Sonlu Elemanlar Yöntemi İle EKG İşareti Benzetimi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Sonlu Elemanlar Yöntemi İle EKG İşareti Benzetimi"

Transkript

1 Sonlu Elemanlar Yöntemi İle EKG İşareti Benzetimi Serkan Onart, Y. Ziya İder Bilkent Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Bilkent, 06533, Ankara Özetçe EKG işaretinin QRS bölgesi, kalp karıncık hücrelerinin belli bir sıra ile aktive olması sırasında vücut yüzeyinde oluşan potansiyel farklarının kayıt edilmesi ile elde edilir. Kalp hücrelerinin aktivasyon sırası, eş aktivasyon eğrileri şeklinde, deneysel çalışmalarla elde edilmiştir ve literatürde mevcuttur. Bu çalışmada, eş aktivasyon eğrileri ve iki boyutlu sonlu elemanlar yöntemi kullanılarak, vücut yüzeyindeki potansiyel dağılımı zamana göre hesaplanmış ve tipik EKG-QRS işareti elde edilmiştir. 1. Giriş Kalp hücrelerinin belli bir sıra ile aktive olurken oluşturdukları EKG işareti uzmanlara kalp hakkında birçok ipucu verebilen önemli bir veridir. Bu verinin kaynağına inmek ve nasıl oluştuğunu daha iyi kavramak, uzmanlara yeni görüşler kazandırmak açısından önemlidir. Bunun için ise en iyi yol, EKG işaretinin her anı için karşılık gelen aktivasyon eğrisini belirlemek ve aradaki birebir ilişkiyi gözlemlemektir. Kalp hücrelerinin belli bir sırayla aktivasyonu sırasında herhangi bir anda oluşan eş aktivasyon eğrisi, o ana kadar depolarize olmuş olan hücreler ile halen polarize durumda olan hücrelerin sınırını oluşturan eğridir. Yanyana olan kalp hücreleri arasında, bu hücrelerin iç ortamlarını birbirine bağlayan ve "Gap Junction" denilen iletken bağlantılar vardır. Depolarize olmuş bir hücrenin iç ortamından yanındaki henüz polarize durumda olan hücrenin iç ortamına bu bağlantı üzerinden akım akmaktadır. Bu akım polarize hücrenin dış yüzeyinden depolarize hücrenin dış yüzeyine dış ortam üzerinden tamamlanmaktadır. Bu durumda, bir eş aktivasyon eğrisinin bir tarafındaki polarize durumdaki hücreler, dış ortam için verici (source) akım kaynağı, diğer tarafındaki depolarize hücreler ise alıcı (sink) akım kaynağı olarak davranmaktadır. Akım alışverişi, eş aktivasyon eğrisinin hemen iki tarafındaki hücreler arasında en yoğun şekildedir. Bu durumu modellemek amacıyla sonlu elemanlar yönteminde herhangi bir andaki eş aktivasyon eğrisinin hemen bir tarafındaki elemanlar verici akım kaynağı, hemen diğer tarafındaki elemanlar ise alıcı akım kaynağı olarak kabul edilmiştir. Bir periyotluk EKG sinyali her insan için ve hatta kalbin her atışı için bile farklıdır; ancak genel bir forma uyar ve kişiden kişiye pek az değişim gösterir. EKG sinyalinin genel formu literatürde geniş bir şekilde yer almaktadır [1]. Ancak insan kalbi için eş

2 aktivasyon eğrilerinin haritasını çıkarmak oldukça zor bir işlemdir. Bu nedenle literatürde bulunan veri de sınırlı ve yetersizdir. Ancak bu durum genel bir izlenim edinmeyi amaçlayanlar için bir zorluk teşkil etmemektedir. Bu çalışmada literatürde bulunan sınırlı eş aktivasyon eğrileri verisinden [2] yola çıkılmıştır. Veriler çok sayıda iğne elektrotun kalbin karıncık dokusuna sokulması ile bir QRS işareti süresince (55 ms) vücudun ön yüzeyine paralel bir kesitten 5, 15, 20, 25, 30, 35, 40, 45, 50 ve 55. ms'lerde alınmıştır. Vücut yüzeyindeki elektriksel alan dağılımı sonlu elemanlar yöntemi ile zamana göre hesaplanmış ve EKG işareti elde edilmiştir. Vücut 10 cm yarıçapında düğüm ve üçgensel elemandan oluşan iki boyutlu dairesel bir göz yapısı olarak modellenmiş, kalp bu modele gerçeğine yakın konum ve boyutta yerleştirilmiştir (Şekil 1). Şekil 1 de vücut modeli ve kalbin vücuda göre konumu ve oransal büyüklüğü görülmektedir. EKG işaretinin ölçüldüğü ve kolları temsil eden düğüm noktalarının yerleri de gösterilmiştir. Vücut içerisindeki iletkenlik dağılımı sabit kabul edilmiştir. Eş aktivasyon eğrilerinin sayısı doğrusal aradeğerleme yapılarak artırılmıştır. Şekil 1: Göz yapısı ve kalbin konumu

3 2. Yöntem Sınırlı sayıda zaman noktası için bulunmuş olan eş aktivasyon eğrisi grafiği (Şekil 2) bir tarayıcı ile bilgisayar ortamına aktarıldı. Bu şekil bir resim editör programı yardımıyla yalnız eş aktivasyon eğrileri ve kalp sınırları kalacak şekilde işlendi (Şekil 3). Her eş aktivaston eğrisi belli bir zaman noktasına ait olduğundan her bir eğri farklı bir gri tona boyanarak bu resmi işleyecek bilgisayar yazılımının farklı eş aktivasyon eğrilerini tanıyabilmesi amaçlandı. Arada kalan eş aktivasyon eğrilerini de aradeğerleme ile elde edebilmek amacı ile, farklı zaman noktalarına ait ve kalp sınırları ile biribirine bağlı eş aktivasyon eğrileri arasında kalan kalp sınır eğrileri de başlangıç noktasının değeri ile bitiş noktasının değeri arasında doğrusal olarak değişen gri seviyelere boyandı. Şekil 2: Eş aktivasyon eğrileri Şekil 3: Eş aktivasyon eğrileri ve kalp sınırları Bitmap formatında oluşturulan bu veri bir bilgisayar yazılımı ile okundu ve her eş aktivasyon eğrisinin hangi resim elemanlarından (pixel) oluştuğu belirlendi. Dağınık bir yapı gösteren bu yeni veri aradeğerleme yapılmak amacı ile her bir köşesi bir resim elemanının koordinatlarına denk gelen üçgenlere ayrıldı. Burada herbir üçgen elemanın çevresinden geçen dairenin hiçbir resim elemanını kapsamaması ilkesine uyuldu. Üç köşesinin ağırlığı bilinen bir üçgenin içerisindeki noktalarının ağırlığını hesaplamak için üçgensel bölgenin birinci dereceden iki değişkenli bir sistemin parçası olduğu varsayıldı. Kalp sınırları arasında kalan her noktanın hangi aktivasyon zamanına ait olduğu bilgisi elde edildikten sonra bu noktaların 10 cm yarıçapında düğüm ve üçgensel elemandan oluşan iki boyutlu dairesel bir göz yapısı olarak modellenmiş olan vücuttaki hangi elemana karşılık geldiği bulundu. Vücut modelinde her eş aktivasyon eğrisinin dört milisaniye zaman aralığında kalan elemanlardan oluştuğu varsayılarak toplam 51 eş aktivasyon eğrisinin hangi elemanlardan oluştuğu bulundu. Örneğin 1. ms deki potansiyel dağılımının bulunması için 1ms 3ms aralığında kalan aktivasyon üçgenleri negatif kaynak, 3ms 5ms aralığında kalan aktivasyon üçgenleri de pozitif kaynak olarak

4 alındı. Daha sonra birbirine düğüm noktalarından temas etmeyen pozitif ve negatif elemanların arasında yük akışı olmayacağı için bu elemanlar belirlenerek listeden silindi. Kalan elemanlar ince ve gerçeğine yakın bir aktivasyon yüzeyi olarak gözlendi (Şekil 4,5). Böylece her eş aktivasyon eğrisine karşılık gelen vücut potansiyel dağılımı hesaplandı. Her bir ana karşılık gelen vücut potansiyel dağılımının hesaplanmasında toplam pozitif kaynak değeri toplam negatif kaynak değerine eşitlendi. Böylece yükün içeride birikerek yüzeyde sonsuz gerilimler oluşturması önlendi. Vücut içindeki potansiyel dağılımının hesaplanması için Poisson denklemi çözüldü. Poisson denklemi ve sınır koşulu aşağıda verilmiştir. σ φ = Ι (1) Buradaσ ortamın iletkenlik dağılımı,φ vücut içindeki potansiyel dağılımıdır. Aktivasyon sırasında oluşan hacim akım yoğunluğu ise Ι ν ile sembolize edilmiştir. Vücut yüzeyinden dışarı akım akamayacağından yüzeyde Neumann sınır koşulu olan ν n φ = 0 (2) sınır koşulu kabul edilmiştir. Vücut yüzeyine dik vektör n ile gösterilmiştir. Çözüm, tüm sistemin doğrusal denklem takımına dönüştürülüp çözülmesi ile bulunmuştur. Bir aktivasyon eğrisinin oluşturduğu vücut potansiyel dağılımının hesaplanması Pentium III 800 MHz işlemcili 256 MB hafızalı bir bilgisayarda Windows XP ortamında yaklaşık 75 saniye sürmüştür. Şekil 4 :Farklı zaman aralıkları (ms) için bulunan eş aktivasyon eğrileri

5 Şekil 5 : 31-33,33-35 ms zaman aralığındaki aktivasyon eğrisi elemanlarına yakından bakış Çözüm işlemi tüm zaman aralıklarındaki aktivasyon eğrileri için tekrarlandı. Böylece toplam 51 zaman aralığındaki aktivasyon eğrileri için dairesel iki boyutlu göz yapısının her düğümüne karşılık gelen vücut potansiyel değerleri hesaplanmış oldu. Vücut modelinde kollara karşılık gelen iki düğüm noktası arasındaki fark, tüm çözümler için bulundu ve zaman ekseninde çizilerek EKG sinyali oluşturuldu (Şekil 5).

6 Şekil 5: ve düğümler arası hesaplanan EKG sinyali 3.Sonuç Sonuçta elde edilen EKG grafiği gerçek EKG sinyalinin tipik özelliklerine sahiptir. İlk 15 ms boyunca aktivasyon yüzeyinin göreli küçüklüğü nedeniyle sinyal sıfıra yakın değerler alır ms ler arasında negatif yönde bir değişim Q dalgasını oluşturur. Daha sonra sırasıyla ms ler arasında R dalgası, ms ler arasında ise S dalgası oluşmuştur. Sinyalde gözlenen gürültülü değişimin gerçekte 3 boyutlu olan aktivasyon dağılımının 2 boyutlu olarak modellenmesinden kaynaklandığı düşünülmektedir. 4.Kaynakça [1]. John G. Webster, Editor "Medical Instrumentation Application and Design", Bölüm 4, sayfa , Houghton Mifflin Company, Boston, 1992, ISBN: [2]. Durrer et al., "Total Excitation of the Isolated Human Heart" 1970, Circulation, 41,

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Fizyoloji Anabilim Dalı. Elektro Kardio Grafi. Dr. Sinan Canan scanan@baskent.edu.tr

Fizyoloji Anabilim Dalı. Elektro Kardio Grafi. Dr. Sinan Canan scanan@baskent.edu.tr Başkent ş Üniversitesi Tıp Fakültesi Fizyoloji Anabilim Dalı Elektro Kardio Grafi Dr. Sinan Canan scanan@baskent.edu.tr 23.11.2004 Elektrokardiogram (EKG): Kalbin Elektriksel Aktivitesi Elektro[elektrik]kardio[kalp]gram[yazdırma]

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 5 ) EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri

Detaylı

Dahili Bobinlerin En İyi İçsel Sinyal/Gürültü Oranı Kullanılarak Değerlendirilmesi

Dahili Bobinlerin En İyi İçsel Sinyal/Gürültü Oranı Kullanılarak Değerlendirilmesi Dahili Bobinlerin En İyi İçsel Sinyal/Gürültü Oranı Kullanılarak Değerlendirilmesi Yiğitcan Eryaman 1, Haydar Çelik 1, Ayhan Altıntaş 1, Ergin Atalar 1,2 1 Bilkent Üniversitesi Elektrik ve Elektronik Mühendisliği

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ

RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ RÜZGAR YÜKÜNÜN BİR TİCARİ ARAÇ SERVİS KAPISINA OLAN ETKİLERİNİN İNCELENMESİ Melih Tuğrul, Serkan Er Hexagon Studio Araç Mühendisliği Bölümü OTEKON 2010 5. Otomotiv Teknolojileri Kongresi 07 08 Haziran

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H.

YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. EM 420 Yüksek Gerilim Tekniği EŞ MERKEZLİ KÜRESEL ELEKTROT SİSTEMİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak

Detaylı

Normal EKG. Dr. Müge Devrim-Üçok

Normal EKG. Dr. Müge Devrim-Üçok Normal EKG Dr. Müge Devrim-Üçok Elektrokardiyogram Kalpte depolarizasyon dalgasının ilerlemesi ekstrasellüler sıvıda elektriksel akımlar oluşturur. Bu elektriksel potansiyel değişimlerinin vücut yüzeyine

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 2 @ysevim61 https://www.facebook.com/groups/ktuemt/ 1 Akım, Gerilim, Direnç Anahtar Pil (Enerji kaynağı) V (Akımın yönü) R (Ampül) (e hareket yönü) Şekildeki devrede yük

Detaylı

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y

Fiz102L TOBB ETÜ. Deney 1. Eş potansiyel ve elektrik alan çizgileri. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y Fiz102L Deney 1 Eş potansiyel ve elektrik alan çizgileri P r o f. D r. T u r g u t B A Ş T U Ğ P r o f. D r. S a l e h S U L T A N S O Y Y r d. D o ç. D r. N u r d a n D. S A N K I R D r. A h m e t N u

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Fizik 102-Fizik II /II

Fizik 102-Fizik II /II 1 -Fizik II 2010-2011/II Gauss Yasası Nurdan Demirci Sankır Ofis: 325, Tel: 2924331 Kaynaklar: Giancoli, Physics, Principles With Applications, Prentice Hall Serway, Beichner, Fen ve Mühendislik için Fizik

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER

MUKAVEMET I ÇÖZÜMLÜ ÖRNEKLER MUKAEMET I ÇÖZÜMÜ ÖRNEKER ders notu Yard. Doç. Dr. Erdem DAMCI Şubat 15 Mukavemet I - Çözümlü Örnekler / 7 Örnek 1. Üzerinde yalnızca yayılı yük bulunan ve açıklığı olan bir basit kirişe ait eğilme momenti

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

Borularda Akış. Hesaplamalarda ortalama hız kullanılır.

Borularda Akış. Hesaplamalarda ortalama hız kullanılır. En yaygın karşılaşılan akış sistemi Su, petrol, doğal gaz, yağ, kan. Boru akışkan ile tam dolu (iç akış) Dairesel boru ve dikdörtgen kanallar Borularda Akış Dairesel borular içerisi ve dışarısı arasındaki

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

Elektrik ve Magnetizma

Elektrik ve Magnetizma Elektrik ve Magnetizma 1.1. Biot-Sawart yasası Üzerinden akım geçen, herhangi bir biçime sahip iletken bir tel tarafından bir P noktasında üretilen magnetik alan şiddeti H iletkeni oluşturan herbir parçanın

Detaylı

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder.

4. Çok büyük ve çok küçük pozitif sayıları bilimsel gösterimle ifade eder. LENDİRME ŞEMASI ÜNİTE Üslü 1. Bir tam sayının negatif kuvvetini belirler ve rasyonel sayı olarak ifade eder.. Ondalık kesirlerin veya rasyonel sayıların kendileriyle tekrarlı çarpımını üslü sayı olarak

Detaylı

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15.

HARMONİK DENKLEM. Burada göz önüne alınacak problem Dirichlet problemidir; yani fonksiyonun sınırda kendisinin verilmesi halidir. 2 2 (15. HARMONİK DENKLEM Harmonik denklemin sağ tarafının sıfır olması haline Laplace, sağ tarafının sıfır olmaması haline de Possion denklemi adı verilir. Possion ve Laplace denklemi, kısaca harmonik denklem

Detaylı

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ UYGULAMALI MÜHENDİSLİK MODELLEMESİ RAPOR 21.05.2015 Eren SOYLU 100105045 ernsoylu@gmail.com İsa Yavuz Gündoğdu 100105008

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

(, ) = + + yönünde yer değiştirme fonksiyonu

(, ) = + + yönünde yer değiştirme fonksiyonu . Üçgen levha eleman, düzlem gerilme durumu. Üçgen levha eleman, düzlem gerilme durumu Çok katlı yapılardaki deprem perdeleri ve yüksek kirişler düzlem levha gibi davranır. Sağdaki şekilde bir levha sistem

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

İki Boyutlu Eliptik Tipi Diferansiyel Sınır Değer Problemleri İçin MathCAD Kullanılımı

İki Boyutlu Eliptik Tipi Diferansiyel Sınır Değer Problemleri İçin MathCAD Kullanılımı İki Boyutlu Eliptik Tipi Diferansiyel Sınır Değer Problemleri İçin MathCAD Kullanılımı Vahid Ferecov Rafet Akdeniz Namık Kemal Üniversitesi, Çorlu Mühendislik Fakültesi Elektronik ve Haberleşme Mühendisliği

Detaylı

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması Farklı sonlu eleman tipleri ve farklı modelleme teknikleri kullanılarak yığma duvarların

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi

ARAZİ ÖLÇMELERİ. Koordinat sistemleri. Kartezyen koordinat sistemi Koordinat sistemleri Coğrafik objelerin haritaya aktarılması, objelerin detaylarına ait koordinatların düzleme aktarılması ile oluşur. Koordinat sistemleri kendi içlerinde kartezyen koordinat sistemi,

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

CAEeda TM ONERA M6 KANADI NAVIER-STOKES ÇÖZÜMAĞI OLUŞTURMA VE ÖNİŞLEM. EDA Tasarım Analiz Mühendislik

CAEeda TM ONERA M6 KANADI NAVIER-STOKES ÇÖZÜMAĞI OLUŞTURMA VE ÖNİŞLEM. EDA Tasarım Analiz Mühendislik CAEeda TM ONERA M6 KANADI NAVIER-STOKES ÇÖZÜMAĞI OLUŞTURMA VE ÖNİŞLEM EDA Tasarım Analiz Mühendislik 1. Kapsam Kabuk Bölgeleri Oluşturma Çözümağındaki Elemanların Normal Yönlerini Kontrol Etme Çözümağında

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI :.. OKUL NO ADI SOYADI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTROMANYETİK DALGA TEORİSİ VİZE SORULARI 18.04.2011 OKUL NO :.. ADI SOYADI :.. S-1 z-ekseni boyunca az yönünde 15A akı taşıya bir akı fila a ı mevcuttur. H yi Kartezyen

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

İletken Düzlemler Üstüne Yerleştirilmiş Antenler

İletken Düzlemler Üstüne Yerleştirilmiş Antenler İletken Düzlemler Üstüne Yerleştirilmiş Antenler Buraya dek sınırsız ortamlarda tek başına bulunan antenlerin ışıma alanları incelendi. Anten yakınında bulunan başka bir ışınlayıcı ya da bir yansıtıcı,

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 2. TEMEL KANUNLAR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi Bu bölümde Ohm Kanunu Düğüm, dal, çevre 2.1. Giriş Kirchhoff Kanunları Paralel

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı

İNM 305 ZEMİN MEKANİĞİ

İNM 305 ZEMİN MEKANİĞİ İNM 305 ZEMİN MEKANİĞİ 2015-2016 GÜZ YARIYILI Prof. Dr. Zeki GÜNDÜZ 1 2 Zeminde gerilmeler 3 ana başlık altında toplanabilir : 1. Doğal Gerilmeler : Özağırlık, suyun etkisi, oluşum sırası ve sonrasında

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI VI. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI VI. DENEY FÖYÜ ELEKTİK DEELEİ-2 LABOATUAI I. DENEY FÖYÜ ALTENATİF AKIM DEESİNDE GÜÇ ÖLÇÜMÜ Amaç: Alternatif akım devresinde harcanan gücün analizi ve ölçülmesi. Gerekli Ekipmanlar: AA Güç Kaynağı, 1kΩ Direnç, 0.5H Bobin,

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Çarpanlar ve Katlar

Çarpanlar ve Katlar 8.1.1. Çarpanlar ve Katlar 8.1.2. Üslü İfadeler 8.1.3. Kareköklü İfadeler 8.2.1. Cebirsel İfadeler ve Özdeşlikler 8.1.1.1 Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade

Detaylı

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR

KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR KATILARIN ATOMİK DÜZENİ KRİSTAL YAPILAR KRİSTAL YAPILAR Mühendislik açısından önemli olan katı malzemelerin fiziksel özelikleri; katı malzemeleri meydana getiren atom, iyon veya moleküllerin dizilişine

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 MATEMATİK TESTİ 11 HAZİRAN 2017 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ

KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ KANAT PROFİLİ ETRAFINDAKİ SIKIŞTIRILAMAZ AKIŞ Uçağı havada tutan kanadın oluşturduğu taşıma kuvvetidir. Taşıma kuvvetinin hesaplanması, hangi parametrelere bağlı olarak değiştiğinin belirlenmesi önemlidir.

Detaylı

Biyomedikal İşaret İşleme

Biyomedikal İşaret İşleme Biyomedikal İşaret İşleme Genel Ölçüm Sistemi Ölçüm sistemi blok diyagramı BME 423 Biyomedikal İşaret İşleme I 1 Biyomedikal İşaret İşleme Genel Ölçüm Sistemi BME 423 Biyomedikal İşaret İşleme I 2 Biyomedikal

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26

Elektrostatik Elektrik Alan Elektrik Akı Kondansatör. Kaynak : Serway-Beichner Bölüm 23, 24, 26 Elektrostatik Elektrik Alan Elektrik Akı Kondansatör Kaynak : Serway-Beichner Bölüm 23, 24, 26 İndüksiyon Nötr Maddenin indüksiyon yoluyla yüklenmesi (Bir yük türünün diğer yük türüne göre daha fazla olması)

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde

Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde DİŞLİ ÇARKLAR Dişli çark mekanizmaları en geniş kullanım alanı olan, gerek iletilebilen güç gerekse ulaşılabilen çevre hızları bakımından da mekanizmalar içinde özel bir yeri bulunan mekanizmalardır. Mekanizmayı

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

YIĞMA YAPI TASARIMI ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ

YIĞMA YAPI TASARIMI ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ 13.04.2012 1 ÖRNEK BİR YIĞMA SİSTEMİN İNCELENMESİ 2 ÇENGEL KÖY DE BİR YIĞMA YAPI KADIKÖY DEKİ YIĞMA YAPI 3 Genel Bilgiler Yapı Genel Tanımı Kat Sayısı: Bodrum+3 kat+teras kat Kat Oturumu: 9.80 X 15.40

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET EBE-211, Ö.F.BAY 1 Temel Elektriksel Nicelikler Temel Nicelikler: Akım,Gerilim ve Güç Akım (I): Eletrik yükünün zamanla değişim oranıdır.

Detaylı

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk

Doğrusal Demet Işıksallığı 2. Fatma Çağla Öztürk Doğrusal Demet Işıksallığı Fatma Çağla Öztürk İçerik Demet Yönlendirici Mıknatıslar Geleneksel Demir Baskın Mıknatıslar 3.07.01 HPFBU Toplantı, OZTURK F. C. Demet Yönlendirici Mıknatıslar Durgun mıknatıssal

Detaylı

EROZYON MODELİNİN GELİŞTİRİLMESİ & HAVZA VERİTABANININ OLUŞTURULMASI. Doğu Karadeniz Havzasının Su Çerçeve Direktifi Sınıflandırma Sistemi

EROZYON MODELİNİN GELİŞTİRİLMESİ & HAVZA VERİTABANININ OLUŞTURULMASI. Doğu Karadeniz Havzasının Su Çerçeve Direktifi Sınıflandırma Sistemi EROZYON MODELİNİN GELİŞTİRİLMESİ & HAVZA VERİTABANININ OLUŞTURULMASI Doğu Karadeniz Havzasının Su Çerçeve Direktifi Sınıflandırma Sistemi Havza Veritabanının Oluşturulması (ArcHydro) Baraj ve gölet gibi

Detaylı

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

BÖLÜM 2. Gauss s Law. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley BÖLÜM 2 Gauss s Law Hedef Öğretiler Elektrik akı nedir? Gauss Kanunu ve Elektrik Akı Farklı yük dağılımları için Elektrik Alan hesaplamaları Giriş Statik Elektrik, tabiatta birbirinden farklı veya aynı,

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ

BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ BİLGİSAYAR DESTEKLİ TASARIM HAFTA 6 COSMOSWORKS İLE ANALİZ Makine parçalarının ve/veya eş çalışan makine parçalarından oluşan mekanizma veya sistemlerin tasarımlarında önemli bir aşama olan ve tasarıma

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

MEDİKAL FİZİK. Prof. Dr. M. Bahri EMRE BİYOELEKTRİK POTANSİYELLER

MEDİKAL FİZİK. Prof. Dr. M. Bahri EMRE BİYOELEKTRİK POTANSİYELLER MEDİKAL FİZİK Prof. Dr. M. Bahri EMRE BİYOELEKTRİK POTANSİYELLER Polarizasyon. Elektrokardiyografinin dayanağı olan aksiyon akımları, klasik zar kuramıyla açıklanmaktadır. Dinlenti halindeki hücre zarının

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

SAĞLIK BİLİMLERİ ÜNİVERSİTESİ GÜLHANE SAĞLIK MESLEK YÜKSEKOKULU ANKARA

SAĞLIK BİLİMLERİ ÜNİVERSİTESİ GÜLHANE SAĞLIK MESLEK YÜKSEKOKULU ANKARA SAĞLIK BİLİMLERİ ÜNİVERSİTESİ GÜLHANE SAĞLIK MESLEK YÜKSEKOKULU ANKARA İLERİ YAŞAM DESTEĞİ I KALP HIZININ DEĞERLENDİRİLMESİ İYD I DERS NOTU 02 2016 i İÇİNDEKİLER İÇİNDEKİLER... i 1. KALP HIZININ HESAPLANMASI...

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v

İÇİNDEKİLER. ÖNSÖZ... iii İÇİNDEKİLER... v İÇİNDEKİLER ÖNSÖZ... iii İÇİNDEKİLER... v BÖLÜM 1.... 1 1.1. GİRİŞ VE TEMEL KAVRAMLAR... 1 1.2. LİNEER ELASTİSİTE TEORİSİNDE YAPILAN KABULLER... 3 1.3. GERİLME VE GENLEME... 4 1.3.1. Kartezyen Koordinatlarda

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11 98 ÖSS. >0 olmak koşulu ile 2+, 3+, 4+ sayıları bir dik üçgenin kenar uzunluklarını göstermektedir. Bu üçgenin hipotenüs uzunluğu kaç birimdir? A) 2 B) 2 9 C) 0 D) 5 E) 2a c 6. 0 olduğuna göre, aşağıdakilerden

Detaylı

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E)

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E) ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 0. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı cm Buna göre CEB üçgeninin

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

HT-350 ISIL İLETKETLİK EĞİTİM SETİ DENEY FÖYLERİ

HT-350 ISIL İLETKETLİK EĞİTİM SETİ DENEY FÖYLERİ HT-350 ISIL İLETKETLİK EĞİTİM SETİ DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ. Küçük Sanayi sitesi 12 Ekim Cad. 52.Sok. No:18/ABALIKESİR Tel:0266 2461075 Faks:0266 2460948http://www.deneysan.com

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır.

( ) MATEMATİK 1 TESTİ (Mat 1) 2009 - ÖSS / MAT-1. 1. Bu testte 30 soru vardır. 009 - ÖSS / MT- MTEMTİK TESTİ (Mat ). u testte 0 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. ( )( ) + 4. m = olduğuna göre, m + ifadesinin değeri işleminin

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ KAZANIMLAR KASIM EKİM EYLÜL Ay Hafta D.Saat i 0 04 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KAZANIMLARININ ÇALIŞMA TAKVİMİNE GÖRE SÜRE ÖĞRENME ALANI ALT ÖĞRENME ALANI Örüntü Süslemeler si KAZANIMLAR.Doğru, çokgen

Detaylı

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYİN ADI : DENEY TARİHİ : DENEYİ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 5 Ağırlık merkezi STATİK Bir cisim moleküllerden meydana gelir. Bu moleküllerin her birine yer çekimi kuvveti etki eder. Bu yer çekimi kuvvetlerinin cismi meydana getiren

Detaylı

SONLU FARKLAR GENEL DENKLEMLER

SONLU FARKLAR GENEL DENKLEMLER SONLU FARKLAR GENEL DENKLEMLER Bir elastik ortamın gerilme probleminin Airy gerilme fonksiyonu ile formüle edilebilen halini göz önüne alalım. Problem matematiksel olarak bölgede biharmonik denklemi sağlayan

Detaylı

İNSAN UYLUK KEMİĞİ VE KALÇA PROTEZİNİN GERİLME VE DEPLASMAN DAVRANIŞININ KIYASLANMASI

İNSAN UYLUK KEMİĞİ VE KALÇA PROTEZİNİN GERİLME VE DEPLASMAN DAVRANIŞININ KIYASLANMASI İNSAN UYLUK KEMİĞİ VE KALÇA PROTEZİNİN GERİLME VE DEPLASMAN DAVRANIŞININ KIYASLANMASI Fatih ATiK 1, Arif ÖZKAN 2, İlyas UYGUR 3 1 Düzce Üniversitesi, Fen Bilimleri Enstitüsü, Konuralp Kampüsü Düzce Türkiye

Detaylı

SİLİNDİRİK ELEKTROT SİSTEMLERİ

SİLİNDİRİK ELEKTROT SİSTEMLERİ EM 420 Yüksek Gerilim Tekniği SİLİNDİRİK ELEKTROT SİSTEMLERİ YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRONIK YÜK. MÜH. Not: Tüm slaytlar, listelenen ders kaynaklarından alıntı yapılarak ve faydalanılarak

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#8 Alan Etkili Transistör (FET) Karakteristikleri Arş. Gör. Mustafa İSTANBULLU Doç. Dr. Mutlu AVCI ADANA,

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GNL KTILIMLI TÜRKİY GNLİ NLİN NM SINVI GMTRİ (M-TM) 1. u testte Geometri ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için arılan kısmına işaretleiniz. 3. u test için süreniz

Detaylı