Özet. Kümelerle İlgili Tanımlar Kümelerin Gösterimi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Özet. Kümelerle İlgili Tanımlar Kümelerin Gösterimi"

Transkript

1

2 Bölüm Özeti Kümeler Kümelerin Dili Küme İşlemleri Küme Özdeşlikleri Fonksiyonlar Fonksiyon Tipleri Fonksiyonlar Üzerindeki İşlemler Hesaplanabilirlik Diziler ve Toplamlar Dizilerin Tipleri Toplamları Formülleştirme Bir Kümenin Büyüklüğü Sayılabilir Kümeler Matrisler Matris Aritmetiği

3

4 Özet Kümelerle İlgili Tanımlar Kümelerin Gösterimi Listeleme Yöntemi Küme Kurma Gösterimi Matematikteki Bazı Önemli Kümeler Boş Küme ve Evrensel Küme Alt Kümeler ve Küme Eşitliği Kümelerin Büyüklükleri Demetler (Tuples) Kartezyen Çarpım

5 Giriş Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin kümelerle ilgili fonksiyonları bulunur

6 Kümeler Bir küme, nesnelerin sırasız bir topluluğudur sınıftaki öğrenciler odadaki sandalyeler Bir kümedeki nesnelere elemanlar ya da üyeler denir. Bu kümeye de bu elemanları içeriyor denir. a A gösterimi a nesnesinin A kümesinin bir elemanı olduğunu ifade eder. Eğer a nesnesi A kümesinin elemanı değilse a A yazılır

7 Bir kümeyi tanımlama: Listeleme Yöntemi S = {a,b,c,d} Sıra önemli değil S = {a,b,c,d} = {b,c,a,d} Her bir ayrık nesne üyedir ya da değildir. Birden fazla yazmak birşeyi değiştirmez. S = {a,b,c,d} = {a,b,c,b,c,d} Eğer bir kümenin deseni biliniyorsa bazı elemanları göstermek için ( ) kullanılabilir S = {a,b,c,d,,z }

8 Listeleme Yöntemi İngiliz alfabesindeki sesli harflerin kümesi: V = {a,e,i,o,u} 10 dan küçük tek pozitif tamsayıların kümesi: O = {1,3,5,7,9} 100 den küçük bütün pozitif tamsayıların kümesi: S = {1,2,3,..,99} 0 dan küçük bütün tamsayıların kümesi: S = {., -3,-2,-1}

9 Bazı Önemli Kümeler N = doğal sayılar = {0,1,2,3.} Z = tamsayılar = {,-3,-2,-1,0,1,2,3, } Z+ = pozitif tamsayılar = {1,2,3,..} R = gerçek sayılar kümesi R + = pozitif gerçek sayılar kümesi C = karmaşık sayılar kümesi Q = rasyonel sayılar kümesi

10 Küme Kurma Gösterimi Her bir üyenin saplaması gereken özellikleri belirt: S = {x x 100 den küçük pozitifi tamsayıdır} O = {x x 10 dan küçük pozitif tek tamsayıdır} O = {x Z+ x tektir ve x < 10} Bir yüklem de kullanılabilir: S = {x P(x)} Örnek: S = {x Asal(x)} Pozitif rasyonel sayılar: Q + = {x R x = p/q, bazı pozitif tamsayılar p,q için}

11 Aralık Gösterimi [a,b] = {x a x b} [a,b) = {x a x < b} (a,b] = {x a < x b} (a,b) = {x a < x < b} Kapalı aralık [a,b] Açık aralık (a,b)

12 Evrensel Küme ve Boş Küme Evrensel küme U, üzerinde çalışılan bütün nesneleri içeren kümedir. Venn Diagram Hiçbir elemanı olmayan küme Boş kümedir. ile gösterilir, bazen {} kullanılır. V a e i o u U John Venn ( ) Cambridge, UK

13 Unutulmaması gerekenler Kümeler bir başka kümenin elemanı olabilir {{1,2,3},a, {b,c}} {N,Z,Q,R} Boş küme, boş kümeyi içeren bir küme ile aynı şey değildir. { }

14 Küme Eşitliği Definition: Ancak ve ancak iki küme aynı elemanlara sahipse eşittir. A ve B iki küme olsun, A ve B eşit kümelerse A = B yazılır. {1,3,5} = {3, 5, 1} {1,5,5,5,3,3,1} = {1,3,5}

15 Alt küme Definition: A kümesinin bütün elemanları B kümesinin de elemanıysa, A kümesi B kümesinin alt kümesidir. Gösterim A B ise A B gösterimi sağlanır 1. Because a is always false, S,for every set S. 2. Because a S a S, S S, for every set S.

16 Bir kümenin diğer bir kümenin alt kümesi olduğunu ya da olmadığını göstermek A kümesinin B kümesinin alt kümesi olması: A kümesinin bütün elemanlarının B kümesinin de elemanları olduğunu göstermek yeterli. A kümesinin B kümesinin alt kümesi olmaması : A kümesinin elemanı olup, B kümesinin elemanı olmayan en az bir eleman bulmak yeterli. (x A x B) önermesi için ters örnek bulmak gibi

17 Küme eşitliğine bir başka bakış İki kümenin eşitliğinin gösterimi A = B, iff Mantıksal denklikleri kullanalım Sonuç: A B and B A

18 Öz alt küme Definition: Eğer A B ise, fakat A B ise A kümesi B kümesinin öz alt kümesidir denir ve A B ile gösterilir. A B ise Venn Diagram B A U

19 Küme Büyüklüğü Tanım: n, negatif olmayan tamsayı olmak üzere eğer S kümesinde n adet farklı eleman varsa S kümesi sonludur. Diğer durumda ise sonsuzdur. Tanım: Sonlu bir A kümesinin büyüklüğü, A, A kümesindeki farklı elemanların sayısıdır. Examples: 1. ø = 0 2. S kümesi İngiliz alfabesinin harflerinin kümesi olsun. S = {1,2,3} = 3 2. {ø} = 1 3. The set of integers is infinite.

20 Kuvvet Kümeleri Tanım: Bir A kümesinin bütün alt kümelerini içeren küme. P(A) ile gösterilir ve A nın kuvvet kümesi olarak okunur. Örnek: A = {a,b} P(A) = {ø, {a},{b},{a,b}} Eğer bir küme n elamana sahipse kuvvet kümesinin büyüklüğü 2ⁿ olur.

21 Demetler (Tuples) Sıralı n-demet (a 1,a 2,..,a n ) a 1 in ilk eleman olduğu, a 2 nin ikinci eleman olduğu ve a n in n. eleman olduğu sıralı bir yapıdır. İki n-demet ancak ve ancak ilgili bütün elemanları eşitse birbirine eşittir. 2-demet sıralı çift olarak anılır. Sıralı çiftler(a,b) ve (c,d) ancak ve ancak a = c ve b = d ise eşittir.

22 René Descartes ( ) Kartezyen Çarpım Tanım: A ve B kümelerinin kartezyen çarpımı A B ile gösterilir ve (a,b) sıralı çiftlerinin kümesidir. Burada a A ve b B. Örnek: A = {a,b} B = {1,2,3} A B = {(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)} Tanım: A B kartezyen çarpımının bir alt kümesi olan R A kümesinden B kümesine bir ilişki olarak tanımlanır.

23 Kartezyen Çarpım Tanım: A 1,A 2,,A n kümelerinin kartezyen çarpımı A 1 A 2 A n şeklinde gösterilir ve sıralı (a 1,a 2,,a n ) n-demetlerin bir kümesidir. Burada a i nesnesi i = 1, n için A i kümesinin bir elemanıdır Örnek: A B C kartezyen çarpımını bulunuz. A = {0,1}, B = {1,2} and C = {0,1,2} Çözüm: A B C = {(0,1,0), (0,1,1), (0,1,2),(0,2,0), (0,2,1), (0,2,2),(1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,1,2)}

24 Doğruluk Kümeleri ve Niceleyiciler P yüklemi ve D alanı için, P nin doğruluk kümesi D nin içinde P(x) in doğru olduğu x elemanlarının kümesi olarak tanımlanır. P(x) in doğruluk kümesi şu şekilde gösterilir. Örnek: D alanı bütün tamsayılarsa ve P(x) x = 1 ise P(x) in doğruluk kümesi {-1,1} olur.

25

26 Bölüm Özeti Küme İşlemleri Birleşim Kesişim Tümleme Fark Küme Büyüklüğü Küme Eşitlikleri Eşitliğin İspatı Üyelik Tabloları

27 Birleşim Tanım: A ve B iki küme olsun. A ve B kümelerinin birleşimi A B ile gösterilir. Örnek: {1,2,3} {3, 4, 5}? Çözüm: {1,2,3,4,5} Venn Diagram for A B U A B

28 Kesişim Tanım: A veb, kümelerinin kesişimi A B ile gösterilir Note if the intersection is empty, then A and B are said to be disjoint. Örnek: {1,2,3} {3,4,5}? Çözüm: {3} Örnek: A {1,2,3} {4,5,6}? B Çözüm : Venn Diagram for A B U

29 Tümleyen Tanım: A bir küme ise, A kümesinin tümleyeni (U ya göre), Ā ile gösterilir ve U A ya eşittir. Ā = {x U x A} Örnek: Eğer U 100 den küçük pozitif tam sayılar ise, {x x > 70} kümesinin tümleyeni nedir? Çözüm: {x x 70} Venn Diagram for Complement U Ā A

30 Fark Tanım: Let A and B be sets. The difference of A and B, denoted by A B, is the set containing the elements of A that are not in B. The difference of A and B is also called the complement of B with respect to A. A B = {x x A x B} = A B A B U Venn Diagram for A B

31 Birleşim Kümesinin Büyüklüğü A B = A + B - A B A B U Venn Diagram for A, B, A B, A B

32 Sorular Örnek: U = {0,1,2,3,4,5,6,7,8,9,10} A = {1,2,3,4,5}, B ={4,5,6,7,8} 1. A B Çözüm: {1,2,3,4,5,6,7,8} 2. A B Çözüm : {4,5} 3. Ā 4. Çözüm : {0,6,7,8,9,10} Çözüm : {0,1,2,3,9,10} 5. A B Çözüm : {1,2,3} 6. B A Çözüm : {6,7,8}

33 Simetrik Fark (optional) Tanım: Örnek: U = {0,1,2,3,4,5,6,7,8,9,10} A = {1,2,3,4,5} B ={4,5,6,7,8} A B U Çözüm: {1,2,3,6,7,8} Venn Diagram

34 Küme Eşitlikleri Identity laws Domination laws Idempotent laws Complementation law Continued on next slide

35 Küme Eşitlikleri Commutative laws Associative laws Distributive laws Continued on next slide

36 Küme Eşitlikleri De Morgan s laws Absorption laws Complement laws

37 Küme Eşitliklerini İspatlamak Farklı yollar var: 1. Eşitliğin her iki tarafının, diğer tarafın alt kümesi olduğunu göster. 2. Küme kurma gösterimini ve önermeler mantığını kullan. 3. Üyelik Tabloları

38 İkinci De Morgan Kuralının İspatı Örnek: eşitliğini ispatlayın Çözüm: Birbirlerinin alt kümeleri olduğunu göster: 1) ve 2) Continued on next slide

39 İkinci De Morgan Kuralının İspatı 1. AŞAMA: Continued on next slide

40 İkinci De Morgan Kuralının İspatı 2. AŞAMA:

41 Küme Kurma Gösterimi İle İkinci De Morgan Kuralının İspatı

42 Üyelik Tablosu Örnek: Dağıtım kuralının doğru olduğunu göstermek için üyeli tablosu oluşturun. Çözüm: A B C

43 Genelleştirilmiş Birleşim ve Kesişim Let A 1, A 2,, A n be an indexed collection of sets. We define:

44

45 Bölüm Özeti Bir Fonksiyonun Tanımı Tanım kümesi, Değer kümesi Görüntü, Ön görüntü birebir, örten, birebir örten Ters fonksiyon Fonksiyonların bileşimi Fonksiyonların gösterimi Taban, Tavan, Faktoriyel

46 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her bir elemanını B nin sadece bir elemanı ile eşleştirir. f(a) = b Fonksiyonlara haritalama veya dönüşüm de denir. Carlota Rodriguez Sandeep Patel Students Grades A B C Jalen Williams Kathy Scott D F

47 Fonksiyonlar f: A B fonksiyonu A B çarpımının bir alt kümesi olarak da tanımlanabilir. Bu alt kümedeki hiçbir sıralı ikilinin ilk elemanı aynı olamaz.

48 Fonksiyonlar f: A B için: f A yı B ye haritalar denir A f nin tanım kümesidir. B f nin değer kümesidir. Eğer f(a) = b ise b a nın f altındaki görüntüsüdür. a b nin ön görüntüsüdür. İki fonksiyon, tanım ve değer kümeleri aynı ise ve aynı zamanda tanım kümesindeki her bir elemanı değer kümesindeki aynı elemanla eşleştiriyorsa aynıdır.

49 Fonksiyonların Gösterimi Farklı gösterimler var: Eşleştirme durumlarının açıkça gösterilmesi. Öğrenciler ve notlar gibi. Bir formül ile. f(x) = x + 1 Bir bilgisayar programı ile

50 Sorular z f(a) =? A B d nin görüntüsü? z Tanım kümesi? A Değer kümesi? B y nin ön görüntüsü? b a x b y c d z z nin ön görüntüleri? {a,c,d}

51 Sorular Eğer ise ve S, A nın bir alt kümesi ise A B f {a,b,c,} is? {y,z} a x f {c,d} is? {z} b y c d z

52 Birebir (Injections) Tanım: Ancak ve ancak f(a) = f(b) eşitliği bütün a ve b elemanları için a = b eşitliğini gerektiriyorsa f fonksiyonu birebirdir. A a b c d B x v y z w

53 Örten (Surjections) Tanım: Ancak ve ancak bütün örtendir. yapan en az bir elemanları için varsa f fonksiyonu A a b c d B x y z

54 Birebir Örten (Bijections) Tanım: Bir fonksiyon aynı anda birebir ve örten özellikleri gösteriyorsa. A a B x b c d y z w

55 Ters Fonksiyonlar Tanım: f A dan B ye birebir ve örten bir fonksiyon olsun. f nin tersi ile gösterilir ve B den A ya tanımlı bir fonksiyondur. Birebir ve örtenlik yoksa neden fonksiyonun tersi olamaz?

56 Ters Fonksiyonlar A a B A B f V a V b W b W c c d X d X Y Y

57 Sorular Örnek: f {a,b,c} kümesinden {1,2,3} kümesine bir fonksiyon olsun. f(a) = 2, f(b) = 3, and f(c) = 1 ise f fonksiyonunun tersi alınabilir mi?

58 Sorular Örnek: f: Z Z ve f(x) = x + 1 ise f fonksiyonunun tersi alınabilir mi? Alınabilirse neden? Tersi nedir? Çözüm: Evet. Birebir örten olduğu için. Tersif -1 (y) = y 1.

59 Sorular Örnek: f: R R Çözüm: Tersi yoktur. Birebir değil.

60 Bileşim Tanım: f: B C, g: A B. Bileşke fonksiyon : A C

61 Bileşim g A B C a b c d V W X Y h i j f A a b c d C h i j

62 Bileşim ise Örnek1: ve, ve

63 Bileşke Fonksiyonlarla İlgili Sorular Example 2: Let g be the function from the set {a,b,c} to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set {a,b,c} to the set {1,2,3} such that f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f and g, and what is the composition of g and f. Solution: The composition f g is defined by f g (a)= f(g(a)) = f(b) = 2. f g (b)= f(g(b)) = f(c) = 1. f g (c)= f(g(c)) = f(a) = 3. g f tanımlanabilir mi?

64 Fonksiyonların Grafiksel Gösterimi f A kümesinden B kümesine bir fonksiyon olsun. F fonksiyonunun «grafı» sıralı çiftlerin bir kümesidir. {(a,b) a A and f(a) = b}. Graph of f(n) = 2n + 1 from Z to Z Graph of f(x) = x 2 from Z to Z

65 Bazı Önemli Fonksiyonlar Taban fonksiyonu x e eşit veya x den küçük en büyük tam sayı. Tavan fonksiyonu x e eşit veya x den büyük en küçük tam sayı. Örnek:

66 Taban ve Tavan Fonksiyonları Graph of (a) Floor and (b) Ceiling Functions

67 Faktöriyel Fonksiyon Tanım: f: N Z +, f(n) = n! İlk n pozitif tamsayının çarpımı. f(n) = 1 2 (n 1) n, f(0) = 0! = 1 Examples: f(1) = 1! = 1 f(2) = 2! = 1 2 = 2 Stirling s Formula: f(6) = 6! = = 720 f(20) = 2,432,902,008,176,640,000.

68

69 Section Summary Sequences. Examples: Geometric Progression, Arithmetic Progression Recurrence Relations Example: Fibonacci Sequence Summations

70 Introduction Sequences are ordered lists of elements. 1, 2, 3, 5, 8 1, 3, 9, 27, 81,. Sequences arise throughout mathematics, computer science, and in many other disciplines, ranging from botany to music. We will introduce the terminology to represent sequences and sums of the terms in the sequences.

71 Sequences Definition: A sequence is a function from a subset of the integers (usually either the set {0, 1, 2, 3, 4,..} or {1, 2, 3, 4,.} ) to a set S. The notation a n is used to denote the image of the integer n. We can think of a n as the equivalent of f(n) where f is a function from {0,1,2,..} to S. We call a n a term of the sequence.

72 Sequences Example: Consider the sequence where

73 Geometric Progression Definition: A geometric progression is a sequence of the form: where the initial term a and the common ratio r are real numbers. Examples: 1. Let a = 1 and r = 1. Then: 2. Let a = 2 and r = 5. Then: 3. Let a = 6 and r = 1/3. Then:

74 Arithmetic Progression Definition: A arithmetic progression is a sequence of the form: where the initial term a and the common difference d are real numbers. Examples: 1. Let a = 1 and d = 4: 2. Let a = 7 and d = 3: 3. Let a = 1 and d = 2:

75 Strings Definition: A string is a finite sequence of characters from a finite set (an alphabet). Sequences of characters or bits are important in computer science. The empty string is represented by λ. The string abcde has length 5.

76 Recurrence Relations Definition: A recurrence relation for the sequence {a n } is an equation that expresses a n in terms of one or more of the previous terms of the sequence, namely, a 0, a 1,, a n-1, for all integers n with n n 0, where n 0 is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation. The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

77 Questions about Recurrence Relations Example 1: Let {a n } be a sequence that satisfies the recurrence relation a n = a n for n = 1,2,3,4,. and suppose that a 0 = 2. What are a 1, a 2 and a 3? [Here a 0 = 2 is the initial condition.] Solution: We see from the recurrence relation that a 1 = a = = 5 a 2 = = 8 a 3 = = 11

78 Questions about Recurrence Relations Example 2: Let {a n } be a sequence that satisfies the recurrence relation a n = a n-1 a n-2 for n = 2,3,4,. and suppose that a 0 = 3 and a 1 = 5. What are a 2 and a 3? [Here the initial conditions are a 0 = 3 and a 1 = 5. ] Solution: We see from the recurrence relation that a 2 = a 1 - a 0 = 5 3 = 2 a 3 = a 2 a 1 = 2 5 = 3

79 Fibonacci Sequence Definition: Define the Fibonacci sequence, f 0,f 1,f 2,, by: Initial Conditions: f 0 = 0, f 1 = 1 Recurrence Relation: f n = f n-1 + f n-2 Example: Find f 2,f 3,f 4, f 5 and f 6. Answer: f 2 = f 1 + f 0 = = 1, f 3 = f 2 + f 1 = = 2, f 4 = f 3 + f 2 = = 3, f 5 = f 4 + f 3 = = 5, f 6 = f 5 + f 4 = = 8.

80 Solving Recurrence Relations Finding a formula for the nth term of the sequence generated by a recurrence relation is called solving the recurrence relation. Such a formula is called a closed formula. Various methods for solving recurrence relations will be covered in Chapter 8 where recurrence relations will be studied in greater depth. Here we illustrate by example the method of iteration in which we need to guess the formula. The guess can be proved correct by the method of induction (Chapter 5).

81 Iterative Solution Example Method 1: Working upward, forward substitution Let {a n } be a sequence that satisfies the recurrence relation a n = a n for n = 2,3,4,. and suppose that a 1 = 2. a 2 = a 3 = (2 + 3) + 3 = a 4 = ( ) + 3 = a n = a n = (2 + 3 (n 2)) + 3 = 2 + 3(n 1)

82 Iterative Solution Example Method 2: Working downward, backward substitution Let {a n } be a sequence that satisfies the recurrence relation a n = a n for n = 2,3,4,. and suppose that a 1 = 2. a n = a n = (a n-2 + 3) + 3 = a n = (a n )+ 3 2 = a n = a 2 + 3(n 2) = (a 1 + 3) + 3(n 2) = 2 + 3(n 1)

83 Financial Application Example: Suppose that a person deposits $10, in a savings account at a bank yielding 11% per year with interest compounded annually. How much will be in the account after 30 years? Let P n denote the amount in the account after 30 years. P n satisfies the following recurrence relation: P n = P n P n-1 = (1.11) P n-1 with the initial condition P 0 = 10,000 Continued on next slide

84 Financial Application P n = P n P n-1 = (1.11) P n-1 with the initial condition P 0 = 10,000 Solution: Forward Substitution P 1 = (1.11)P 0 P 2 = (1.11)P 1 = (1.11) 2 P 0 P 3 = (1.11)P 2 = (1.11) 3 P 0 : P n = (1.11)P n-1 = (1.11) n P 0 = (1.11) n 10,000 P n = (1.11) n 10,000 (Can prove by induction, covered in Chapter 5) P 30 = (1.11) 30 10,000 = $228,992.97

85 Useful Sequences

86 Summations Sum of the terms from the sequence The notation: represents The variable j is called the index of summation. It runs through all the integers starting with its lower limit m and ending with its upper limit n.

87 Summations More generally for a set S: Examples:

88 Geometric Series Sums of terms of geometric progressions Proof: Let To compute S n, first multiply both sides of the equality by r and then manipulate the resulting sum as follows: Continued on next slide

89 Geometric Series From previous slide. Shifting the index of summation with k = j + 1. Removing k = n + 1 term and adding k = 0 term. Substituting S for summation formula if r 1 if r = 1

90 Some Useful Summation Formulae Geometric Series: We just proved this. Later we will prove some of these by induction. Proof in text (requires calculus)

91

92 Section Summary Cardinality Countable Sets Computability

93 Cardinality Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a one-to-one correspondence (i.e., a bijection) from A to B. If there is a one-to-one function (i.e., an injection) from A to B, the cardinality of A is less than or the same as the cardinality of B and we write A B. When A B and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and write A < B.

94 Cardinality Definition A set S is finite with cardinality n N if there is a bijection from the set {0, 1,, n 1} to S. A set is infinite if it is not finite. Theorem The set N of natural numbers is an infinite set. Proof Consider the injection f : N N defined as f(x) = 3x. The range of f is a subset of the domain of f. 94

95 Some facts which could easily be seen are: 1. If S is infinite and is a subset of S, S is infinite. 2. Every subset of a finite set is finite. 3. If f : S T be an injection and S is infinite, then T is infinite. 4. If S is an infinite set P(S) is infinite. 5. If S and T are infinite sets. S T is infinite. 6. If S is infinite and T, then S T is infinite. 7. If S is infinite and T, the set of functions from T to S is infinite. 95

96 Definition The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write A = B. For infinite sets the definition of cardinality provides a relative measure of the sizes of two sets, rather than a measure of the size of one particular set. We can also define what it means for one set to have a smaller cardinality than another set. 96

97

98 Section Summary Definition of a Matrix Matrix Arithmetic Transposes and Powers of Arithmetic Zero-One matrices

99 Matrices Matrices are useful discrete structures that can be used in many ways. For example, they are used to: describe certain types of functions known as linear transformations. Express which vertices of a graph are connected by edges (see Chapter 10). In later chapters, we will see matrices used to build models of: Transportation systems. Communication networks. Algorithms based on matrix models will be presented in later chapters. Here we cover the aspect of matrix arithmetic that will be needed later.

100 Matrix Definition: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m n matrix. The plural of matrix is matrices. A matrix with the same number of rows as columns is called square. Two matrices are equal if they have the same number of rows and the same number of columns and the corresponding entries in every position are equal. 3 2 matrix

101 Notation Let m and n be positive integers and let The ith row of A is the 1 n matrix [a i1, a i2,,a in ]. The jth column of A is the m 1 matrix: The (i,j)th element or entry of A is the element a ij. We can use A = [a ij ] to denote the matrix with its (i,j)th element equal to a ij.

102 Matrix Arithmetic: Addition Defintion: Let A = [a ij ] and B = [b ij ] be m n matrices. The sum of A and B, denoted by A + B, is the m n matrix that has a ij + b ij as its (i,j)th element. In other words, A + B = [a ij + b ij ]. Example: Note that matrices of different sizes can not be added.

103 Matrix Multiplication Definition: Let A be an n k matrix and B be a k n matrix. The product of A and B, denoted by AB, is the m n matrix that has its (i,j)th element equal to the sum of the products of the corresponding elments from the ith row of A and the jth column of B. In other words, if AB = [c ij ] then c ij = a i1 b 1j + a i2 b 2j + + a kj b 2j. Example: The product of two matrices is undefined when the number of columns in the first matrix is not the same as the number of rows in the second.

104 Illustration of Matrix Multiplication The Product of A = [a ij ] and B = [b ij ]

105 Matrix Multiplication is not Commutative Example: Let Does AB = BA? Solution: AB BA

106 Identity Matrix and Powers of Matrices Definition: The identity matrix of order n is the m n matrix I n = [ ij ], where ij = 1 if i = j and ij = 0 if i j. AI n = I m A = A when A is an m n matrix Powers of square matrices can be defined. When A is an n n matrix, we have: A 0 = I n A r = AAA A r times

107 Transposes of Matrices Definition: Let A = [a ij ] be an m n matrix. The transpose of A, denoted by A t,is the n m matrix obtained by interchanging the rows and columns of A. If A t = [b ij ], then b ij = a ji for i =1,2,,n and j = 1,2,...,m.

108 Transposes of Matrices Definition: A square matrix A is called symmetric if A = A t. Thus A = [a ij ] is symmetric if a ij = a ji for i and j with 1 i n and 1 j n. Square matrices do not change when their rows and columns are interchanged.

109 Zero-One Matrices Definition: A matrix all of whose entries are either 0 or 1 is called a zero-one matrix. (These will be used in Chapters 9 and 10.) Algorithms operating on discrete structures represented by zero-one matrices are based on Boolean arithmetic defined by the following Boolean operations:

110 Zero-One Matrices Definition: Let A = [a ij ] and B = [b ij ] be an m n zero-one matrices. The join of A and B is the zero-one matrix with (i,j)th entry a ij b ij. The join of A and B is denoted by A B. The meet of of A and B is the zero-one matrix with (i,j)th entry a ij b ij. The meet of A and B is denoted by A B.

111 Joins and Meets of Zero-One Matrices Example: Find the join and meet of the zero-one matrices Solution: The join of A and B is The meet of A and B is

112 Boolean Product of Zero-One Matrices Definition: Let A = [a ij ] be an m k zero-one matrix and B = [b ij ] be a k n zero-one matrix. The Boolean product of A and B, denoted by A B, is the m n zero-one matrix with(i,j)th entry c ij = (a i1 b 1j ) (a i2 b 2j ) (a ik b kj ). Example: Find the Boolean product of A and B, where Continued on next slide

113 Boolean Product of Zero-One Matrices Solution: The Boolean product A B is given by

114 Boolean Powers of Zero-One Matrices Definition: Let A be a square zero-one matrix and let r be a positive integer. The rth Boolean power of A is the Boolean product of r factors of A, denoted by A [r]. Hence, We define A [r] to be I n. (The Boolean product is well defined because the Boolean product of matrices is associative.)

115 Boolean Powers of Zero-One Matrices Example: Let Find A n for all positive integers n. Solution:

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Kümeler Yük. Müh. Köksal GÜNDOĞDU 2 Kümeler Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

Bölüm 2 Matematik Dili

Bölüm 2 Matematik Dili Bölüm 2 Matematik Dili Kümeler p Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir p Kümenin elemanları element olarak adlandırılır p Kümeler nasıl gösterilir Liste şeklinde p Örnek: A = {,3,5,7}

Detaylı

Bölüm 2 Matematik Dili. Kümeler

Bölüm 2 Matematik Dili. Kümeler Bölüm 2 Matematik Dili Kümeler Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir Kümenin elemanları element olarak adlandırılır Kümeler nasıl gösterilir Liste şeklinde Örnek: A = {1,3,5,7} Tanım

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

BBM Discrete Structures: Midterm 2 Date: , Time: 16:00-17:30. Question: Total Points: Score:

BBM Discrete Structures: Midterm 2 Date: , Time: 16:00-17:30. Question: Total Points: Score: BBM 205 - Discrete Structures: Midterm 2 Date: 8.12.2016, Time: 16:00-17:30 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 Total Points: 12 22 10 10 15 16 15 100 Score: 1. (12 points)

Detaylı

Matematik Mühendisliği - Mesleki İngilizce

Matematik Mühendisliği - Mesleki İngilizce Matematik Mühendisliği - Mesleki İngilizce Tanım - Definition Tanım nasıl verilmelidir? Tanım tanımlanan ismi veya sıfatı yeterince açıklamalı, gereğinden fazla detaya girmemeli ve açık olmalıdır. Bir

Detaylı

Unlike analytical solutions, numerical methods have an error range. In addition to this

Unlike analytical solutions, numerical methods have an error range. In addition to this ERROR Unlike analytical solutions, numerical methods have an error range. In addition to this input data may have errors. There are 5 basis source of error: The Source of Error 1. Measuring Errors Data

Detaylı

BBM Discrete Structures: Final Exam Date: , Time: 15:00-17:00

BBM Discrete Structures: Final Exam Date: , Time: 15:00-17:00 BBM 205 - Discrete Structures: Final Exam Date: 12.1.2017, Time: 15:00-17:00 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 6 16 8 8 10 9 6 8 14 5 10 100 Score:

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

BM312 Ders Notları 2014

BM312 Ders Notları 2014 Kümeler ve Bağıntılar Bir küme nesnelerden oluşur L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir c L, k L şeklinde ifade edilir. Elemanların sırası ve tekrarı önemli değildir {üzüm, kiraz,

Detaylı

+,- #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir

+,- #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir !"#$ %& '()*' ' #'. L = {a, b, c, d} a, b, c, d kümenin elemanları veya üyeleridir b L, z L / #* ) {red, blue, red} ile {red, blue} aynıdır {3, 1, 9}, {9, 1, 3} ve {3, 9, 1} aynıdır / 0 Bir elemana sahip

Detaylı

Lisans. Ayrık Matematik Yüklemler ve Kümeler. Konular. Tanım. Tanım çalışma evreni: U izin verilen seçenekler kümesi örnekler:

Lisans. Ayrık Matematik Yüklemler ve Kümeler. Konular. Tanım. Tanım çalışma evreni: U izin verilen seçenekler kümesi örnekler: Lisans Ayrık Matematik Yüklemler ve Kümeler H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2013 You are free: to Share to copy, distribute and transmit the work to Remix to adapt the work c

Detaylı

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4 1 4 The price of a book is first raised by 20 TL, and then by another 30 TL. In both cases, the rate of increment is the same. What is the final price of the book? 60 80 90 110 120 2 3 5 Tim ate four more

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

Bölüm 6. Diziler (arrays) Temel kavramlar Tek boyutlu diziler Çok boyutlu diziler

Bölüm 6. Diziler (arrays) Temel kavramlar Tek boyutlu diziler Çok boyutlu diziler Bölüm 6 Diziler (arrays) Temel kavramlar Tek boyutlu diziler Çok boyutlu diziler Chapter 6 Java: an Introduction to Computer Science & Programming - Walter Savitch 1 Genel Bakış Dizi: Hepsi aynı türde

Detaylı

A Y I K BOYA SOBA SOBA =? RORO MAYO MAS A A YÖS / TÖBT

A Y I K BOYA SOBA SOBA =? RORO MAYO MAS A A YÖS / TÖBT 00 - YÖS / TÖBT. ve. sorularda, I. gruptaki sözcüklerin harfleri birer rakamla gösterilerek II. gruptaki sayılar elde edilmiştir. Soru işaretiyle belirtilen sözcüğün hangi sayıyla gösterildiğini bulunuz.

Detaylı

FINITE AUTOMATA. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1

FINITE AUTOMATA. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1 FINITE AUTOMATA Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1 Protocol for e-commerce using e-money Allowed events: P The customer can pay the store (=send the money- File to the store) C The

Detaylı

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr 1. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi DIVIDED DIFFERENCE INTERPOLATION Forward Divided Differences

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

1 I S L U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m

1 I S L U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m 1 I S L 8 0 5 U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m 2 0 1 2 CEVAPLAR 1. Tekelci bir firmanın sabit bir ortalama ve marjinal maliyet ( = =$5) ile ürettiğini ve =53 şeklinde

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ 2015.11.10 MAT461 Fonksiyonel Analiz I Arasınav N. Course Adi: Soyadi: Öğrenc i No: İmza: Ö R N E K T İ R S A M P L E

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

Properties of Regular Languages. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği - TY 1

Properties of Regular Languages. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği - TY 1 Properties of Regular Languages Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği - TY 1 Properties of Regular Languages Pumping Lemma. Every regular language satisfies the pumping lemma. If somebody

Detaylı

BBM Discrete Structures: Final Exam - ANSWERS Date: , Time: 15:00-17:00

BBM Discrete Structures: Final Exam - ANSWERS Date: , Time: 15:00-17:00 BBM 205 - Discrete Structures: Final Exam - ANSWERS Date: 12.1.2017, Time: 15:00-17:00 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 6 16 8 8 10 9 6 8 14 5 10

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ 03.11.2011 MAT 461 Fonksiyonel Analiz I Ara Sınav N. Course ADI SOYADI ÖĞRENCİ NO İMZA Do not open

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

Çizge teorisi. 1736, Euler, Königsberg Köprüleri problemini çözdü

Çizge teorisi. 1736, Euler, Königsberg Köprüleri problemini çözdü Çizge Algoritmaları Çizge teorisi 1736, Euler, Königsberg Köprüleri problemini çözdü Königsberg Köprüleri Problemi C A D B Çizge örneği 4 öğrenci: A, B, C, D 4 iş: FF, SC, W, BS FF SC W BS A B C D Soru:Tüm

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Eco 338 Economic Policy Week 4 Fiscal Policy- I. Prof. Dr. Murat Yulek Istanbul Ticaret University

Eco 338 Economic Policy Week 4 Fiscal Policy- I. Prof. Dr. Murat Yulek Istanbul Ticaret University Eco 338 Economic Policy Week 4 Fiscal Policy- I Prof. Dr. Murat Yulek Istanbul Ticaret University Aggregate Demand Aggregate (domestic) demand (or domestic absorption) is the sum of consumption, investment

Detaylı

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER KÜMELER Küme, nesnelerin iyi tanımlanmış bir listesidir. Kümeyi oluşturan nesnelerin her birine kümenin elemanı denir. Kümeler genellikle A, B, C,... gibi büyük harflerle gösterilir. x nesnesi A kümesinin

Detaylı

L İ S E S İ MATEMATİK. Kümeler. Üzerine Kısa Çalışmalar

L İ S E S İ MATEMATİK. Kümeler. Üzerine Kısa Çalışmalar MTEMTİK T T Ü R K N D O L U L İ S E S İ M T E M T İ K Üzerine Kısa Çalışmalar KONY \ SELÇUKLU 017 MTEMTİK KÜMELER (CÜMLELER).1 Küme (Cümle) Kavramı Matematiğin dili mantıktır., matematiğin kendisini anlatabilmesini

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

CHAPTER 1 INTRODUCTION NUMBER SYSTEMS AND CONVERSION. Prof. Dr. Mehmet Akbaba CME 221 LOGİC CİRCUITS

CHAPTER 1 INTRODUCTION NUMBER SYSTEMS AND CONVERSION. Prof. Dr. Mehmet Akbaba CME 221 LOGİC CİRCUITS CHAPTER 1 INTRODUCTION NUMBER SYSTEMS AND CONVERSION Prof. Dr. Mehmet Akbaba CME 221 LOGİC CİRCUITS 1 Prof. M. Akbaba Digital Logic 10/12/2015 This Chapter includes: Digital Systems and Switching Circuits

Detaylı

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14 İÇİNDEKİLER 1. BÖLÜM MANTIK Giriş... 1 Genel Olarak Mantık... 1 Mantığın Tarihçesi ve Modern Mantığın Doğuşu... 1 Mantık Öğretimin Önemi ve Amacı... 2 Önerme... 3 VE İşlemi (Birlikte Evetleme, Mantıksal

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir.

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir. GAZI UNIVERSITY ENGINEERING FACULTY INDUSTRIAL ENGINEERING DEPARTMENT ENM 205 LINEAR ALGEBRA COURSE ENGLISH-TURKISH GLOSSARY Linear equation: a 1, a 2, a 3,.,a n ; b sabitler ve x 1, x 2,...x n ler değişkenler

Detaylı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı

İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı İndirgenme Boyutu Üç Olan Fibonacci Simetrik Sayısal Yarıgruplarının Bir Sınıfı Meral SÜER * ve Sedat İLHAN * Batman Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü,7060 Batman, Türkiye Dicle Üniversitesi,

Detaylı

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz. 1 FONKSİYONLAR Sıralı İkili: A ve B boş olmayan iki küme olmak üzere, aa ve bb iken (a, b) ifadesine bir sıralı ikili denir. Burada a ya, sıralı ikilinin birinci bileşeni, b ye de ikinci bileşeni denir.

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

a, ı ı o, u u e, i i ö, ü ü

a, ı ı o, u u e, i i ö, ü ü Possessive Endings In English, the possession of an object is described by adding an s at the end of the possessor word separated by an apostrophe. If we are talking about a pen belonging to Hakan we would

Detaylı

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur. 3.ALT GRUPLAR HG, Tanım 3.. (G, ) bir grup ve nin boş olmayan bir alt kümesi olsun. Eğer (H, ) bir grup ise H ye G nin bir alt grubu denir ve H G ile gösterilir. Not 3.. a)(h, ), (G, ) grubunun alt grubu

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

IDENTITY MANAGEMENT FOR EXTERNAL USERS

IDENTITY MANAGEMENT FOR EXTERNAL USERS 1/11 Sürüm Numarası Değişiklik Tarihi Değişikliği Yapan Erman Ulusoy Açıklama İlk Sürüm IDENTITY MANAGEMENT FOR EXTERNAL USERS You can connect EXTERNAL Identity Management System (IDM) with https://selfservice.tai.com.tr/

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

ÜNİTE 11 ÜNİTE 9 MATEMATİK. Kümeler. 1. Bölüm: Kümelerde Temel Kavramlar 2. Bölüm: Kümelerde İşlemler. 9. Sınıf Matematik

ÜNİTE 11 ÜNİTE 9 MATEMATİK. Kümeler. 1. Bölüm: Kümelerde Temel Kavramlar 2. Bölüm: Kümelerde İşlemler. 9. Sınıf Matematik ÜNİTE 11 ÜNİTE Kümeler 1. Bölüm: Kümelerde Temel Kavramlar 2. Bölüm: Kümelerde İşlemler 9 MATEMATİK 1. ÜNİTEDE HEDEFLENEN KAZANIMLAR 1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR Kazanım 9.1.1.1: Küme kavramını

Detaylı

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z

Detaylı

Help Turkish -> English

Help Turkish -> English Help Turkish -> English Günümüzde matematik makalelerinin çok önemli bir kısmı İngilizce yazılıyor. Türkçe düşünmeye alışmış olanlarımız için bu pek de kolay olmayabilir. Bir yazıda elbette İngilizce öğretmek

Detaylı

NATURAL LANGUAGE PROCESSING

NATURAL LANGUAGE PROCESSING NATURAL LANGUAGE PROCESSING LESSON 8 : LEXICAL SIMILARITY OUTLINE Lexical vs. Semantic Similarity Similarity Levenstein Distance Jaccard Similarity Cosine Similarity Vector Space Model Binary Weighting

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

Otomata Teorisi (BIL 2114)

Otomata Teorisi (BIL 2114) Otomata Teorisi (BIL 2114) Hafta 1: Amaç ve Genel Kavramlar bas kapa aç bas 1 Hafta 1 Plan 1. İletişim ve Ders Bilgisi 2. Otomata Teorisi Genel Bakış 3. Hedeflenen Kazanımlar 4. Matematiksel Nosyonlar

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

AYRIK YAPILAR. ARŞ. GÖR. SONGÜL KARAKUŞ- FıRAT ÜNIVERSITESI TEKNOLOJI FAKÜLTESI YAZıLıM MÜHENDISLIĞI BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR. ARŞ. GÖR. SONGÜL KARAKUŞ- FıRAT ÜNIVERSITESI TEKNOLOJI FAKÜLTESI YAZıLıM MÜHENDISLIĞI BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Kafes Yapıları. Hatırlatma

Kafes Yapıları. Hatırlatma Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

7. BAZI MATEMATİKSEL TEMELLER:

7. BAZI MATEMATİKSEL TEMELLER: 7. BAZI MATEMATİKSEL TEMELLER: Bilindiği üzere, matematikte ortaya konan her yeni kavram, kendinden önceki tanımlanmış kavramlar cinsinden, herhangi bir tereddüt veya muğlâklığa mahal bırakmayacak resmî

Detaylı

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201 BÖLÜM KODU:01 011-01 01.Yarıyıl Dersleri 0.Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 10 Analiz II Analysis II 4 1 5 6 MTK 11 Lineer Cebir I Linear Algebra I 1 4 MTK 1 Lineer Cebir II Linear

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

#include <stdio.h> int main(void) { float sayi; float * p; p = &sayi; printf("deger girin:"); scanf("%f", p); printf("girilen deger:%f\n", *p);

#include <stdio.h> int main(void) { float sayi; float * p; p = &sayi; printf(deger girin:); scanf(%f, p); printf(girilen deger:%f\n, *p); Ege University Electrical and Electronics Engineering Introduction to Computer Programming Laboratory Lab 11 - Pointers 1) Pointer syntax. Declare a variable and a pointer with same data type. Assign variable

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Küme Kavramı Küme İşlemleri Deney, Örnek Uzay, Örnek Nokta ve Olay Kavramları Örnek Noktaları Sayma Permütasyonlar Kombinasyonlar Parçalanmalar

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 ÖĞR.GÖR. GÜNAY TEMÜR - TEKNOLOJİ F. / BİLGİSAYAR MÜH.

SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 ÖĞR.GÖR. GÜNAY TEMÜR - TEKNOLOJİ F. / BİLGİSAYAR MÜH. SAYI SİSTEMLERİ ve BOOLE CEBİRİ 1+1=1 Ders Konusu 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak üzere ortaya konulmuş bir matematiksel sistemdir. İkilik Sayı Sistemi Çoğu

Detaylı

Lisans. Cebirsel Yapı

Lisans. Cebirsel Yapı Lisans Ayrık Matematik Cebirsel Yapılar H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2012 You are free: to Share to copy, distribute and transmit the work to Remix to adapt the work c 2001-2012

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grammars and Languages We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs, called Context- Free Languages (CFL). These langs have a natural,

Detaylı

Bu durumda ya cozum yoktur veya sonsuz cozum vardir. KIsaca cozum tek degildir. Veya cozumler birbirine lineer bagimlidir.

Bu durumda ya cozum yoktur veya sonsuz cozum vardir. KIsaca cozum tek degildir. Veya cozumler birbirine lineer bagimlidir. Vektorlerin lineer bagimsiligi Ornek, Denklem Takimini Coun > - Ikinci denklemde erine ko (-) -) Sonuc: > - sartini saglaan butun ve ler her iki denklemi de coer. (, ), (, ), (, ),... Denklem takiminin

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA BEYKENT ÜNİVERSİTESİ FEN VE MÜHENDİSLİK BİLİMLERİ DERGİSİ Sayı 7(1) 2014, 25-36 İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA Tuğba PİŞTOFOGLU (tugbapistofoglu@gmail.com)

Detaylı

Tanım Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki. boş karakter dizgisi (null string) denir ve l ile gösterilir.

Tanım Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki. boş karakter dizgisi (null string) denir ve l ile gösterilir. BÖLÜM 3 Karakter Dizgileriil i Tanım 3.1.1 Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki öğelerden oluşan bir sonlu dizidir. Hiç bir öğesi olmayan bir karakter dizgisine boş karakter

Detaylı

CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS. Sampling from a Population

CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS. Sampling from a Population CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS Sampling from a Population Örnek: 2, 4, 6, 6, 7, 8 say lar ndan oluşan bir populasyonumuz olsun Bu say lardan 3 elemanl bir örneklem (sample) seçebiliriz. Bu

Detaylı

2 PYTHON A GIRIŞ 13 PyCharm İle Python Projesi Oluşturma 15 Projenin Çalıştırılması 18 İlk Python Programımız 19 Açıklama Satırları 21

2 PYTHON A GIRIŞ 13 PyCharm İle Python Projesi Oluşturma 15 Projenin Çalıştırılması 18 İlk Python Programımız 19 Açıklama Satırları 21 İÇİNDEKİLER VII İÇİNDEKİLER 1 PYTHON 1 Neden Python? 2 Python Sürümleri 2 Python Kurulumu 3 Windows Üzerinde Python 3 Ubuntu Üzerinde Python 6 Komut Satırında Python Çalıştırma 6 Windows komut istemi üzerinde

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi

BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi BİL 201 Boole Cebiri ve Temel Geçitler (Boolean Algebra & Logic Gates) Bilgisayar Mühendisligi Bölümü Hacettepe Üniversitesi Temel Tanımlar Kapalılık (closure) Birleşme özelliği (associative law) Yer değiştirme

Detaylı

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni.

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni. iii T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜNE AYDIN Matematik Anabilim Dalı Yüksek Lisans Programı öğrencisi Koray KARATAŞ tarafından hazırlanan Genel Lineer Grupların Sylow

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Formal Diller Ve Otomat Teorisi

Formal Diller Ve Otomat Teorisi Formal Diller Ve Otomat Teorisi Ismail Kadayif Canakkale Onsekiz Mart Universitesi Bilgisayar Muhendisligi 4/5/2004 Formal Diller 1.1 Strings ve Languages (Diller) alphabet (character set): Sonlu sayida

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: CALCULUS II. Dersin Kodu: MAT 1002

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: CALCULUS II. Dersin Kodu: MAT 1002 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK II Dersin Orjinal Adı: CALCULUS II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 100 Dersin Öğretim

Detaylı

Leyla Bugay Haziran, 2012

Leyla Bugay Haziran, 2012 Sonlu Tekil Dönüşüm Yarıgruplarının Doğuray Kümeleri ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Haziran, 2012 Yarıgrup Teorisi Nedir? Yarıgrup terimi ilk olarak 1904 yılında Monsieur l

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS-3 29.02.2016 Boolean Algebra George Boole (1815-1864) 1854 yılında George Boole tarafından özellikle lojik devrelerde kullanılmak

Detaylı

Week 5 Examples and Analysis of Algorithms

Week 5 Examples and Analysis of Algorithms CME111 Programming Languages I Week 5 Examples and Analysis of Algorithms Assist. Prof. Dr. Caner ÖZCAN BONUS HOMEWORK For the following questions (which solved in lab. practice), draw flow diagrams by

Detaylı

Dilbilgisi ve Diller

Dilbilgisi ve Diller Dilbilgisi ve Diller Doç.Dr.Banu Diri 1. Her biçimsel dil belirli bir alfabe üzerinde tanımlanır. 2. Alfabe sonlu sayıda simgelerden oluşan bir kümedir. 3. Alfabedeki simgelerin arka arkaya getirilmesi

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)

Detaylı

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir.

BOOLEAN İŞLEMLERİ Boolean matematiği sayısal sistemlerin analizinde ve anlaşılmasında kullanılan temel sistemdir. BOOLEAN MATEMATİĞİ İngiliz matematikçi George Bole tarafından 1854 yılında geliştirilen BOOLEAN matematiği sayısal devrelerin tasarımında ve analizinde kullanılması 1938 yılında Claude Shanon tarafından

Detaylı