsuz teşekkür ederim. Fikir ve görüşlerine saygı duyduğum ve birçok konuda yardım aldığım Arş.Grv. İrfan Akca ya ve okulda göremesem bile sanal alemde peşine takıldığım Arş.Grv.N.Yıldırım Gündoğdu ya, Jeofiziğin ofiste olduğu kadar arazide de zevkli bir meslek olduğunu bana gösteren Dr.Emin U. Ulugergerli ye çok teşekkürler. Son olarak destek ve sevgisini her an hissettiğim, varlığından güç aldığım H.Nimet Kızılaslan a sonsuz teşekkürler. 12

18 ÖZGEÇMİŞ 1982 yılında Aydın ın Nazilli ilçesinde doğdu. İlköğrenimini Nazilli Beş Eylül İlköğretim Okulunda tamamladıktan sonra, orta ve lise öğrenimine Nazilli Atatürk Lisesi nde devam etti.2000 yılında bu okuldan mezun olduktan sonra, güz döneminde Ankara Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği nde lisans eğitimine başladı. Halen bu okulda lisans öğrencisi olarak okumaktadır. 13

Yüksek Lisans Tezi ANKARA ÜNİVERSİTESİ

Yüksek Lisans Tezi ANKARA ÜNİVERSİTESİ ANKARA ÜNİVERSİTESİ Yüksek Lisans Tezi Doğru Akım Özdirenç ve Manyetotellürik Yöntemlerde Sonlu Elemanlar İle İki-Boyutlu Düz Çözüme Topoğrafya Etkisinin Eklenmesi ERHAN ERDOĞAN Jeofizik Mühendisliği Anabilim

Detaylı

Tarih Öncesi Yerleşim Bathonea da Uygulanan Jeofizik Çalışmalar. Geophysical Application of a Prehistoric Settlement at Bathonea

Tarih Öncesi Yerleşim Bathonea da Uygulanan Jeofizik Çalışmalar. Geophysical Application of a Prehistoric Settlement at Bathonea Tarih Öncesi Yerleşim Bathonea da Uygulanan Jeofizik Çalışmalar Geophysical Application of a Prehistoric Settlement at Bathonea Ertan Pekşen 1, Türker Yas 2, İsmail Kaplanvural 3, Hamdullah Livaoğlu 4,

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 2 s Mayıs 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 2 s Mayıs 2005 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 2 s. 113-128 Mayıs 2005 YİNELEMELİ YÖNTEMLE ÜÇ BOYUTLU ÖZDİRENÇ MODELLEMESİ (3D RESISTIVITY MODELLING BY ITERATIVE METHOD) Gökhan GÖKTÜRKLER

Detaylı

İstanbul Küçükçekmece Göl Havzası Antik Bathonea Kenti Arkeojeofizik Çalışmalarından İlk Sonuçlar

İstanbul Küçükçekmece Göl Havzası Antik Bathonea Kenti Arkeojeofizik Çalışmalarından İlk Sonuçlar İstanbul Küçükçekmece Göl Havzası Antik Bathonea Kenti Arkeojeofizik Çalışmalarından İlk Sonuçlar Preliminary Results of Geophysical Application of an Ancient Settlement at Bathoneain Küçükçekmece Lake

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

Jeotermal Aramalarda Manyetotellürik Yöntem

Jeotermal Aramalarda Manyetotellürik Yöntem Jeotermal Aramalarda Manyetotellürik Yöntem Ahmet Tuğrul BAŞOKUR LEMNİS Yerbilimleri Sanayi ve Ticaret Ltd. Şti., Ankara Üniversitesi Teknoloji Geliştirme Bölgesi, B-Blok No: 11/B, Gölbaşı ANKARA ve Ankara

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

11/ 94. Şekil 2.5. Kuyu Yüzey elektrod dizilimleri. JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

11/ 94. Şekil 2.5. Kuyu Yüzey elektrod dizilimleri. JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) Şekil.5. Kuyu Yüzey elektrod dizilimleri (Bu notu yazardan habersiz fotokopi ile çoğaltmak yasaktır) - Ocak 016-11/ 94 ARTAN JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi).6. Elektrod Dizilimlerinin

Detaylı

T.C. ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ II ELEKTRİK SONDAJI VERİLERİNİN BİR BOYUTLU TERS ÇÖZÜMÜ

T.C. ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ II ELEKTRİK SONDAJI VERİLERİNİN BİR BOYUTLU TERS ÇÖZÜMÜ T.C. ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ II ELEKTRİK SONDAJI VERİLERİNİN BİR BOYUTLU TERS ÇÖZÜMÜ HAZIRLAYAN : FATİH YAKUT Fakülte No : 02291522 ANKARA 2006

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

JEOTERMAL ARAMALARDA KULLANILAN ELEKTRİK VE ELEKTROMANYETİK YÖNTEMLER

JEOTERMAL ARAMALARDA KULLANILAN ELEKTRİK VE ELEKTROMANYETİK YÖNTEMLER JEOTERMAL ARAMALARDA KULLANILAN ELEKTRİK VE ELEKTROMANYETİK YÖNTEMLER Ankara Üni., Mühendislik Fakültesi, Jeofizik Müh. Böl., Tandoğan 06100 ANKARA basokur@eng.ankara.edu.tr Özet Jeotermal akışkanların

Detaylı

BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ

BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ BİR OFİS İÇİN TERMAL KONFOR ANALİZİNİN HESAPLAMALI AKIŞKANLAR DİNAMİĞİ YÖNTEMİ İLE MODELLENMESİ VE SAYISAL ÇÖZÜMÜ Hazırlayan : Kadir ÖZDEMİR No : 4510910013 Tarih : 25.11.2014 KONULAR 1. ÖZET...2 2. GİRİŞ.........3

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

İrfan AKCA, N. Yıldırım GÜNDOĞDU ankara Üniversitesi, Mühendislik Fakültesi, Jeofizik Mühendisliği Bölümü, Tandoğan, ANKARA

İrfan AKCA, N. Yıldırım GÜNDOĞDU ankara Üniversitesi, Mühendislik Fakültesi, Jeofizik Mühendisliği Bölümü, Tandoğan, ANKARA Yerbilimleri, 31 (3), 205 215 Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Dergisi Journal of the Earth Sciences Application and Research Centre of Hacettepe University Samsun-Baruthane

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis. Reza SHIRZAD REZAEI

SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis. Reza SHIRZAD REZAEI SONLU ELEMANLAR YÖNTEMI ile (SAP2000 UYGULAMASI) 3D Frame Analysis Reza SHIRZAD REZAEI SONLU ELEMANLAR YÖNTEMİ Sonlu Elemanlar (SE)Yöntemi, çesitli mühendislik problemlerine kabul edilebilir bir yaklasımla

Detaylı

ÖZET. Fatih UÇAR. Yüksek Lisans Tezi, Jeoloji Mühendisliği Anabilim Dalı Danışman: Yrd. Doç. Dr. Özgür AKTÜRK Haziran 2014, 96 sayfa

ÖZET. Fatih UÇAR. Yüksek Lisans Tezi, Jeoloji Mühendisliği Anabilim Dalı Danışman: Yrd. Doç. Dr. Özgür AKTÜRK Haziran 2014, 96 sayfa ÖZET 2-BOYUTLU REZİSTİVİTE YÖNTEMİ KULLANILARAK KARSTİK AKTİVİTE BELİRLENMESİ Fatih UÇAR Yüksek Lisans Tezi, Jeoloji Mühendisliği Anabilim Dalı Danışman: Yrd. Doç. Dr. Özgür AKTÜRK Haziran 2014, 96 sayfa

Detaylı

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN

YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN YAPI STATİĞİ II (Hiperstatik Sistemler) Yrd. Doç. Dr. Selçuk KAÇIN Yapı Sistemleri: İzostatik (Statikçe Belirli) Sistemler : Bir sistemin tüm kesit tesirlerini (iç kuvvetlerini) ve mesnet reaksiyonlarını

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

BİTİRME PROJESİ YAZIM KURALLARI. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği Bölümü. Ağustos, 2011 İZMİR

BİTİRME PROJESİ YAZIM KURALLARI. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği Bölümü. Ağustos, 2011 İZMİR BİTİRME PROJESİ YAZIM KURALLARI Dokuz Eylül Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği Bölümü Ağustos, 2011 İZMİR BÖLÜM 1 GİRİŞ Bu kitapçıkta genel anlamda, hazırlanacak bir tez, proje ve

Detaylı

PERDELĠ BETONARME YAPILAR ĠÇĠN DOĞRUSAL OLMAYAN ANALĠZ METOTLARI

PERDELĠ BETONARME YAPILAR ĠÇĠN DOĞRUSAL OLMAYAN ANALĠZ METOTLARI PERDELĠ BETONARME YAPILAR ĠÇĠN DOĞRUSAL OLMAYAN ANALĠZ METOTLARI Nonlinear Analysis Methods For Reinforced Concrete Buildings With Shearwalls Yasin M. FAHJAN, KürĢat BAġAK Gebze Yüksek Teknoloji Enstitüsü,

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ Makine parçalarının ve/veya eş çalışan makine parçalarından oluşan mekanizma veya sistemlerin tasarımlarında önemli bir aşama olan ve tasarıma

Detaylı

MADEN ARAMALARINDA DES VE IP YÖNTEMLERİ TANITIM DES UYGULAMA EĞİTİM VERİ İŞLEM VE SERTİFİKA PROGRAMI

MADEN ARAMALARINDA DES VE IP YÖNTEMLERİ TANITIM DES UYGULAMA EĞİTİM VERİ İŞLEM VE SERTİFİKA PROGRAMI MADEN ARAMALARINDA DES VE IP YÖNTEMLERİ TANITIM DES UYGULAMA EĞİTİM VERİ İŞLEM VE SERTİFİKA PROGRAMI a) Zaman b) V P c) V P V P V(t 1 ) V M S V(t 1 ) V(t 2 ) V(t 3 ) V(t 4 ) Zaman t 1 t 2 V(t ) 4 Zaman

Detaylı

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal

Detaylı

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM

MAK4061 BİLGİSAYAR DESTEKLİ TASARIM MAK4061 BİLGİSAYAR DESTEKLİ TASARIM (Shell Mesh, Bearing Load,, Elastic Support, Tasarım Senaryosunda Link Value Kullanımı, Remote Load, Restraint/Reference Geometry) Shell Mesh ve Analiz: Kalınlığı az

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 3 sh. 99-110 Ekim 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 3 sh. 99-110 Ekim 2003 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 3 sh. 99-110 Ekim 2003 METALİK MADEN ATIĞI TAŞIYAN GÖMÜLÜ BORU HATTININ ÖZDİRENÇ YÖNTEMİYLE ARAŞTIRILMASI (INVESTIGATION OF BURIED METAL

Detaylı

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ FEN BİLİMLERİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS SAYISAL YÖNTEMLER FM-223 2 / 2.YY 2 2+0+0 4 Dersin Dili : Türkçe Dersin Seviyesi : Lisans

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOĞRU AKIM ÖZDİRENÇ YÖNTEMİNDE MODELLEME VE İKİ-BOYUTLU SIĞ YAPILARIN ARANMASINDA ELEKTROD DİZİLİMLERİNİN AYRIMLILIKLARININ KARŞILAŞTIRILMASI Mehmet Emin CANDANSAYAR

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

AKTİF KAYNAKLI YÜZEY DALGASI (MASW) YÖNTEMINDE FARKLI DOĞRUSAL DIZILIMLERIN SPEKTRAL ÇÖZÜNÜRLÜLÜĞÜ

AKTİF KAYNAKLI YÜZEY DALGASI (MASW) YÖNTEMINDE FARKLI DOĞRUSAL DIZILIMLERIN SPEKTRAL ÇÖZÜNÜRLÜLÜĞÜ AKTİF KAYNAKLI YÜZEY DALGASI (MASW) YÖNTEMINDE FARKLI DOĞRUSAL DIZILIMLERIN SPEKTRAL ÇÖZÜNÜRLÜLÜĞÜ M.Ö.Arısoy, İ.Akkaya ve Ü. Dikmen Ankara Üniversitesi Mühendislik Fakültesi Jeofizik Mühendisliği Bölümü,

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

Kimya Mühendisliğinde Uygulamalı Matematik

Kimya Mühendisliğinde Uygulamalı Matematik Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı Kimya Mühendisliğinde Uygulamalı Matematik DERS BİLGİ FORMU DERS BİLGİLERİ Dersin Adı Kodu Yarıyıl Kimya Mühendisliğinde Uygulamalı Matematik T

Detaylı

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ Melih Tuğrul, Serkan Er Hexagon Studio Araç Mühendisliği Bölümü OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

İçerik. TBT 1003 Temel Bilgi Teknolojileri

İçerik. TBT 1003 Temel Bilgi Teknolojileri TBT 1003 Temel Bilgi Teknolojileri İçerik H0. Giriş ve Ders İçeriği Tanıtım H1. Donanım ve bilgisayarlar. H2. Donanım uygulamaları ve işletim sistemleri. H3. Kelime İşlemciler H4. Kelime İşlemci Uygulama

Detaylı

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES by Didem Öztürk B.S., Geodesy and Photogrammetry Department Yildiz Technical University, 2005 Submitted to the Kandilli Observatory and Earthquake

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

KOMPOZİT TEKNE KARİNASININ SONLU ELEMANLAR METODUYLA YAPISAL DAYANIM ANALİZLERİNİN GERÇEKLEŞTİRLMESİ

KOMPOZİT TEKNE KARİNASININ SONLU ELEMANLAR METODUYLA YAPISAL DAYANIM ANALİZLERİNİN GERÇEKLEŞTİRLMESİ KOMPOZİT TEKNE KARİNASININ SONLU ELEMANLAR METODUYLA YAPISAL DAYANIM ANALİZLERİNİN GERÇEKLEŞTİRLMESİ 1 Özet Mekanik dayanım, hafiflik, korozyon direnci ve kolay şekillendirilebilme özelliklerine sahip

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 2. TEMEL KANUNLAR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi Bu bölümde Ohm Kanunu Düğüm, dal, çevre 2.1. Giriş Kirchhoff Kanunları Paralel

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

Geometriden kaynaklanan etkileri en aza indirmek için yük ve uzama, sırasıyla mühendislik gerilmesi ve mühendislik birim şekil değişimi parametreleri elde etmek üzere normalize edilir. Mühendislik gerilmesi

Detaylı

AÇI YÖNTEMİ Slope-deflection Method

AÇI YÖNTEMİ Slope-deflection Method SAKARYA ÜNİVERSİTESİ İNŞAAT ÜHENDİSLİĞİ BÖLÜÜ Department of Civil Engineering İN 303 YAPI STATIĞI II AÇI YÖNTEİ Slope-deflection ethod Y.DOÇ.DR. USTAA KUTANİS kutanis@sakarya.edu.tr Sakarya Üniversitesi,

Detaylı

Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi

Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi YDGA2005 - Yığma Yapıların Deprem Güvenliğinin Arttırılması Çalıştayı, 17 Şubat 2005, Orta Doğu Teknik Üniversitesi, Ankara. Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

T.C. MİLLİ SAVUNMA BAKANLIĞI HARİTA GENEL KOMUTANLIĞI HARİTA YÜKSEK TEKNİK OKULU KOMUTANLIĞI ANKARA

T.C. MİLLİ SAVUNMA BAKANLIĞI HARİTA GENEL KOMUTANLIĞI HARİTA YÜKSEK TEKNİK OKULU KOMUTANLIĞI ANKARA T.C. MİLLİ SAVUNMA BAKANLIĞI HARİTA GENEL KOMUTANLIĞI HARİTA YÜKSEK TEKNİK OKULU KOMUTANLIĞI ANKARA ÇİFT STANDART DAİRELİ KONFORM LAMBERT PROJEKSİYONUNDA TÜRKİYE HARİTASININ YAPILMASI Hrt. Tğm. Soner ÖZDEMİR

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar

Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar. 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.1 7.2 Varsayımlar ve Tanımlar Tekil Yükleri Aktaran Kablolar Örnekler Yayılı Yük Aktaran Kablolar 7.3 Yatayda Yayılı Yük Aktaran Kablolar 7.4 Örnekler Kendi Ağırlığını Taşıyan Kablolar (Zincir Eğrisi)

Detaylı

TÜRK MÜHENDİS VE MİMAR ODALARI BİRLİĞİ JEOFİZİK MÜHENDİSLERİ ODASI

TÜRK MÜHENDİS VE MİMAR ODALARI BİRLİĞİ JEOFİZİK MÜHENDİSLERİ ODASI TÜRK MÜHENDİS VE MİMAR ODALARI BİRLİĞİ JEOFİZİK MÜHENDİSLERİ ODASI JEOFİZİK YÖNTEMLERLE ELEKTRİK TESİSLERİNDE TOPRAKLAMA YERİ TESPİT ETÜDÜ NORMU Şubat - 2016 Yönetim Kurulu nun 23/02/2016 tarih ve 105

Detaylı

Orifis, Nozul ve Venturi Tip Akışölçerler

Orifis, Nozul ve Venturi Tip Akışölçerler Orifis, Nozul ve Venturi Tip Akışölçerler Bu tür akışölçerlerde, akışta kısıtlama yapılarak yaratılan basınç farkı (fark basınç), Bernoulli denkleminde işlenerek akış miktarı hesaplanır. Bernoulli denkleminin

Detaylı

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI

L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI T.C DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ L KESİTLİ KİRİŞTE KAYMA MERKEZİNİN ANSYS İLE VE DENEYSEL YOLLA BULUNMASI BİTİRME PROJESİ KADİR BOZDEMİR PROJEYİ YÖNETEN PROF.

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Şaban ULUS Şubat 2014 KAYSERİ

Detaylı

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin. DENEY 2 2.1. AC GERİLİM ÖLÇÜMÜ 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. AC voltmetre, AC gerilimleri ölçmek için kullanılan kullanışlı bir cihazdır.

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

KOCAELİ ÜNİVERSİTESİ BESYO YERLEŞKESİNDE YAPILAN ÖZDİRENÇ YÖNTEMİYLE KİRLİLİK ARAŞTIRMASI

KOCAELİ ÜNİVERSİTESİ BESYO YERLEŞKESİNDE YAPILAN ÖZDİRENÇ YÖNTEMİYLE KİRLİLİK ARAŞTIRMASI Uygulamalı Yer Bilimleri Sayı:1 (Ocak-Şubat 2013) 44-50 KOCAELİ ÜNİVERSİTESİ BESYO YERLEŞKESİNDE YAPILAN ÖZDİRENÇ YÖNTEMİYLE KİRLİLİK ARAŞTIRMASI Pollution Investigation and Using Multi-electrod Resistivity

Detaylı

ĠSTANBUL TEKNĠK ÜNĠVERĠSTESĠ MADEN FAKÜLTESĠ MADEN MÜHENDĠSLĠĞĠ BÖLÜMÜ

ĠSTANBUL TEKNĠK ÜNĠVERĠSTESĠ MADEN FAKÜLTESĠ MADEN MÜHENDĠSLĠĞĠ BÖLÜMÜ ĠSTANBUL TEKNĠK ÜNĠVERĠSTESĠ MADEN FAKÜLTESĠ MADEN MÜHENDĠSLĠĞĠ BÖLÜMÜ MADENCĠLĠKTE ÖZEL KONULAR II DERS PROJESĠ MICROMINE PAKET PROGRAMI ĠLE ÜÇ BOYUTLU MADEN PLANLAMASI 505121007 HAKAN ALTIPARMAK Proje

Detaylı

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI

OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI OTOMATİK KONTROL SİSTEMLERİ BLOK DİYAGRAM İNDİRGEME KURALLARI BLOK DİYAGRAM İNDİRGEME KURALLARI Örnek 9: Aşağıdaki açık çevrim blok diyagramının transfer fonksiyonunu bulunuz? 2 BLOK DİYAGRAM İNDİRGEME

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS)

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) GİRİŞ BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) Bir parçanın üretimine geçilmeden önce tasarım sürecinden geçmesi gerekir. Bu süreçte parçanın çizimi ve analizi olmak üzere iki önemli aşama gerçekleştirilir.

Detaylı

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2

Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Elastisite Teorisi Polinomlar ile Çözüm Örnek 2 Böylece aşağıdaki gerilme ifadelerine ulaşılır: Bu problem için yer değiştirme denklemleri aşağıdaki şekilde türetilir: Elastisite Teorisi Polinomlar ile

Detaylı

İÇİNDEKİLER. Sayfa ÖNSÖZ... II ÖZET... VIII SUMMARY...IX ŞEKİL LİSTESİ... X TABLO LİSTESİ...XIX SEMBOL LİSTESİ...XX

İÇİNDEKİLER. Sayfa ÖNSÖZ... II ÖZET... VIII SUMMARY...IX ŞEKİL LİSTESİ... X TABLO LİSTESİ...XIX SEMBOL LİSTESİ...XX İÇİNDEKİLER Sayfa ÖNSÖZ... II ÖZET... VIII SUMMARY...IX ŞEKİL LİSTESİ... X TABLO LİSTESİ...XIX SEMBOL LİSTESİ...XX 1. GENEL BİLGİLER...1 1.1. Giriş...1 1.2. Geçmişte Yapılan Çalışmalar...2 1.3. Bu Çalışmanın

Detaylı

İNTERNET SİTESİ İÇİN GERÇEK RAPORDAN EKSİLTMELER YAPILARAK YAYINLANMIŞTIR

İNTERNET SİTESİ İÇİN GERÇEK RAPORDAN EKSİLTMELER YAPILARAK YAYINLANMIŞTIR Bu Raporda Ocak-Şubat 2011 de Özçelik Enerji ve Mad. San. Tic. Ltd. Şti. ye ait Kömür Sahası Ruhsatı içerisinde yer alan sahada gerçekleştirilmiş olan Kömür Tabakalarına Yönelik Rezistivite-IP Yöntemi

Detaylı

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ İMALAT DALI MAKİNE LABORATUVARI II DERSİ TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ DENEY RAPORU HAZIRLAYAN Osman OLUK 1030112411 1.Ö. 1.Grup DENEYİN AMACI Torna tezgahı ile işlemede, iş parçasına istenilen

Detaylı

Jeofizik Mühendisliği Bölümü ve Çok Disiplinli Çalışma Alanları

Jeofizik Mühendisliği Bölümü ve Çok Disiplinli Çalışma Alanları Jeofizik Mühendisliği Bölümü ve Çok Disiplinli Çalışma Alanları M. Emin Candansayar, Prof. Dr. Jeofizik Mühendisliği Bölümü candansayar@ankara.edu.tr Konu Başlıkları Jeofizik Mühendisliği Nedir? Jeofizik

Detaylı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı

Gerilme. Bölüm Hedefleri. Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Gerilme Bölüm Hedefleri Normal ve Kayma gerilmesi kavramının anlaşılması Kesme ve eksenel yük etkisindeki elemanların analiz ve tasarımı Copyright 2011 Pearson Education South sia Pte Ltd GERİLME Kesim

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı

LİNEER DALGA TEORİSİ. Page 1

LİNEER DALGA TEORİSİ. Page 1 LİNEER DALGA TEORİSİ Giriş Dalgalar, gerçekte viskoz akışkan içinde, irregüler ve değişken geçirgenliğe sahip bir taban üzerinde ilerlerler. Ancak, çoğu zaman akışkan hareketi neredeyse irrotasyoneldir.

Detaylı

KAMP STAJI HAZIRLIK NOTU (SP)

KAMP STAJI HAZIRLIK NOTU (SP) İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ KAMP STAJI HAZIRLIK NOTU (SP) Araş. Gör. Gülten AKTAŞ İstanbul, Ağustos, 2014 İÇİNDEKİLER 1. GİRİŞ... 3 2. Doğal Gerilim Yöntemi

Detaylı

Şekil 7.1 Bir tankta sıvı birikimi

Şekil 7.1 Bir tankta sıvı birikimi 6 7. DİFERENSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMLERİ Diferensiyel denklemlerin sayısal integrasyonunda kullanılabilecek bir çok yöntem vardır. Tecrübeler dördüncü mertebe (Runge-Kutta) yönteminin hemen hemen

Detaylı

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET EBE-211, Ö.F.BAY 1 Temel Elektriksel Nicelikler Temel Nicelikler: Akım,Gerilim ve Güç Akım (I): Eletrik yükünün zamanla değişim oranıdır.

Detaylı

3.4. ÇEVRE AKIMLAR YÖNTEMİ

3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKıMLAR YÖNTEMI (Ç.A.Y): Bu yöntemde düğümlerdeki akımlar yerine, çevredeki akımlar ele alınarak devrenin analizi yapılır. Yöntemin temel prensibi her bir bağımsız

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İzdüşüm merkezi(o):

Detaylı

2. DA DEVRELERİNİN ANALİZİ

2. DA DEVRELERİNİN ANALİZİ 2. DA DEVRELERİNİN ANALİZİ 1 Hatları birbirini kesmeyecek şekilde bir düzlem üzerine çizilebilen devrelere Planar Devre adı verilir. Hatlarında kesişme olan bazı devreler de (şekil-a) kesişmeleri yok edecek

Detaylı

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı Dersin Adı : Yapı Mühendisliğinde Bilgisayar Uygulamaları Koordinatörü : Doç.Dr.Bilge DORAN Öğretim Üyeleri/Elemanları: Dr. Sema NOYAN ALACALI,

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ 1. KİŞİSEL BİLGİLER Kimlik Bilgileri TC Kimlik No :33107316330 Adı Soyadı Baba Adı Doğum Yeri :Mahmut :MODANLI : Abdülkadir : ŞANLIURFA Doğum Tarihi : 01.01.1978 Uyruk : Türkiye

Detaylı

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

MAK1010 MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI .. MAK MAKİNE MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Polinom MATLAB p=[8 ] d=[ - ] h=[ -] c=[ - ] POLİNOMUN DEĞERİ >> polyval(p, >> fx=[ -..9 -. -.9.88]; >> polyval(fx,9) ans =. >> x=-.:.:.; >> y=polyval(fx,;

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 2 @ysevim61 https://www.facebook.com/groups/ktuemt/ 1 Akım, Gerilim, Direnç Anahtar Pil (Enerji kaynağı) V (Akımın yönü) R (Ampül) (e hareket yönü) Şekildeki devrede yük

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Kafes Sistemler Turesses

Kafes Sistemler Turesses Kafes Sistemler Turesses Birbirlerine uç noktalarından bağlanmış çubuk elemanların oluşturduğu sistemlerdir. Turesses are a carrier system formed by the bar elements. Each bar element connects to others

Detaylı

KAVELALI MOBİLYA KÖŞE BİRLEŞTİRMELERİNİN SONLU ELEMANLAR ANALİZİ. Ergün Güntekin FINITE ELEMENT ANALYSIS OF DOWELED FURNITURE CORNER JOINTS

KAVELALI MOBİLYA KÖŞE BİRLEŞTİRMELERİNİN SONLU ELEMANLAR ANALİZİ. Ergün Güntekin FINITE ELEMENT ANALYSIS OF DOWELED FURNITURE CORNER JOINTS Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A, Sayı: 1, Yıl: 2004, ISSN: 1302-7085, Sayfa:159-169 KAVELALI MOBİLYA KÖŞE BİRLEŞTİRMELERİNİN SONLU ELEMANLAR ANALİZİ Ergün Güntekin SDÜ Orman

Detaylı

SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ

SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ SONLU ELEMANLAR (FINITE ELEMENTS) YÖNTEMİ Sonlu Elemanlar Yöntemi, çeşitli mühendislik problemlerine kabul edilebilir bir yaklaşımla çözüm arayan bir sayısal çözüm yöntemidir. Uniform yük ır Sabit sın

Detaylı

Heyelan Etütlerinde Elektrik Özdirenç Ölçümlerinin Kullanılmasına Yönelik Bir Uygulama: Yıldırım Beyazıt Parkı, (Etimesgut-Ankara)

Heyelan Etütlerinde Elektrik Özdirenç Ölçümlerinin Kullanılmasına Yönelik Bir Uygulama: Yıldırım Beyazıt Parkı, (Etimesgut-Ankara) Yerbilimleri, 33 (3), 283-293 Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University Heyelan Etütlerinde

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

ANOVA MÜHENDİSLİK LTD. ŞTİ.

ANOVA MÜHENDİSLİK LTD. ŞTİ. ÇOK KADEMELİ POMPA PERFORMANSININ CFD YÖNTEMİYLE BELİRLENMESİ Ahmet AÇIKGÖZ Mustafa GELİŞLİ Emre ÖZTÜRK ANOVA MÜHENDİSLİK LTD. ŞTİ. KISA ÖZET Bu çalışmada dört kademeli bir pompanın performansı Hesaplamalı

Detaylı

T.C. MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

T.C. MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ T.C. KTO KARATAY ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ KONYA-2015 Arş. Gör. Eren YÜKSEL Yapı-Zemin Etkileşimi Nedir? Yapı ve zemin deprem sırasında birbirini etkileyecek şekilde

Detaylı

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 Dersin Dili : İngilizce Dersin Seviyesi

Detaylı

İKİ LEVHA ARASINDAKİ LAMİNER AKIŞTA DEĞİŞKEN DUVAR KALINLIĞININ ISI TRANSFERİNE ETKİSİNİN SAYISAL ANALİZİ

İKİ LEVHA ARASINDAKİ LAMİNER AKIŞTA DEĞİŞKEN DUVAR KALINLIĞININ ISI TRANSFERİNE ETKİSİNİN SAYISAL ANALİZİ ULIBTK 3 4.Ulusal Isı Bilimi ve Tekniği Kongresi 3-5 Eylül 3,ISPARTA İKİ LEVHA ARASINDAKİ LAMİNER AKIŞTA DEĞİŞKEN DUVAR KALINLIĞININ ISI TRANSFERİNE ETKİSİNİN SAYISAL ANALİZİ Mehmet Emin ARICI Birol ŞAHİN

Detaylı

GEMİ ÇELİK TEKNE AĞIRLIK DAĞILIMININ MODELLENMESİNDE BİR YAKLAŞIM: HACİMSEL ORANLAR YAKLAŞIMI

GEMİ ÇELİK TEKNE AĞIRLIK DAĞILIMININ MODELLENMESİNDE BİR YAKLAŞIM: HACİMSEL ORANLAR YAKLAŞIMI GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ 08 BİLDİRİLER KİTABI GEMİ ÇELİK TEKNE AĞIRLIK DAĞILIMININ MODELLENMESİNDE BİR YAKLAŞIM: HACİMSEL ORANLAR YAKLAŞIMI Ertekin BAYRAKTARKATAL 1, Alican KILINÇ

Detaylı

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI

YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI YÜZÜNCÜ YIL ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ YAPI MÜHENDİSLİĞİ BİLGİSAYAR UYGULAMALARI Yrd. Doç. Dr. Barış Erdil YAPI MÜHENDİSLİĞİ NEDİR? STRUCTURAL ENGINEERING IS

Detaylı

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

DOSYA ORGANİZASYONU. Ağaç Yapıları ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DOSYA ORGANİZASYONU ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Ağaç Yapıları Sunum planı Genel kavramlar İkili ağaç İkili arama ağacı AVL Tree B-Tree Genel Kavramlar Bir ağaç yapısı

Detaylı

SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH.

SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. EM 420 Yüksek Gerilim Tekniği DÜZLEMSEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak

Detaylı

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği

ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği ULAŞIM YOLLARINA İLİŞKİN TANIMLAR 1. GEÇKİ( GÜZERGAH) Karayolu, demiryolu gibi ulaşım yollarının yuvarlanma yüzeylerinin ortasından geçtiği varsayılan eksen çizgilerinin topoğrafik harita ya da arazi üzerindeki

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Diferansiyel Denklemler ve Lineer Cebir BIL271 3 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans

Detaylı

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI

BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI 36 İNCELEME - ARAŞTIRMA BÜYÜK ÖLÇEKLİ HARİTA YAPIMINDA STEREOGRAFİK ÇİFT PROJEKSİYONUN UYGULANIŞI Erdal KOÇAIC*^ ÖZET Büyük ölçekli harita yapımında G İ R İŞ uygulanabilen "Stereografik çift Stereografik

Detaylı

KALINLIK VE DERİNLİK HESAPLAMALARI

KALINLIK VE DERİNLİK HESAPLAMALARI KALINLIK VE DERİNLİK HESAPLAMALARI Herhangi bir düzlem üzerinde doğrultuya dik olmayan düşey bir düzlem üzerinde ölçülen açıdır Görünür eğim açısı her zaman gerçek eğim açısından küçüktür Görünür eğim

Detaylı